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Abstract

Instrumental variable (IV) methods are widely used to identify causal effects in

models with endogenous explanatory variables. In many cases, the instrument exclu-

sion restriction that underlies the validity of the usual IV inference is suspect; that is,

the instruments are ‘plausibly exogenous.’ We develop practical methods of perform-

ing inference while relaxing the exclusion restriction. These methods provide tools for

applied researchers who want to proceed with less-than-perfectly valid instruments.

In addition, our framework enables a concise description of the tradeoff between in-

strument strength and the degree of exclusion restriction violation. We illustrate the

approach with empirical examples that examine the effect of 401(k) participation upon

asset accumulation, price elasticity of demand for margarine, and returns-to-schooling.

We find that inference is quite informative even with a substantial relaxation of the

exclusion restriction in two of the three cases.
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1 Introduction

Instrumental variable (IV) techniques are among the most widely used empirical tools in

economics. Identification of a ‘treatment parameter’ of interest typically comes from an

exclusion restriction: some IV has correlation with the endogenous regressor but no correla-

tion with the unobservables influencing the outcome of interest. Such exclusion restrictions

are often debatable. Authors routinely devote a great deal of effort towards convincing

the reader that their assumed exclusion restriction is a good approximation; i.e. they ar-

gue their instruments are ‘plausibly exogenous.’ Inference about the treatment parameter

is then typically conducted under the assumption that the restriction holds exactly. This

paper presents an alternative approach to inference for IV models with instruments whose

validity is debatable. We provide an operational definition of plausibly (or approximately)

exogenous instruments and present simple, tractable methods of conducting inference that

are consistent with instruments being only plausibly exogenous.1

Our definition of plausibly exogenous instruments comes from relaxing the IV exclusion

restriction. We define a parameter γ that reflects how close the exclusion restriction is to

being satisfied in the following model:

Y = Xβ + Zγ + ε. (1)

In this regression, Y is an outcome vector, X is a matrix of endogenous treatment variables,

ε are unobservables, Z is a matrix of instruments that are assumed uncorrelated with ε

and this orthogonality condition is the basis for estimation. When X is endogenous, the

parameters β and γ are not jointly identified, so prior information or assumptions about γ

are used to obtain estimates of the parameters of interest: β. The IV exclusion restriction is

equivalent to the dogmatic prior belief that γ is identically zero. Our definition of plausible

exogeneity corresponds to having prior information that implies γ is near zero but perhaps

not exactly zero. This assumption relaxes the IV exclusion assumption but still provides

sufficient structure to allow estimation and inference to proceed.

1Stata code for the methods of Sections 4.1 and 4.3 is on Christian Hansen’s website, currently

http://faculty.chicagogsb.edu/christian.hansen/research/ . R code for Bayesian inference is available in the

contributed package bayesm. Matlab code for other methods is available from the authors upon request.
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We present three complementary estimation strategies that utilize prior information

about γ to differing extents. The first approach only specifies the set of possible γ val-

ues, i.e. the support of γ. Interval estimates for β, the treatment parameter of interest,

can be obtained conditional on any potential value of γ. Taking the union of these interval

estimates across different γ values provides a conservative (in terms of coverage) interval

estimate for β. A virtue of this method is that it requires only specification of a range of

plausible values for γ without requiring complete specification of a prior distribution. Its

chief drawback is that the resulting interval estimates may be wide.

Our second strategy is to use prior information about the distribution of potential values

of γ, while stopping short of a full specification of the error terms’ distribution. We view

prior probabilities for γ as analogous to objective probabilities in a two step data generating

process (DGP) where first Nature draws γ according to the prior distribution, then the data

are drawn from the specified DGP given this value of γ. Interval estimates are interpreted

as having a particular confidence level from an ex ante point of view for this two-step DGP.

Prior beliefs about γ are routinely held by researchers. Usual arguments employed by

researchers to justify their instruments as being “plausibly exogenous” are analogous to

statements of beliefs that there is a high probability that γ is near 0 and that the probability

of more extreme values is diminishing. Such beliefs define a prior distribution for γ. We

consider two ways to use this prior information. One is a straightforward modification of

the union of confidence intervals approach mentioned above. The second uses a large-sample

approximation and is practically very convenient.

Our third strategy is to undertake a full Bayesian analysis which requires priors over all

model parameters (not just γ) and assumptions about the error distributions. Distributional

assumptions can be very flexible via recent non-parametric Bayesian IV methods (e.g. Conley

et al (2006)). We outline two specific ways to form priors for γ : one takes γ to be independent

of the rest of the model and the other allows beliefs about γ to depend on β. Priors for γ that

depend upon other model parameters are much easier to handle in this Bayesian framework

versus our other methods.

Each proposed method focuses on interval estimates (inference) for β which provide a

measure of what can be learned about β given the information in the data and beliefs about
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γ. This focus differs from many other approaches that consider only bias and thus do not

provide a complete picture of what one can learn about β. Our approach adds substantial

value to simple sensitivity analyses performed by careful researchers that report results for a

handful of alternate values for γ; see Angrist and Krueger (1994). For example, a researcher

with a handful of different confidence intervals for β (each corresponding to a different value

for γ) will be able to assess the variability of results across these γ values. However, such

analysis does not immediately provide inference for β which is the ultimate goal of the

empirical exercise.2 We show how to take such information and combine it with varying

degrees of prior information/beliefs about γ to construct confidence sets for β, enabling the

researcher to conduct valid inference about the treatment effect β.

Our methods may greatly expand the set of available instruments and change the way

researchers think about the scope of IV techniques. Instead of being restricted to using

instruments for which the exclusion restriction is nearly certain, researchers may entertain

the use of any instrument for which they are able to define beliefs about its direct effect

γ. In many applications, instruments can yield informative results even under appreciable

deviations from an exact exclusion restriction. We illustrate this through empirical examples.

One of the key features of our approaches is that they provide valid inference statements

for any beliefs about the validity of the instruments. Thus, we can use our framework to

examine the tradeoff between instrument strength and the degree of exclusion restriction

violation (plausibility). It is well-known that the sensitivity of the 2SLS estimator of β to

violations of the exclusion restriction depends on the strength of the instruments.3 In our

framework, we may readily see how interval estimates for β depend on both instrument

strength and plausibility. For example, relatively minor deviations from the exclusion re-

2For example, usual sensitivity analysis proceeds by considering results for a handful of γ values and

then draws one of two conclusions. If the results are not “too different”, one goes ahead with the analysis

conducting inference as if γ were identically 0. Otherwise, one concludes that the results are too variable to

be useful. The first conclusion is problematic as it ignores the researcher’s uncertainty about the true value

of γ. Thus, it is at odds with the beliefs that led to the sensitivity analysis and will produce intervals that

tend to be too narrow. The latter conclusion will tend to be too pessimistic even with weak instruments and

mildly informative prior beliefs about γ.
3See, for example, Angrist and Krueger (1994) and Bound, Jaeger, and Baker (1995).
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striction may greatly decrease precision relative to the case where γ = 0 when instruments

are weak, whereas large deviations may have only small influences upon precision when the

instruments are strong. This phenomenon is illustrated in an empirical example where we

see the gains to using strong, but less plausible, versus weak, but more plausible, instruments

can be substantial. Our methods allow a researcher to construct valid inference under any

such scenario and to explicitly compare these intervals to choose between instrument sets

that vary in strength and plausibility. The desire to use strong but less plausible instruments

provides a direct motivation for the methods of this paper.

In our main presentation, we restrict ourselves to the linear IV model with constant coef-

ficients and the 2SLS estimator for ease of exposition.4 We discuss the model in more detail

and show that within the context of linear models treating a constant coefficient model is

essentially without loss of generality; see Section 3. In particular, we show that commonly

employed models with heterogeneous treatment effects, including the local average treat-

ment effect (LATE) model of Angrist and Imbens (1995) and Angrist, Imbens, and Rubin

(1996), fall within our framework by re-interpreting β and γ in equation (1). Our meth-

ods also extend immediately to any structural model setting with unidentified parameters.

Any situation in which there is an unidentified parameter about which reasonable a priori

information exists can be treated using the approach to inference in this paper.

The remainder of this paper is organized as follows. In Section 2, we review the relevant

literature. In Section 3, we revisit model (1), show how it relates to relevant models with

heterogeneous treatment effects, and discuss the importance of instrument strength. We

present the inference methods formally in Section 4; and in Section 5, we consider how results

vary with prior beliefs. In Section 6, we illustrate our methods in three example applications:

estimating the effect of 401(k) participation upon asset accumulation motivated by Abadie

(2003) and Poterba, Venti, and Wise (1995); estimating the price elasticity of demand for

margarine following Chintagunta, Dubé, and Goh (2003); and estimating the returns to

schooling as in Angrist and Krueger (1991). Section 7 concludes.

4The analysis could easily be extended to other estimators or to weak instrument robust inference proce-

dures.
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2 Other Approaches

Our methods complement other approaches in the literature. As discussed below, a typical

treatment of suspect instruments focuses on biases or bounds for β. In contrast, we focus

on procedures that provide confidence interval estimates of treatment effects incorporating

information from both the data and researchers’ beliefs regarding potential violations of the

exclusion restriction.

A typical treatment of suspect instruments proceeds by performing a sensitivity anal-

ysis for the bias of an estimator of β. Assumptions are made about possible values for

unidentified parameters, and one investigates how these values are related to the bias of the

estimator.5 Examples include Angrist and Krueger (1994) who characterize violations of the

exclusion restriction exactly as in equation (1) and note that the difference between β and

the probability limit of its two-stage least squares (2SLS) estimator is a simple function of

γ. They use this function of γ and external information to assign a value for the bias of

the 2SLS estimator. Angrist, Imbens, and Rubin (1996) also provide an expression for the

large-sample limit of the 2SLS estimator in the local average treament effect (LATE) model

when the exclusion restriction does not hold. They then construct a measure of bias that

depends on the unidentified direct effect of Z on Y . Hahn and Hausman (2003) provide an

expression for the bias of 2SLS that depends on the population R2 of the infeasible regression

of Z on Y −Xβ. They combine this with variance expressions to compare MSE for OLS and

2SLS estimators when the exclusion restriction is violated, in order to provide conditions

when one prefers 2SLS to OLS point estimators (in MSE) when both are inconsistent.6

While the above approach to sensitivity analysis is clearly useful, it does suffer from some

drawbacks. The focus on biases in point estimation inherently ignores estimation precision.

Of course, it is essentially impossible to draw inferences from the data without considering

5See Rosenbaum (2002) for a textbook discussion.
6Another popular device is to posit parameter values govering the distribution of a hypothetical unob-

served variable influencing outcomes. Rosenbaum (1987) conducts sensitivity analysis in the case of matched

pairs sampling with binary treatments and outcomes in the presence of unobservables that may affect the

treatment state. Gastwirth et al. (1997) and Imbens (2003) extend this by explicitly considering an unob-

servable that may affect both the treatment and the response.
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precision. Therefore, the typical approach provides no guidance about what to do to obtain

valid inference about treatment parameters. This point remains even if the focus were shifted

from bias to interval estimates. As we discuss below, it is straighforward to obtain interval

estimates for β given any hypothetical value of γ by estimating a new equation with Y −Zγ

as the outcome variable. Thus, we can extend the usual sensitivity analysis for bias to

consider a set of confidence intervals for β. However, this does not address the question of

how to combine the information the intervals contain (potentially with prior information as

well) to construct an interval estimate of β.

One way to address the drawbacks mentioned above is to not focus on point estimation

and instead use the information in the data along with prior restrictions to estimate bounds

for β. In general, such restrictions will not point identify β even with an infinite amount

of data but will instead identify a set of β’s that are consistent with the observed data and

beliefs. Even though one can not point identify β, one can obtain valid confidence sets for

β. For such sets to be informative, one must impose some form of prior restrictions. Many

approaches proceed by restricting the support of unidentified parameters.7 An excellent

example contemporaneous with our paper is Small (2007) who presents an approach to

obtaining bounds for overidentified instrumental variables models. His procedure is based on

inverting the Anderson and Rubin (1949, AR) statistic. It uses the information available from

standard overidentification tests and augments this with an assumption about the support

of unidentified parameters that characterize directions against which overidentification tests

have low power. A drawback of this approach is that it does not apply under some forms of

treatment effect heterogeneity; for example, it will not apply in the LATE model. In this case,

different instrument sets estimate different treatment parameters; and overidentifying tests

7See Manski (2003) for an overview of such approaches. Example uses of bounds are Manski and Pepper

(2000) and Hotz, Mullin, and Sanders (1997). Manski and Pepper (2000) consider treatment effect bounds

with instruments that are assumed to monotonically impact conditional expectations, which is roughly

analogous to assuming γ ∈ [0,∞]. Hotz, Mullin, and Sanders (1997) model their dataset as a contamination

mixture of subpopulations with an IV exclusion restriction holding in only one subpopulation. They make

prior assumptions about the nature of the contamination (informed by auxiliary data) and utilize Horowitz

and Manski (1995) bounds. Bounds in this context are clearly related to the recent econometrics literature

on set identification as in, for example, Chernozhukov, Hong, and Tamer (2007).
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may reject not because of violation of the exclusion restriction but simply due to treatment

effect heterogeneity.

Our first approach in Section 4.1 also falls within the bounds framework. We impose sup-

port restrictions on γ and couple these with the information from the data to form confidence

sets for β. Our approach is very easy to implement, being based entirely on conventional

2SLS point estimates and standard errors, and involves placing support restrictions over an

easily interpretable parameter. In addition, it applies immediately in important heteroge-

neous effects models such as the LATE model. The chief drawback of confidence sets that

only use support restrictions is that they make no use of a researcher’s beliefs about the

plausibility of different values of γ and thus are pessimistic relative to approaches that use

these beliefs.

An analytically different way to proceed is to use approximations obtained in a model

in which specification or exogeneity error and sampling error are of the same order of mag-

nitude. Using this approximation, both specification error and sampling error will influence

the limiting distribution of an estimator of β. This idea was employed in the context of

estimation with invalid instruments in Hahn and Hausman (2003) who examine asymptotic

MSE under local deviations of the exclusion restriction where γ = C/
√
N for some constant

C where N is the sample size. In research contemporaneous to ours, Berkowitz, Caner, and

Fang (2006) use this approximation to show the AR statistic converges to a noncentral χ2

random variable with noncentrality that depends on the unknown nuisance parameter C.

They show that a delete-d jackknife can produce a large sample distribution that is close

to the limiting distribution of the AR statistic regardless of the value of C. Their results

are obtained in an iid setting, and it is unclear whether they are readily generalized to set-

tings with heterogeneity or dependence, especially cases with treatment effect heterogeneity

where β is interpreted as the LATE. Our local approach in Section 4.3 also fits into this ba-

sic framework. However, it differs substantially from other approaches in that we explicitly

incorporate a researcher’s beliefs about plausible values of the specification error, as cap-

tured by γ, by allowing this parameter to be a nondegenerate random variable in any finite

sample. Using this formulation allows researchers to incorporate prior beliefs over exclusion

restriction violations without requiring that those beliefs be dogmatic and thus provides a
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better match to the way most people think about instrumental variables and their inference

methods. Our method is extremely easy to implement, requiring only a simple modification

of standard 2SLS regression output, and applies immediately in the LATE model and allows

for heterogeneity and dependence more generally.

None of these alternative approaches makes use of prior beliefs beyond support restric-

tions. It appears that prior beliefs are held by researchers in many cases. In particular, when

researchers claim their instruments are plausibly exogenous, this is analogous to stating that

they believe there is a high probability that γ is near 0 and that the probability of more

extreme values is diminishing. That is, they have in mind a shape for the distribution of

likely values of γ. There are also clearly examples where external information about γ is

available; for example, see Angrist and Krueger (1994). When such information is available,

one might wish to use the posterior of γ or asymptotic distribution of an estimator of γ

obtained from this auxiliary information as a prior. There are, of course, many other ways

that one may choose to characterize beliefs depending on the particular application.

The main contributions of this paper are in carefully considering a simple framework

in which to discuss the notion of plausibly exogenous instruments and providing simple to

implement approaches to inference that allow one to incorporate prior information to varying

degrees. All of our discussion is done in terms of equation (1) where we can characterize

beliefs about the exclusion restriction in terms of the readily interpretable parameter γ. γ

may be viewed as the direct effect of Z on the outcome which corresponds to a quantity, a

partial effect, about which most applied researchers have strong intuition and has natural

units which facilitates prior construction.

3 Model

We discuss each of the inference procedures mentioned above in the context of a linear

structural model. In this section, we present the model and briefly discuss how it encompasses

standard models with heterogeneous treatment effects. Extensions to nonlinear models are

discussed in the appendix.

We are interested in estimating the parameter β in a simultaneous equation model rep-
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resented in limited information form as

Y = Xβ + Zγ + ε (2)

X = ZΠ + V (3)

where Y is an N × 1 vector of outcomes; X is an N × s matrix of endogenous variables,

E[Xε] 6= 0, with treatment parameter of interest β; Z is an N × r matrix of excluded

instruments where r ≥ s with E[Z ′ε] = 0; Π is a matrix of first-stage coefficients; and γ is

our parameter measuring the plausibility of the exclusion restriction. This model generalizes

obviously to allow for additional predetermined or exogenous regressors.8 The difference

between the model defined above and the usual IV model is the presence of the term Zγ

in the structural equation. As discussed above, the usual IV assumption corresponds to

the exclusion restriction that γ ≡ 0 which may be viewed as a dogmatic prior on γ. Our

formalization of the notion of plausible exogeneity of Z corresponds to allowing deviations

from this dogmatic prior on γ.

While we present the model with constant coefficients, our approach encompasses the

usual models that allow for heterogeneous treatment effects. For example, in the model with

yi = x′iβi + z′iγi + ui where E[ziui] = 0, E[xiui] 6= 0, and γi and βi are jointly independent

of xi and zi, we have that yi = x′iβ + z′iγ + εi satisfies E[xiεi] 6= 0 and E[ziεi] = 0 where

εi = ui +x′i(βi−β) + z′i(γi−γ), β = E[βi], and γ = E[γi]. Thus, the only difference between

this model and the model in (2) is that β should be interpreted as the average treatment

effect of X on Y and γ should be interpreted as the average effect of Z on Y . A similar

though more complicated set of arguments also applies immediately in the LATE model of

Angrist and Imbens (1995) and Angrist, Imbens, and Rubin (1996). In this case, β should

be interpreted as the LATE and γ as the average direct effect of Z on Y , but nothing is

affected outside of interpretation.9

Finally, it is worth noting that the strength of the relationship between Z andX, captured

by Π in (3), plays an important role in determining what can be learned about β in (2) just

8See the appendix.
9We demonstrate this in the appendix. We also note that this framework applies to the case where

Y = Xβ + g(Z) + u and u satisifies the usual conditions. In this case, we have γ = E[ziz′i]
−1E[zig(zi)], the

projection coefficient of g(Z) onto Z, and ε = u+ (g(Z)− Zγ) which is uncorrelated with Z.
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as it does in any IV model. The intuition for this can be seen easily in the special case

where β and γ are both scalars. In this case, β̂ = (Z ′X)−1Z ′Y
p→ β + γ/Π, from which it

follows that β̂ is far more senstitive to γ when Π is small. This basic intuition holds for all

of the inferential approaches we consider in the following section. In particular, small ranges

for plausible values of γ will lead to large decreases in the precision of inference relative to

the case when γ ≡ 0 when the first-stage relationship is weak (Π is small) but may lead

to only minor losses in precision when Π is large. This behavior is a manifestation of the

point from Bound, Jaeger, and Baker (1996) and others that there is typically a tradeoff

between instrument strength and plausibility. All of the inference approaches we present in

the following section provide ways for one to think formally about this tradeoff.

4 Inference Procedures

In this section, we consider four methods for inference about β. Each provides a way to

perform inference about β without assuming γ is exactly zero. In the first, we assume only

that the support of γ is known and consider construction of confidence regions for β by

essentially taking a union of γ−specific confidence intervals. In the second and third, we

view γ as a random parameter and assume beliefs about γ can be described by a proper

prior distribution. We view the data generating process as a two-stage process where a value

for γ is drawn and then data are generated from (2) and (3) given this value of γ. We obtain

frequentist confidence regions that have correct coverage from an ex ante point of view under

the assumed distribution for γ. The second approach constructs a confidence region as a

union of ‘prior-weighted’ γ−specific confidence intervals, and the third approach employs

a large sample approximation in which prior uncertainty about the exclusion restriction

is modeled as being of the same order of magnitude as sampling uncertainty to obtain an

approximate distribution for the treatment effect estimator. In the fourth and final approach,

we again adopt a prior distribution over γ and couple this with a prior over all the other

model parameters and additional assumptions about the distribution of the unobserved errors

ε and V which allow us to pursue inference in a fully Bayesian manner.
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4.1 Union of Confidence Intervals with γ Support Assumption

Our first inference method utilizes only a support assumption about γ. Specifically, suppose

prior information consists of knowledge of the support for γ, G, which is bounded.10 If the

true value of γ was the value γ0 ∈ G, then we could subtract Zγ0 from both sides of the

equation in model (2) and estimate

(Y − Zγ0) = Xβ + ε

using any estimation method based on the orthogonality of the instruments Z and errors

ε. The usual asymptotic approximations could be employed to obtain a (1 − α) confidence

interval for β under the assumption that the true value of γ equals γ0. In theory, a set of such

confidence intervals could be constructed for all points in the support G and the union of

these γ−specific confidence regions for β will have coverage of at least (1−α). Our approach

is simply to approximate this union of confidence intervals.

For ease of exposition, we present details for the two-stage least squares (2SLS) estimator

of β.11 Under the maintained assumption that γ = γ0

β̂N(γ0) ≡ (X ′PZX)−1X ′PZ(Y − Zγ0)

where the projection matrix PZ ≡ Z(Z ′Z)−1Z ′. Simplifying this expression yields

β̂N(γ0) = β + (X ′PZX)−1X ′PZε

from which it will follow under conventional regularity conditions12 that

√
N(β̂N(γ0)− β)

d→ N(0, V (γ0)) (4)

where V (γ0) is the usual asymptotic covariance matrix for 2SLS.

For simplicity, we suppose that s, the dimension of β, equals 1 in the following; the

10Of course, if G is unbounded and one is unwilling to place further restrictions on γ, confidence regions

for β will also be unbounded.
11The same approach could be applied to any conventional estimator of β.
12See the appendix for an example set of regularity conditions.
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discussion generalizes immediately to s > 1 at the cost of complicating the notation.13 Using

(4), we could estimate a symmetric (1-α) confidence interval for β under the maintained

assumption that γ = γ0 in the usual way:

CIN(1− α, γ0) =

[
β̂N(γ0)± c1−α/2

√
V̂N(γ0)/N

]
(5)

where V̂N(γ0) is a consistent estimator of V (γ0) and the critical value c1−α/2 is the (1−α/2)

quantile of the standard normal distribution. Of course, the quantity in (5) is simply the

(1 − α) confidence interval for β constructed in the usual fashion from the output of any

statistical package from the 2SLS regression of Y − Zγ0 on X using Z as instruments. For

each element of G we could construct such an interval and define a (1−α) confidence interval

for β as the union of this set of confidence intervals:

CIN(1− α) = ∪γ0∈GCIN(1− α, γ0). (6)

Since we know that γ ∈ G and that the intervals CIN(1−α, γ0) were all constructed such that

Pr{β ∈ CIN(1 − α, γ0)} → 1 − α when γ = γ0, it follows immediately that asymptotically

Pr{β ∈ CIN(1−α)} ≥ 1−α. That is, CIN(1−α) will cover the true parameter value with

at least probability (1− α) asymptotically. The interval CIN(1− α) is easily approximated

in practice by gridding up the support G and taking the union of CIN(1 − α, γ0) over the

grid points for γ0.

A (weakly) shorter version of CIN(1−α) is available if we allow the γ0−specific intervals

to be asymmetric. We give details of how to construct this interval in the appendix and

illustrate its use in the empirical examples. We do not focus on it here as it is notationally

cumbersome, and we expect there will generally be only modest gains to its use in practice.

The small gains are illustrated in the empirical examples.

The chief drawback of the union of confidence intervals approach is that the resulting

confidence regions may be large. In a sense, this approach produces valid intervals by

13An interesting issue that arises in overidentified models (r > s) is that one can in principle learn about

subspaces of γ. One approach would be to combine one of our inference procedures with the approach of

Small (2007). A fully Bayesian procedure also naturally accounts for this and one can in principle look at the

posteriors for γ. In the LATE model, it is less clear that any useful information may be extracted because

different valid instruments will generally estimate different local average treatment effects.
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requiring correct coverage in every possible case, including the worst. Alternatively, one

may be willing to use more prior information than just the support of γ. In particular, if

one is willing to assign a prior distribution over potential values for γ, intervals that use this

additional information are feasible. These intervals will generally be much narrower than

those produced using the bounds given above.

4.2 Unions of ‘Prior-weighted’ confidence intervals

A natural way to use prior information beyond a support restriction is to construct a union

of confidence intervals as in the previous section allowing allowing oneself to “weight” the

intervals for different values of γ differently depending on prior beliefs about how likely

different values of γ are. A way to achieve this weighting is by allowing the levels of the

confidence intervals that go into forming the union to differ depending on the likelihood of

the corresponding values of γ. In particular, we can to choose low levels of confidence for

unlikely values of γ and higher levels of confidence for more likely values. Under the specified

distribution for γ, the union of these regions will have correct ex ante coverage and, because

an additional choice variable has been added relative to the previous section, may be shorter

than the bounds in Section 4.1.

We note that formally setting up this problem is notationally complicated and so relegate

the formal discussion to the appendix. Below, we illustrate the potential gains and discuss

the problem heuristically in the context of an extremely simple stylized example. We also

consider this approach in the empirical results presented below. While this approach offers

the potential for substantial gains relative to the support-restriction-only interval when one

is willing to place additional structure on the information about γ, numerical solution of

the problem presents a greater computational challenge. Therefore, after presenting the

approach heuristically below, we move on to explore a different approximate approach to

using prior information about the distribution of γ which is extremely simple to implement

in practice.

For our example, we consider a case where γ may take on only one of two values: γ1

or γ2. With γ = γ1, the estimator of β takes on a value of one and has a standard error

of one; and when γ = γ2, the estimator of β is four with a standard error of two. We
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present interval estimates using the bounds approach from the previous section and the prior-

weighted approach of this section in Table 1. The columns labeled “Support Restriction”

present intervals constructed using the approach of the previous section, and the columns

labeled “Fully Specified Prior” present intervals which make use of prior beliefs over the

probability of each potential value of γ.

Looking first at the “Support Restriction” results. The union of symmetric intervals is

trivially constructed by taking the usual 90% confidence interval for γ1, (-0.645,2.645), and γ2,

(.710,7.289), and forming the interval as the minimum of the lower endpoints and maximum

of the upper endpoints. To get the length-minimizing union of intervals imposing only the

support retriction, we then note that we can increase the lower endpoint of the γ1-interval

(-0.645,2.645) while simultaneously increasing its upper endpoint. Retaining 90% coverage

requires that the increase in the upper endpoint of the γ1-interval be larger than the increase

in the lower endpoint of the γ1-interval due to the shape of the normal distribution, but this

is irrelevant from the standpoint of the union of intervals as long as the upper endpoint of the

γ1-interval remains smaller than the upper endpoint of the γ2-interval. A similar argument

holds for decreasing the lower and upper endpoints of the γ2-interval. The length minimizing

interval occurs where the two lower endpoints and the two upper endpoints coincide. In this

example, this occurs when the γ1-interval has lower and upper tail probabilities of .099999996

and .000000004 respectively and when the γ2-interval has lower and upper tail probabilities

of .016 and .084 respectively.

For the prior-weighted intervals, we consider two different prior specifications. In the

first, we assume each potential value of γ is equally likely; and we assume γ1 occurs with

90% probability in the second. In both cases, we see that there are gains over the minimum

length union that uses only the support restriction, with the gains being much larger with

the more asymmetric prior. Specifically, the interval under equal prior probabilities is (-

0.645,6.162), and the interval when γ1 is 90% likely is (-1.007,3.179). The narrowing of

the intervals is due to two factors. When prior probabilities are unequal, the length of the

interval may be reduced by ‘downweighting’ the unlikely γ event by substantially reducing

the level and length of the associated confidence interval. This reduction in the level of the

interval associated with the unlikely event can be done while maintaining ex ante coverage
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at the desired level with only a slight increase in the length of the other interval because

the unlikely γ event has low prior probability. The second factor is that one can also play

favorites in the equal probability case by ‘downweighting’ the interval associated with the

value of γ that produces the larger variance estimator of β. We have approximately a 95%

interval for γ = γ1 and an 85% interval for γ = γ2 in this example. It is important to note

that any prior, including the uniform, is imposing additional prior information beyond what

is provided by simply specifying the support. This fact is also illustrated in the empirical

examples.

4.3 γ Local-to-Zero Approximation

Our third approach uses a large-sample approximation that models uncertainty about γ as

being the same order of magnitude as sampling uncertainty. The econometric jargon for this

strategy is that γ is treated as being ‘local-to-zero.’14 This treatment produces the following

approximation to the distribution of β̂ :

β̂
approx∼ N(β, V2SLS) + Aγ, (7)

A = (X ′Z(Z ′Z)−1Z ′X)−1(X ′Z),

γ ∼ F.

The first term in this expression, N(β, V2SLS), is the usual 2SLS asymptotic distribution.

V2SLS is the typical variance-covariance matrix estimator for 2SLS, returned by any standard

software package.15 The second term, which is assumed independent of the first, reflects the

influence of ‘exogeneity error.’ The distribution of the exogeneity error term depends on

sample moments in the matrix A and the specified prior distribution F for γ.

14A formal statement of the asymptotic sequence and derivation of the result is provided in the appendix.

The key component of the derivation is treating γ as being of the same order of magnitude as the sampling

error: that is, γ = η/
√
N where η follows a distribution.

15Standard covariance matrix estimators used in estimating V2SLS remain consistent under the definition

of plausible exogeneity where specification error is of the same order as sampling error. Examples include

the Huber-Eicker-White estimator for independent data or a heteroskedasticity, autocorrelation consistent

estimator as in Andrews (1991) for time series or Conley (1999) for spatial data. We provide a simple

illustration in the appendix.
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This approximation is easy to use. As is evident in equation (7), the approximate dis-

tribution for β̂ takes its most convenient form when one uses a Gaussian prior for γ, say

N(µγ,Ωγ). With such priors, the distribution for β̂ is of course Gaussian:

β̂
approx∼ N(β + Aµγ, V2SLS + AΩγA

′).

This approximation is easily implemented with any conventional software package and a

researcher-specified µγ and Ωγ.

In situations that dictate a non-Gaussian prior F, confidence intervals for β are easily

constructed by simulating from the distribution of deviations of β̂ from β: η = β − β̂ where

η ∼ N(0, V2SLS) + Aγ, γ ∼ F.

Draws from the η distribution can be constructed as follows:

(1) Use any standard software package to compute A as a function of sample moments

and the 2SLS covariance matrix V2SLS.

(2) Generate one draw, η1, from the desired distribution by generating a N(0, V2SLS) draw

and adding it to A times a draw from F.

(3) Repeat step (2) B times for some large number B to generate a set of η draws:

η1, η2, ..., ηB.

(4) Compute percentiles of the B draws to use for confidence intervals. For example, find

the α/2 and 1− α/2 percentiles and label them cα/2 and c1−α/2, respectively.

(5) Construct a (1-α) confidence interval for β as [β̂ − c1−α/2, β̂ − cα/2].

One nice aspect of the approximate distribution in (7) is that relationship between

strength of instruments and the impact of exogeneity errors is transparent. A given ex-

ogeneity error γ is multiplied by A. Thus, the size of A determines how strongly exogeneity

errors influence inference about β. The strength of instruments is relevant as it determines

the Z ′X term. Weak instruments by definition have low magnitudes of Z ′X. As Z ′X occurs

twice in the ‘denominator’ of A versus only once in its ‘numerator’, the influence of small
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Z ′X will be akin to that of dividing by a small number. Weak instruments with small Z ′X

will therefore amplify exogeneity errors compared to strong instruments with large Z ′X.

We anticipate that in many applications this approach will return confidence intervals

that are close to Bayesian posterior intervals under the same prior for γ, which occured

in each of our empirical examples below. We suspect that this is because the Bayesian

posterior for β is largely influenced by two components: the likelihood, which by standard

arguments will lead the posterior to behave similarly to the asymptotic distribution for β̂

when identification is strong, and the prior over γ. Since we use the same priors over γ and

identification is fairly strong based on standard criteria in at least two of our examples, the

close correspondence between the two is not surprising.

This approach to performing inference with plausibly exogenous instruments is appealing

in that it is extremely simple to implement. In the case of a mean zero normal prior, it

requires only an adjustment to the asymptotic variance. The simplicity of the approach with

this prior lends itself to examining how results vary with changes in prior beliefs as discussed

in Section 5 below. It will produce valid frequentist inference under the assumption that

the prior is correct and will provide robustness relative to the conventional approach (which

assumes γ ≡ 0) even when incorrect.

4.4 Full Bayesian Analysis

In the previous subsections, we have considered two types of prior information: knowledge

of the support of γ and explicit prior distributions over γ. A Bayesian approach to inference

is a natural complement to these methods that incorporate prior information about part of

the model defined by (1) and (2). Of course, Bayesian inference will require priors over the

other model parameters as well as assumptions regarding the distribution of the error terms

to complete the model likelihood. We let p(Data|β, γ,Π, θ) be the likelihood of the data

conditional on the treatment and reduced form parameters, (β, γ,Π), and the parameters

characterizing the distribution of the error terms, θ. Our inference will be based on the

posterior distribution for β, Π, and θ given the data, integrating out γ :

p(β,Π, θ|Data) ∝
∫
p(Data|β, γ,Π, θ)pγ(γ|β,Π, θ)p{β,Π,θ}(β,Π, θ)dγ (8)
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where p{β,Π,θ}(β,Π, θ) is the prior distribution over the model parameters and pγ(γ|β,Π, θ)

is the prior distribution over γ which, in principle, is allowed to depend on all other model

parameters. We note that allowing this dependence is straightforward in the Bayesian setting

and allows one a great deal of flexibility in the way prior information regarding the exogeneity

error γ is incorporated. For example, it is simple to allow prior beliefs that γ is likely to be

a small proportion of the value of β or beliefs about the exclusion restriction in terms of the

unidentified population R2 of the regression of Z on the structural error in which case the

prior would depend on the distributional parameters θ. Either of these approaches to prior

information is cumbersome in the frequentist frameworks outlined previously.

In the Bayesian analyses reported in our empirical examples, we consider possible priors

for γ that do and do not depend upon β :

Prior 1: γ ∼ N(µ, δ2I) (9)

Prior 2: γ|β ∼ N(0, δ2β2I). (10)

With prior 1, we will need to have some idea of the size of the direct effect γ without reference

to the treatment effect β. This information may come from other data sources, or we may

have some intuition about potential benchmark values for γ. We anticipate using Prior 2 with

δ small, based on the idea that the effects of Z on Y should be smaller than the effect of X on

Y and that the treatment effect could be used to benchmark γ were it available. This prior

is one representation of the core idea that the exclusion restriction need not hold exactly but

that deviations should be small. Prior 2 is a non-standard prior in the Bayesian simultaneous

equations literature where independent priors are typically used for model coefficients. Prior

2 assesses the conditional prior distribution of γ given β and can be coupled with a standard

diffuse normal prior on β. To complete the model, we use a Gaussian distribution for (ε, V )

that is independent of Z. We use this model for simplicity and because the focus of this paper

is on the prior for γ, but note that we could of course employ Bayesian methods with any

parametric likelihood or a nonparametric approach via flexibly approximating an arbitrary

likelihood as in, for example, Conley et al. (2006). Given the likelihood and the priors, the

chief difficulty in conducting Bayesian inference is in evaluating the posterior distribution

which will typically be done using MCMC methods. Given the Gaussian likelihood and
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priors, computation is quite similar to standard approaches in the Bayesian literature; so we

leave computational details to the appendix.

It is important to note that full Bayesian analysis allows exact small sample Bayesian

inference as well as considerable flexibility in prior specification. There are certainly many

applications where small sample considerations are paramount, e.g. due to weak or large

numbers of instruments. If relatively diffuse priors are used on β and π and a sufficiently

flexible distribution is specified for (ε, V ), the requirements of a full Bayesian analysis are only

modestly higher than the methods above using large sample approximations. All approaches

hinge on a careful assessment of the prior on γ.

5 Illustrating Inference with Alternate Priors and In-

struments

In the preceding section, we outlined basic approaches to inference that may be adopted

in situations in which there is uncertainty about an IV exclusion restriction. In each, we

model the specification error through an unidentified parameter γ and do inference utilizing

assumptions about possible values for this parameter. The main benefit from our procedures

is in providing researchers with a practical way to learn about treatment effects from the

data with less-than-perfect instruments. Because of the importance of prior beliefs and

because researchers will likely differ on their exact prior beliefs, we anticipate that it will be

useful to apply our procedures under more than one assumption regarding γ and compare

the resulting inference for β. This analysis gives the researcher substantial insight into

ranges of beliefs that produce economically similar inference. In addition, when there are

more instruments than endogenous regressors, a researcher may perform the exercise with

different sets of instruments of differing strengths and plausibility to gain information on the

tradeoff between instrument strength and plausibility.

The exact approach one takes to considering different priors will vary slightly under each

of the different methods. For example, in the support-restriction-only approach in Section

4.1 with one instrument, one could take the support of γ to be an interval [−δ, δ] and plot
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a confidence interval of interest versus many different values of δ. For the other methods

presented in Sections 4.2 through 4.4 a fully specified prior distribution is required, and thus

the analysis requires choosing different distributions for γ. In these cases, one can proceed

by selecting a parametric family for γ and then varying the distributional parameters. For

example, with one instrument, one could take γ to be normally distributed with mean zero

and variance δ2. Again one could compute confidence intervals (or credibility intervals in the

case of Bayesian inference) as a function of δ. We provide illustrative examples of analogous

exercises for each of our empirical examples in Figures 1-5 in Section 6.

The above methods are also well-suited to examining the tradeoff between strength and

plausibility of instruments. In cases where the researcher has two sets of instruments and

wants to choose one, a graph displaying a range of confidence sets for varying γ priors is

straightforward to construct for each set of instruments. An example set of results for two

instrument set/prior combinations is available in Figure 3, which is based on data from our

first empirical example in Section 6.1. The solid lines in Figure 3, labeled strong instrument,

trace out the upper and lower endpoints for a 95% confidence interval for β as a function

of candidate γ prior distributions indexed by δ. These prior distributions are each Uniform

[0,δ]. Likewise, the dashed lines, labeled moderate instrument, trace out upper and lower

edges of confidence intervals with a relatively weaker set of instruments. Suppose a researcher

believes that the moderate instrument is certain to satisfy the exclusion restriction δ = 0,

but her γ prior for the strong instrument is Uniform [0,1000] so δ = 1000. The length of the

95% confidence interval for β corresponding to each of these sets of instruments and priors

is given by the vertical distance between the solid lines at δ = 1000 and the gap between the

dashed lines at δ = 0. Clearly in this example, more precise inference about β is available

using the stronger set of instruments with a larger believed potential departure from the

exclusion restriction.

6 Empirical Examples

We present three illustrative example applications of our methods: the effect of participat-

ing in a 401(k) plan upon accumulated assets, the demand for margarine, and the returns
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to schooling. We have chosen these three examples to illustrate both the breadth of po-

tential applications for our methods as well as some of the variety of specifications for γ

priors that may prove useful. The 401(k) application provides an example where some re-

searchers may anticipate a violation of the exclusion restriction. Our methods can readily

accommodate this by using priors for γ that are not centered at zero. In demand estima-

tion priors for a wholesale price direct effect, γ, might be usefully specified as depending on

the price elasticity of interest. This is easily captured by using priors for γ that depend

on β. Finally, the returns-to-schooling application provides an example scenario where a

prior for γ can be grounded in existing research. In all applications we assume indepen-

dence across observations and estimate covariance matrices using the Huber-Eicker-White

heteroskedasticity-consistent covariance matrix estimator.

6.1 Effect of 401(k) Participation upon Asset Accumulation

Our first example application examines the effect of 401(k) plan participation upon asset

accumulation. Our data are those of Poterba, Venti, and Wise (1995), Abadie (2003),

Benjamin (2003), and Chernozhukov and Hansen (2004) from wave 4 of the 1990 Survey of

Income and Program Participation which consists of observations on 9915 households with

heads aged 25-64 with at least one adult employed (excluding self-employed). The outcome

of interest is net financial assets (1991 dollars) and the treatment of interest is an indicator

for 401(k) participation in the following regression:

Net Financial Assets = β × 401(k) participation +Xλ+ Zγ + u.

X is a is a vector of covariates that includes five age category indicators, seven income

category indicators, family size, four education category indicators, a marital status indica-

tor, a two-earner status indicator, a defined benefit pension indicator, an IRA participation

indicator, and a home ownership indicator. The instrument Z is an indicator for 401(k)

plan eligibility: whether an individual in the household works for a firm with a 401(k) plan.

Further details and descriptive statistics can be found in, for example, Benjamin (2003) or

Chernozhukov and Hansen (2004).

An argument for 401(k) eligibility being a valid instrument is put forth in a series of
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articles by Poterba, Venti, and Wise (1994, 1995, 1996). These authors argue that eligibility

for a 401(k) can be taken as exogenous given income, and 401(k) eligibility and participation

are of course correlated. Their main claim is the fact that eligibility is determined by

employers and so is plausibly taken as exogenous conditional on covariates. In particular, if

individuals made employment decisions based on income and within jobs classified by income

categories it is random whether or not a firm offers a 401(k) plan, the exclusion restriction

would be justified. Poterba, Venti, and Wise (1996) contains an overview of suggestive

evidence based on pre-program savings used to substantiate this claim. Of course, the

argument for the exogeneity of 401(k) eligibility is hardly watertight. For example, one

might conjecture that firms which introduced 401(k)’s did so due to pressure from their

employees, implying that firms with plans are those with employees who really like saving.

People might also select employment on the basis of available retirement packages in addition

to income. For these and other reasons, Engen, Gale, and Sholz (1996) argue that 401(k)

eligibility is not a valid instrument and is positively related to the unobservables affecting

financial asset accumulation.

First, we display 2SLS estimates for various values of γ in Panel A of Table 2. We chose

the specific values of γ by deciding that we felt a $10,000 direct effect of eligibility on financial

assets would be quite large and then choosing what we felt were sensible intermediate values.

Looking at the results, we see that the point estimate of β varies quite a lot as we change

the value of γ and that the estimated standard errors are fairly stable across this range of

γ values. These results are suggestive about the sensitivity of the 2SLS estimator of β to

different values of γ but do not, by themselves, allow us to make inferences about β. Thus,

we turn to the methods discussed in this paper.

Figure 1 displays results for the full array of our methods with γ priors centered at

zero. This figure plots five sets of confidence intervals for an array of assumptions about

prior information indexed by the parameter δ. The widest set of solid lines presents 95%

confidence intervals using the method in Section 4.1 with a union of symmetric γ0-specific

intervals. Their corresponding support restrictions are of the form γ ∈ [−2δ,+2δ]. The

dashed lines that lie just inside of them are the minimum-length bound from Section 4.1

with the same [−2δ,+2δ] support condition. The remaining three intervals are very close to
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each other, well within the support-restriction-only intervals. Among this set of lines: the

dashed lines correspond to the union of prior-weighted intervals approach from Section 4.2

with γ prior of N(0, δ2), the solid lines correspond to the local-to-zero method of Section 4.3

with γ prior of N(0, δ2), and the dot-dash lines are 95% Bayesian credibility intervals, .025

and .975 quantiles of the posterior for β, from Section 4.4 again obtained with a γ prior of

N(0, δ2).

The dominant feature of Figure 1 is that there are basically two sets of intervals, those

with support conditions only and those with a prior distribution for γ. It is important to

note that since the intervals constructed with support conditions necessarily require bounded

support, they are not strictly comparable with the Gaussian prior distributions. However,

we are confident that differences in support are not the cause of this discrepancy, it is due

to the introduction of the distributional information. Similar qualitative results to those

with Gaussian priors obtain using uniform priors with support [−2δ,+2δ]. The coincidence

of the other three intervals is a combination of their common priors and the large amount

of information in the data. The two support-restriction-only intervals are close in all our

example applications so henceforth we plot only one of them to minimize clutter. Likewise,

we will omit plotting intervals for the prior-weighted union of confidence intervals as they

are very close to the local-to-zero intervals in our applications.

While priors centered at zero may be adequate for many researchers, they would not be

appropriate for those who agree with Engen, Gale, and Sholz (1996) and think there is likely

a positive direct effect of 401(k) eligibility upon saving. Such beliefs are easily dealt with by

using priors for γ with a positive mean. Figure 2 displays results for three methods, using

priors consistent with beliefs that γ is positive. Priors are again indexed by the parameter

δ. The solid lines present 95% confidence intervals using the method in Section 4.1 with a

union of symmetric γ0-specific intervals. Their corresponding support restrictions are of the

form γ ∈ [0,+δ]. The dashed lines are our local-to-zero 95% confidence interval estimates

from Section 4.3 using the prior that γ is uniformly distributed on [0,+δ]. The dot-dash

lines present Bayesian 95% credibility intervals from Section 4.4 with a prior for γ that is

normally distributed with the same mean and variance used for the local-to-zero estimates

(a mean of 1
2
δ, variance of 1

12
δ2). Since priors with positive means result in intervals shifting
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location with δ we also plot, as point estimates, a solid line corresponding to the center point

of our local-to-zero 95% confidence intervals. The point and interval estimates of β of course

shift downward as the prior mean for γ increases.

The results displayed in Figure 2 suggest that there is still a significant effect of 401(k)

participation upon net assets, even with substantial departures from perfect instruments.

For example, take the widest intervals with the support restriction of γ ∈ [0, 4000], clearly

distinct from γ ≡ 0. The corresponding confidence set for β is approximately [$3700, $17,000].

While certainly different from the [$9500, $17,000] interval under perfect (γ ≡ 0) instruments,

many would still consider the [$3700, $17,000] interval evidence that β is of an economically

important size.

We also use this example to illustrate how the strength of the relationship between

the instruments and endogenous variables impacts the analysis and the trade-offs between

strength of instruments and plausibility of the exclusion restriction. In Figure 3, we plot 95%

interval estimates under Uniform [0, δ] priors using the local-to-zero approach for differing

strengths of instruments. The instruments in this figure were generated by taking the 401(k)

eligibility instrument in the data and adding noise to it in such a way that it continues

to only take on values of zero and one.16 We consider “strong”, “moderate”, and “weak”

instruments which respectively correspond to adding no noise, a moderate amount of noise,

and a large amount of noise to the original instrument.

Looking at Figure 3, we can clearly see the influence of the strength of the first stage

relationship on inference for the structural parameter of interest. As indicated earlier, the

width of the confidence set increases more rapidly for weaker instruments. More interesting

are the tradeoffs one can make when trying to choose between stronger and weaker instru-

16Specifically, we generate new instruments z∗ as z∗ = φz + (1 − φ)w where z is 401(k) eligibility, φ is a

Bernoulli(p) random variable, w is Bernoulli(z̄) random variable, z̄ is the sample mean of z, and φ and w

are independent. We consider three different strengths of instruments: “strong” instruments with p = 1,

“moderate” instruments with p = .5, and “weak” instruments with p = .3. By usual measures of instrument

strength used in the econometrics literature regarding weak instruments, none of the setting correspond to

weak instruments. For example, the first stage F-statistics for the strong, moderate, and weak settings are

respectively 7767.9, 1094.9, and 351.8. We use the terminology to simply denote the relative strength of the

instruments, but note that we could adapt our approach to a weak instrument robust procedure.
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ments. It is interesting that the confidence set for β with the weak instrument under the

assumption that the instrument is perfect (δ = 0) is wider than the confidence set for β with

the strong instrument even when allowing for the direct effect of 401(k) eligibility to be as

large as $10,000 with uniform beliefs over [0,10000]. Before entertaining using only the weak

instrument, a researcher would need to believe that the direct effect of 401(k) eligibility could

be as large as $6000-$7000, which seems quite large, and that the weak instrument satisfies

the exclusion restriction almost perfectly. These gains to using the stronger instrument be-

come even more pronounced once one starts allowing even modest violations of the exclusion

restriction with the weak instrument. While this example is obviously artificial, it clearly

illustrates the trade-offs between the strength and plausibility of instruments and certainly

illustrates that there are scenarios where it will be preferable, in terms of learning about

β, to use a strong but less credible instrument rather than a weak but more credible one.

Of course, this will depend on the relative strengths of the instruments and how firmly one

believes the exclusion restriction is satisfied for each of them in any particular example. An

appealing feature of the approaches considered in this paper is that they allow a researcher

to assess these tradeoffs in any given application. Moreover, the approaches we develop are

indispensible if one wishes to use strong instruments for which the exclusion restriction is

believed unlikely to hold.

6.2 Price Elasticity of Demand for Margarine

Our second example application concerns price endogeneity in demand estimation, a canon-

ical econometric problem. We use as our example the problem of estimating demand for

margarine using the data of Chintagunta, Dubé, and Goh (2003) . The sample consists of

weekly purchases and prices for the 4 most popular brands of margarine in the Denver area

for 117 weeks from January 1993 to March 1995. Pooling across brands, we estimate the

following model:

logShare = β log(retail price) +Xλ+ Zγ + u

where X includes brand indicators, feature and display indicators, and their interactions

with brand indicators. Following Chintagunta, Dube, and Goh (2003) we use log wholesale
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prices as an instrument, Z, for retail prices.

The argument for plausible exogeneity of wholesale prices is that they should primarily

vary in response to cost shocks and should be much less sensitive to retail demand shocks

than retail prices. In this example application, we illustrate the use of priors for γ that

depend on β. It seems quite possible that researchers would be comfortable assuming that

direct effect of a wholesale price could be benchmarked relative to the elasticity with respect

to the corresponding retail price.

We display 2SLS estimates for various values of γ in Panel B of Table 2. In this case, we

decided that it seemed unlikely that the direct effect of wholesale prices could be more than

30% of the direct effect of retail prices and then chose a set of values consistent with these

beliefs. Looking at the results, we see that the point estimate of β varies between -5 and -3

as we change the value of γ and that the estimated standard errors are quite variable. These

results suggest that the estimated price elasticity is fairly sensitive to the value of γ, though

in all cases we find that demand is quite elastic. As before, these results are suggestive but

do not allow us to make inferences about β, so we turn to the methods discussed in this

paper.

Figure 4 displays results for three methods, using priors for γ that depend on β. Priors

are again indexed by the parameter δ. The solid lines present 95% confidence intervals

using the method in Section 4.1 with a union of symmetric γ0-specific intervals with support

restriction γ ∈ [−2δβ,+2δβ]. The dashed lines are our local-to-zero 95% confidence interval

estimates from Section 4.3 using a prior that of γ given β is distributed N(0, δ2β2).17 The

dot-dash lines present Bayesian 95% credibility intervals from Section 4.4 with a prior that

the distribution of γ given β is N(0, δ2β2).

Unlike the 401(k) example considered above, there is a notable difference between all the

intervals in Figure 4. For most values of δ the Bayesian intervals are smaller than both the

others. The two factors of support differences and information in a full prior distribution

of course drive some of the discrepancy between the Bayesian and support-restiction-only

intervals. An additional source of discrepancy that is likely more important here than in the

17This prior for the local-to-zero approach is implemented using the consistent 2SLS estimator β̂2SLS . In

other words our prior distribution is specified to be N(0, δ2β̂2
2SLS).
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previous example application is the relatively small amount of information in the data. This

leads us to believe that much of the discrepancy between the Bayesian intervals and those

of the local-to-zero approximation is due to ‘small sample effects.’

A qualitative conclusion from Figure 4 that is common across methods is that there

can be a substantial violation of the exclusion restriction without a major change in the

demand elasticity estimates. Inferences change little for a range of direct wholesale price

effects up to ten per cent of the size of the retail price effect. Take for example the local-

to-zero estimates, at δ = 0 the 95% confidence interval is (-5,-2.5) and at δ = 10% the 95%

confidence interval is (-5.5,-2.3). Put on a standard mark-up basis using the inverse elasticity

rule, the corresponding mark-up intervals are [20% to 40%] and [18% to 44%]. For many if

not all purposes, this is a small change in the implied mark-ups.

6.3 Returns to Schooling

Our final example application is estimating the returns to schooling using quarter of birth

as instruments as in Angrist and Krueger (1991). The sample consists of 329,509 males

from the 1980 U.S. Census who were born between 1930 and 1939. For this illustration, we

estimate the following model determining log wages:

logWage = βSchool +Xλ+ Zγ + u,

where the dependent variable is the log of the weekly wage, School is reported years of

schooling, and X is a vector of covariates consisting of state and year of birth fixed effects. To

sidestep weak and many instrument issues, we use only the three quarter of birth indicators,

with being born in the first quarter of the year as the excluded category, as instruments Z

and do not report results using interactions between quarter of birth and other regressors.18

The use of quarter of birth as an instrument is motivated by the fact that quarter of

birth is correlated with years of schooling due to compulsory schooling laws. The typical

law requires students to attend first grade in the year in which they turn age 6 and continue

school until age 16. This means that individuals born early in the year will usually be in the

18The first stage F-statistic from the specification with three instruments is 36.07 which is well within the

range where one might expect the usual asymptotic approximation to perform adequately.
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middle of 10th grade when they turn 16 and can drop out while those born late in the year

will have finished 10th grade before they reach age 16.

Angrist and Krueger (1991) argue that quarter of birth is a valid instrument, correlated

with schooling attainment and uncorrelated with unobserved taste or ability factors which

influence earnings. Angrist and Krueger (1991) examine data from three decennial censuses

and find that people born in the first quarter of the year do indeed have less schooling on

average than those born later in the year. This correlation of quarter-of-birth and schooling

is uncontroversial. However, there is considerable debate about these instruments’ validity

due to correlation between birth quarter and other determinants of wages (e.g. Bound and

Jaeger (1996) and Bound, Jaeger, and Baker (1995)). Bound, Jaeger, and Baker (1995) go

beyond this in providing well motivated ‘back of the envelope’ calculations of a plausible

range for direct effects of quarter of birth upon wages. They come up with an approximate

magnitude of a direct effect of quarter of birth upon wages of about 1%. Such calculations

are directly useful in our framework, informing our choice of prior for γ.

2SLS estimates for various values of γ are given in Panel C of Table 2. In this case, it is

harder to determine a small set of sensible values due to the larger number of instruments.

We used the benchmark of a 1% effect of quarter of birth and then chose a few different values

for each of three coefficients where the effect of any one quarter relative to any other was

no greater than 1%. Obviously, there are a large number of ways to do this, which suggests

another advantage of our systematic way of viewing the problem relative to choosing a few

candidate values for γ. Looking at the results, we see that the point estimate of β are again

quite sensitive to the value of γ and that the estimated standard errors are fairly stable for

this set of γ values. These results are again suggestive about the sensitivity of the 2SLS

estimator of β to different values of γ but do not provide inference for β. Thus, we discuss

results from using the methods of this paper below.

Results are displayed in Figure 5. This figure plots three sets of confidence intervals for

an array of assumptions about prior information indexed by the parameter δ. The solid

lines represent 95% confidence intervals using the method in Section 4.1 with a union of

symmetric γ0-specific intervals. Their corresponding support restrictions are of the form

γ ∈ [−2δ,+2δ]3. The dashed lines present 95% confidence intervals for our local-to-zero
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method in Section 4.3 using priors for γ that are N(0, δ2I). Finally, the dot-dash lines

present Bayesian 95% credibility intervals using the model in Section 4.4 with N(0, δ2I)

priors for γ. The vertical line at δ = .005 provides a reference point for priors motivated

by the Bound, Jaeger, and Baker approximate magnitude for the direct effect of quarter of

birth of 1%.

The intervals in Figure 5 suggest that the data are essentially uninformative about the

returns to schooling under priors consistent with the evidence in Bound, Jaeger, and Baker

(1995). Using the Bound, Jaeger, and Baker (1995) calculations as an upper bound on

the magnitude of γ would require us to focus attention in a δ range near .005. At δ =

.005, the local-to-zero 95% confidence interval for β is [3.4% to 18.3%], which we consider

uninformative about the returns to years of school. In order for these confidence intervals to

be informative in our judgment, prior beliefs regarding γ must be much more concentrated

near zero. For example, using the support-restriction-only intervals, one would need to be

sure the magnitude of γ was less than .002 to obtain a confidence interval for β that excluded

5%.

7 Conclusion

When using IV methods, researchers routinely provide informal arguments that their in-

struments satisfy the instrument exclusion restriction but recognize that this may only be

approximately true. However, inference in these settings then typically proceeds under the

assumption that the IV exclusion restriction holds exactly. We have presented alternative

approaches to inference that do not impose the assumption that instruments exactly satisfy

an exclusion restriction, they need only be plausibly exogenous. Our methods provide an

improved match between researchers’ assumptions of plausible exogeneity and their methods

of inference.

All of our approaches involve using some sort of prior information regarding the extent of

deviations from the exact exclusion restriction. Many of the usual arguments that researchers

use to justify exclusion restrictions are naturally viewed as providing information about prior

beliefs about violation of these restrictions. Our contribution is to provide a practical method
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of incorporating this information. We provide a toolset for the applied researcher to conduct

inference about parameters of interest even when the the set of available instruments is

imperfect. We demonstrate the utility of our approach through three empirical applications.

While decreasing inference precision, inference regarding the parameters of interest remains

economically informative under a priori moderate violations of the exclusion restriction in

two of the three applications. Useful inference is clearly feasible with instruments that are

only plausibly exogenous.

Our methods also allow researchers to directly confront the issue of using stronger but less

plausible instruments versus weaker but more plausible instruments. It is well-known that

weaker instruments produce less precise inference than stronger instruments. Our results also

allow a researcher to assess how strength of beliefs in the validity of the exclusion restriction

affect the precision of inference about treatment effects. Thus, they allow researchers to

assess whether the decrease in precision associated with more diffuse beliefs about exclusion

restriction violations is offset by increases in precision due to using stronger instruments.

Overall, our methods provide tools to applied researchers that allow them to expand the

set of instruments they consider and the set of problems they tackle. Since our methods

account for both sampling uncertainty and uncertainty about the validity of the instru-

ments, they allow researchers to obtain useful inference about treatment effects even when

instruments may not be perfect. Viewing research in this way shifts the focus from finding

instruments that are perfect to finding plausible instruments that allow for economically

informative inference after accounting for their possible imperfection.

8 Appendix

8.1 Including Additional Regressors

For ease of exposition we have stated our model without any ‘included’ exogenous regressors. It is straight-

foward to allow such additional regressors W̃ into the model :

Ỹ = W̃B1 + X̃β + Z̃γ + ε (11)

X̃ = W̃B2 + Z̃Π + V (12)
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This model reduces to model (1) and (2) by defining Y, X, and Z as residuals from a projection upon the

space spanned by W̃ , i.e. as

Y = (I − PW̃ )Ỹ , X = (I − PW̃ )X̃, Z = (I − PW̃ )Z̃.

8.2 LATE Model

We consider a LATE model with binary treatment and instrument though extensions to multivalued treat-

ments and instruments should follow similarly as in Angrist and Imbens (1994, 1995). We also switch to the

potential outcomes framework and let Yi(x, z) be the outcome for individual i when treatment is set to x

and the instrument is set to z. Similarly, let Xi(z) be the treatment for individual i when the instrument is

set to z. In the data we observe zi, xi = Xi(1)zi+Xi(0)(1− z(i)), and yi = Yi(1, 1)xizi+Yi(1, 0)xi(1− zi) +

Yi(0, 1)(1− xi)zi + Yi(0, 0)(1− xi)(1− zi). The LATE model typically makes the following assumptions:

A1. (Random Assignment) Zi ⊥ (Yi(0, 0), Yi(1, 0), Yi(0, 1), Yi(1, 1), Xi(0), Xi(1)) and data are indepen-

dent across individuals.

A2. (Exclusion) Yi(x, z) = Yi(x, z′) for all z, z′, and x.

A3. (Monotonicity) Xi(1) ≥ Xi(0).

A4. (Instrument Relevance) E[Xi(1)] 6= E[Xi(0)].

Under these assumptions, Angrist and Imbens (1994, 1995) and Angrist, Imbens, and Rubin (1996) show

that the IV estimator estimates the LATE defined as βLATE = E[Yi(1) − Yi(0)|Xi(1) > Xi(0)] where

Yi(1) = Yi(1, 1) = Yi(1, 0) under A2 and Yi(0) is defined similarly. In the following, we show that model (2)

follows from a LATE model with A2 replaced with

A2’. (No Interaction) Yi(1, 0)− Yi(0, 0) = Yi(1, 1)− Yi(0, 1).

A2’ replaces the exclusion restriction with a condition that implies that there are no interactions between

X and Z but allows for Z to have a direct effect on Y .

We start by noting that under A2’, yi = Yi(0, 0)+[Yi(1, 0)−Yi(0, 0)]xi+[Yi(0, 1)−Yi(0, 0)]zi from which it

follows that yi−ȳ = βLATE(xi−x̄)+γLATE(zi−z̄)+εi−ε̄ where εi = Yi(0, 0)+(βi−βLATE)xi+(γi−γLATE)zi,

βi = Yi(1, 0)−Yi(0, 0), γi = Yi(0, 1)−Yi(0, 0), and w̄ = 1
N

∑
i wi for any variable wi. That this model is the

same as (2) for βLATE defined above and γLATE = E[γi] follows by showing that E[(zi − z̄)(εi − ε̄)] = 0.

εi − ε̄ consists of three terms: Yi(0, 0) − Ȳ (0, 0), (βi − βLATE)xi − 1
N

∑
i(βi − βLATE)xi, and (γi −

γLATE)zi − 1
N

∑
i(γi − γLATE)zi. For the first term, we have that E[(zi − z̄)(Yi(0, 0) − Ȳ (0, 0))] = 0 from

A1. For the second term, we have E[(zi − z̄)((βi − βLATE)xi − 1
N

∑
i(βi − βLATE)xi)] = E[(zi − z̄)(βi −

βLATE)xi]−E[(zi−z̄) 1
N

∑
i(βi−βLATE)xi]. The first component can be written as E[(zi−z̄)βiXi(0)]−E[(zi−

z̄)βLATEXi(0)] +E[(zi− z̄)βi(Xi(1)−Xi(0))zi]−E[(zi− z̄)βLATE(Xi(1)−Xi(0))zi]. The first two terms in

this expression are 0 under A1. We also have that E[(zi− z̄)βi(Xi(1)−Xi(0))zi] = E[zi(zi− z̄)]E[βi(Xi(1)−
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Xi(0))] = E[zi(zi − z̄)]E[βi|Xi(1) > Xi(0)]Pr(Xi(1) > Xi(0)) = E[zi(zi − z̄)]βLATEPr(Xi(1) > Xi(0))

where the first equality is by A1, the second is by A3, and the last by the definition of βLATE and that

E[(zi− z̄)βLATE(Xi(1)−Xi(0))zi] = E[zi(zi− z̄)]E[βLATE(Xi(1)−Xi(0))] = E[zi(zi− z̄)]βLATEPr(Xi(1) >

Xi(0)) where the first equality is by A1 and the second is by A3. Thus, E[(zi − z̄)βi(Xi(1) − Xi(0))zi] −

E[(zi − z̄)βLATE(Xi(1) − Xi(0))zi] = 0. It follows immediately that E[(zi − z̄)(βi − βLATE)xi] = 0, and

E[(zi − z̄) 1
N

∑
i(βi − βLATE)xi] = 0 follows similarly. We can now choose γLATE to make the covariance

between zi − z̄ and the final term (γi − γLATE)zi − 1
N

∑
i(γi − γLATE)zi zero. In particular, we have

E[(zi− z̄)((γi−γLATE)zi− 1
N

∑
i(γi−γLATE)zi)] = E[(zi− z̄)(γizi− 1

N

∑
i γizi)]−γLATEE[(zi− z̄)2] which

we can set equal to zero and solve for γLATE to obtain γLATE = E[(zi− z̄)(γizi− 1
N

∑
i γizi)]/E([(zi− z̄)2].

Then note that E([(zi− z̄)2] = (1−1/N)σ2
z and that E[(zi− z̄)(γizi− 1

N

∑
i γizi)] = (1−1/N)σ2

zE[γi] under

A1 to conlude that γLATE = E[γi]. The conclusion then follows.

8.3 Regularity Conditions for 2SLS

We will make use of the following standard high-level assumption given below to derive the asymptotic

properties of the inference procedure in Sections 4.1, 4.2 and 4.3. This assumpton imposes a standard set

of regularity conditions which are implied by a variety of more primative stochastic assumptions; see e.g.

White (2001). Existence of the limits in the assumption could be relaxed at the cost of more complicated

notation. It should be noted that these assumptions correspond to those used for the typical asymptotic

approximations for 2SLS which are known to provide poor approximations when the correlation between the

instruments and endogenous regressors is weak, i.e. when condition (ii) is approximately violated, or when

the degree of overidentification, r − s, is large. Extension of the basic approach to settings with weak or

many instruments should be straightforward.

Assumption A1

As N →∞, the following convergence results hold jointly:

a) Z ′Z/N
p→MZZ , for MZZ = limE{Z ′Z/N} a positive definite matrix

b) Z ′X/N
p→MZZ , for MZX = limE{Z ′X/N} a full rank matrix.

c) Z ′ε/N
p→ 0, and Z ′ε/

√
N

d→ N(0, V ) for V= limE{Z ′εε′Z/N}

8.4 Length Minimizing and Prior-Weighted Intervals

In the following, we show how length minimizing intervals may be constructed. We start by considering the

case where we impose the support restriction that γ ∈ G but do not make use of a fully specified prior. In
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this case, the only gains relative to the simple union of symmetric intervals discussed in Section 4.1 is due to

potentially allowing for asymmetric intervals. We then present the formal problem that is solved to obtain

the prior-weighted union of intervals of Section 4.2. We note that the difference between these two problems

is that the latter removes a constraint from the former and so will produce weakly shorter intervals.

For each γ0 we can define a potentially asymmetric confidence interval for β using an additional parameter

a(γ0) ∈ [0, α] which describes the degree of asymmetry in the interval which may depend on γ0. Under the

maintained assumption that γ = γ0 this confidence interval is

CIN (1− α, γ0, a(γ0)) (13)

=
[
β̂N (γ0) + cα−a(γ0)

√
V̂N (γ0)/N, β̂N (γ0) + c1−a(γ0)

√
V̂N (γ0)/N

]
.

Again under conventional regularity conditions, it follows that Pr{β ∈ CIN (1 − α, γ0, a(γ0))} → 1 − α as

N → ∞ if γ = γ0. Likewise, we can define a (1 − α) confidence interval for β as the union of this set of

confidence intervals:

CIN (1− α, a(·)) = ∪γ0∈GCIN (1− α, γ0, a(γ0)) (14)

where the expression a(·) is used to denote the function mapping G into our asymmetry parameter. The

interval CIN (1− α, a(·)) has at least (1-α) coverage for any function a(·) and the minimum length interval

can be found as the solution to the problem of minimizing the length of CIN (1 − α, a(·)) by choice of a(·).

The shortest possible interval length is given as the solution to

min
a(·)

∫ ∞
−∞

1{b ∈ CIN (1− α, a(·))}db s.t. a(γ0) ∈ [0, α] for all γ0 ∈ G (15)

where 1{·} is the indicator function which is one when the event in the braces is true.

In practice, we anticipate that often there will be only modest gains from calculating the shortest interval

via solving the minimization problem in (15) compared with the easy-to-compute union of symmetric intervals

(6). In situations where the variation in β̂N (γ0) across γ0 values is large relative to the estimated standard

errors, even if all of the weight at the extreme values of β̂N (γ0) is concentrated in one tail the changes to the

overall interval length will be small. In addition, when the standard errors are much larger than the range

of β̂N (γ0) estimates there will also be little scope for moving away from equal tailed intervals.

To define the prior-weighted union of intervals, we begin by defining another γ0-specific confidence

interval with an additional degree of freedom, allowing the confidence level to also depend on γ0. Thus we

define a (1− a(γ0)) confidence interval for β conditional on γ = γ0 as

CIN (1− a(γ0), γ0, a(γ0)) (16)

=
[
β̂N (γ0) + ca(γ0)−a(γ0)

√
V̂N (γ0)/N, β̂N (γ0) + c1−a(γ0)

√
V̂N (γ0)/N

]
.

Without any information about the distribution of potential values of γ beyond a support condition, the

only way to insure correct ex ante coverage of (1-α) is to set a(·) ≡ α and take the union of confidence sets as

was done above. This union of confidence intervals is a natural place to start in the present context and will
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certainly produce a confidence region for β that has correct coverage. However, the additional information

available in a specified prior over possible values for γ opens the possibility of achieving correct coverage

with a shorter interval by ‘weighting’ the confidence intervals according to the prior.

We define a union of ‘prior-weighted’ confidence intervals as

CIF,N (1− α, a(·), a(·)) = ∪γ0∈GCIN (1− a(γ0), γ0, a(γ0)) (17)

subject to

a(γ0) ∈ [0, α(γ0)] and
∫
G
α(γ0)dF (γ0) = α

where CIN (1−a(γ0), γ0, a(γ0)) is a (1−a(γ0))(possibly asymmetric) confidence interval given γ = γ0 defined

by (16). The constraint
∫
G α(γ0)dF (γ0) = α ensures ex ante coverage of (1-α), under the prior distribution

F. Under regularity conditions in the next section, CIF,N (1 − α, a(·), a(·)) has coverage at least (1 − α) as

N →∞.

The choices of a(·) and a(·) that minimize the size of the interval solve the following problem:

min
a(·),a(·)

∫ ∞
−∞

1{b ∈ CIF,N (1− α, a(·), a(·))}db. (18)

Note that this problem corresponds to a modification of the choice problem for the minimum-length interval

given only support information. The modification is to introduce an additional free parameter a(·), so

the interval corresponding to the solution of (18) will always be weakly smaller than the confidence region

obtained without using the distributional information about γ.

8.5 Regularity Conditions for Convergence of Union of Prior-

Weighted Confidence Intervals

Assumption A1 and continuity of a(·), a(·) are sufficient for CIF,N (1 − α, a(·), a(·)) defined by (17) to have

proper limiting coverage. To see this note,

Pr{β ∈ CIN (γ0) | γ = γ0}

= Pr{zα(γ0)−a(γ0) ≤ −V̂ (γ0)−1/2
√
N(β̂(γ0)− β) ≤ z1−a(γ0) | γ = γ0}

= GN (z1−a(γ0))−GN (zα(γ0)−a(γ0))

where Gn does not depend on γ since

β̂(γ0)− β | γ = γ0 is (X ′PZX)−1X ′Pzε
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and V̂ (γ0) = h(X,Z, e(γ0))

where e(γ0) | γ = γ0 is Y − Zγ0 −Xβ̂(γ0) = ε−X(X ′PzX)−1X ′Pzε.

Also, under standard regularity conditions,

−V̂ (γ0)−1/2
√
N(β̂(γ0)− β)

= h(X,Z, e(X,Z, ε))−1/2(
X ′PzX

N
)

1√
N
X ′Pzε

d−→ N(0, 1)

=⇒ GN (w) −→ Φ(w) pointwise for all w.

Now

Pr{β ∈ CIF,N} =
∫

Pr{β ∈ CIF,N | γ = γ0}dF(γ0)

≥
∫

Pr{β ∈ CIN (γ0) | γ = γ0}dF(γ0)

=
∫

[GN (z1−a(γ0))−GN (zα(γ0)−a(γ0))]dF(γ0)

−→
∫

[1− a(γ0)]dF(γ0)−
∫

[α(γ0)− a(γ0)]dF(γ0)

= 1− α

where the first inequality follows because {β ∈ CIN (γ0) | γ = γ0} implies{β ∈ CIF,N | γ = γ0}; the inter-

change of the limit and integral follows from |GN (h(γ))dF | ≤ dF which is integrable, α(·), a(·) continuous,

and convergence a.e; and the last equality from
∫
α(γ0)dF (γ0) = α by construction.

8.6 Behavior of 2SLS Estimator under γ Local to Zero Approxi-

mation

To obtain the approximation in Section 4.3, we model γ as being local to zero.19 Explicitly referencing the

dependence of γ upon the sample size via a subscript N we represent γ in structural equation (2) as

γN = η/
√
N where η ∼ G. (19)

We assume η is independent of X, Z, and ε. In our approach we equate prior information about plausible

values of γ with knowledge of the distribution G. This approach differs from other local approaches in that

we do not treat η as a constant but rather as a random variable. This produces limiting behavior in which

not just the location but also the shape of the asymptotic distribution is influenced by the uncertainty about

the value of γ.

The normalization by
√
N in the definition of γN is designed to produce asymptotics in which the

uncertainty about exogeneity and usual sampling error are of the same order and so both factor into the

19It is a straightforward extension to model γ as being local to any known value.
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asymptotic distribution. If instead, γN were equal to η/N b for b < 1/2, the asymptotic behavior would

be determined completely by the ‘exogeneity error’ η/N b; and if b were greater than 1/2, the limiting

distribution would be determined completely by the usual sampling behavior. The modeling device we use

may be regarded as a thought experiment designed to produce an approximation in which both ‘exogeneity

error’ and sampling error play a role and not as the actual DGP. To the extent that both sources of error do

play a role, the approximation will tend to be more accurate than the approximation obtained when either

source of error dominates.

The 2SLS estimator can be written as

β̂N = (X ′PZX)−1X ′PZY.

Substitution of our model for Y yields

β̂N = (X ′PZX)−1X ′PZX
′β + (X ′PZX)−1X ′PZZη/

√
N + (X ′PZX)−1X ′PZε.

Then, rearranging and scaling by
√
N yields

√
N
(
β̂N − β

)
=
[√

N(X ′PZX)−1X ′PZε
]

+ (X ′PZX)−1X ′PZZη.

Assumption A1 implies that the term in brackets converges in distribution to
(
M ′ZXM

−1
ZZMZX

)−1
M ′ZXM

−1
ZZv,

which has the usual 2SLS limiting distribution, and the second term converges in distribution to
(
M ′ZXM

−1
ZZMZX

)−1
M ′ZXη.

To use this approximation, it necessary to be able to consistently estimate the asymptotic variance of v,

V . To see that standard estimators of V remain consistent, note that β̂N is consistent under A1 and that

β̂N − β = Op(N−1/2). Therefore, we can form residuals ε̂ = Y − Xβ̂N = ε + Z η√
N
− X(β̂N − β) where

β̂N − β = Op(N−1/2) and apply standard arguments to demonstrate consistency; see, e.g. White (2001).

As a simple example, consider the case where V = σ2MZZ . In this case, MZZ can be estimated as usual by

Z ′Z/N . For our estimate of σ2, we use

σ̂2 = ε̂′ε̂/N

= ε′ε/N + 2(ε′Z/N)
η√
N
− 2(ε′X/N)(β̂N − β)

− 2
η√
N

(Z ′X/N)(β̂N − β) + (η′Z ′Zη/N2)

+ (β̂N − β)′(X ′X/N)(β̂N − β)
p→ σ2.

We could similarly show consistency for any standard robust covariance matrix estimator that allows for

estimation of parameters by simply modifying the corresponding proof to account for γN as above.

Before concluding, we note that, as with all asymptotics, this local asymptotic sequence is a way to form

an approximation for the behavior of a statistic and should not be viewed as a literal description of reality.

By using this sequence, we obtain an approximation in which both sampling error and uncertainty about

the exclusion restriction play a role. In practice, we believe the right way to use this approximation is to

decide on what prior beliefs one has about γ and then plug them into expression (7).
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8.7 Nonlinear Models

For ease of exposition, we considered each of the inference methods in the main text in the context of the

linear IV model. Linear IV models are a leading case in which to apply our methods, but our basic results

apply in any context in which there are unidentified parameters and in which one may reasonably claim to

have some sort of prior information about their plausible values. The Bayesian approach discussed in Section

4.4 immediately extends to nonlinear models, here we briefly discuss the extenstion to nonlinear models for

our other three approaches.

For concreteness, suppose that we are interested in performing inference about a parameter θ defined by

as the optimizer of an objective function

hN (W ; θ, γ)

where W are the observed data, γ is an additional parameter, and θ and γ are not jointly identified from

the objective function but for a given value of γ, θ(γ) is identified. To implement the bounds approach, we

suppose that there is a true value for γ which is unknown but is known to belong to a set G. We define

θ̂(γ0) = arg max
θ
hN (W ; θ, γ0)

and suppose that
√
N(θ̂(γ)−θ) d→ N(0, V (γ)). That is, we assume that if we knew γ, the estimator obtained

by maximizing the objective function at that value of γ would be consistent and asymptotically normal.20

Further suppose we have access to a consistent estimator, V̂N (γ0), of the asymptotic variance of θ̂(γ0) under

the hypothesis that γ0 = γ. Then for each value of γ0 ∈ G, we may obtain an estimator θ̂(γ0) and, under

the maintained hypothesis that γ0 = γ, construct a confidence interval analogous to (16) whose level might

depend on γ0 as

CI(1− a(γ0), γ0, a(γ0)) = (θ̂(γ0) + (V̂N (γ0)/N)1/2cα−a(γ0), (20)

θ̂(γ0) + (V̂N (γ0)/N)1/2c1−a(γ0)).

Confidence intervals using the methods in Sections 4.1 and 4.2 can be directly constructed by plugging (20)

into expression (14) to obtain a union of confidence intervals utilizing only the knowledge of the support of

γ. Likewise, (20) can be plugged into expression (17) to obtain a prior-weighted confidence interval which

enables computaion of minimum length prior-weighted interval via solution of (18).

For the local-to-zero approach in Section 4.3, we suppose that there are prior beliefs that γ = γ∗+η/
√
N

where η ∼ G and η is indepenent of all other variables. In other words, we assume that we know that γ is

local to some value γ∗. As before, the normalization by
√
N is best thought of as a thought experiment made

to produce an asymptotic approximation in which both uncertainty about the true value of γ and sampling

20This condition will be satisfied under the usual conditions for consistency and asymptotic normality of

M-estimators.
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error play a part. If we then consider θ̂(γ∗) as our point estimator we can obtain an approximation for the

distribution of θ̂(γ∗) via the usual approach of linearizing first order conditions. Under regularity conditions

√
N(θ̂(γ∗)− θ) d→

[
−H(θ, γ∗)−1v

]
−H(θ, γ∗)−1J(θ, γ∗)η

where v is a normally distributed random variable, H(θ, γ∗) is the limit of ∂2hN (W ;θ,γ∗)
∂θ∂γ′ and J(θ, γ∗) is

the limit of ∂2hN (W ;θ,γ∗)
∂θ∂γ′ . The term in brackets corresponds to the usual limit distribution for θ̂, the effect

of uncertainty about exogeneity is to add in the term −H(θ, γ∗)−1J(θ, γ∗)η whose distribution of course

depends on the prior G.

8.8 MCMC Details

We outline our general strategy for full Bayesian inference for the model in (1) and (2). The only difference

between our sampler and the sampler of Rossi et al (2005) is the inclusion of the term involving γ in the

structural equation. For the empirical examples, The data were scaled by the standard deviation of Y and

then the priors used were Σ ≡ Cov(ε, V ) ∼ Inverse Wishart(5, 5I), and β ∼ N(0, 100). R code to implement

these samplers is available on request from the authors.

Let Θ denote the parameters of the error term distribution, i.e. the joint distribution of (εi, vi). In

the normal case, Θ = Σ is a covariance matrix. In an MCMC scheme, we alternate between drawing the

regression coefficients (β, γ,Π) and the error term parameters. A basic Gibbs Sampler structure is given by

Θ|β, γ,Π, (X,Y,Z) (GS.1)

β, γ,Π| Θ, (X,Y,Z) (GS.2)

In the normal case, (GS.1) may be done as in Rossi et al (2005). The draw in (GS.2) is accomplished

by a set of two draws:

β, γ|Π, Θ, (X,Y,Z) (GS.2a)

Π|Θ, (X,Y,Z) (GS.2b)

Given Θ, we can standardize appropriately (by substracting the mean vector and pre-multiplying by

the inverse of the Cholesky root of Σ). The draws in (GS2.a) are then done by realizing that, given Π, we

”observe” vi and can compute the conditional distribution of εi. Given (β, γ), the draw of Π is done by a

restricted regression model. Rossi et al (2005, chapter 7) provides details of these draws.

For the prior on gamma in (17), we cannot draw (β, γ) in one draw but must draw from the appropriate

conditionals.

γ|β,Π,Θ, (X,Y,Z) (GS.2a.1)

β|γ,Π,Θ, (X,Y,Z) (GS.2a.2)

We should note that for datasets with very weak instruments, the MCMC sampler defined above can be

highly autocorrelated, particularly for diffuse settings of the prior on γ. This is not a problem if sufficient

draws can be completed.
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We also note that one could use Bayesian methods based on other parametric likelihoods for (ε, V ) or a

nonparametric Bayesian approach. For example, Conley et al (2006) demonstrate how fully non-parametric

Bayesian inference can be conducted by using a Dirichlet Process prior for the distribution of the error terms.

9 References

Abadie, A (2003): “Semiparametric Instrumental Variable Estimation of Treatment Response Models,”

Journal of Econometrics, 113(2), 231-263, 2003.

Anderson, T. W. and Rubin, H. (1949): ”Estimation of the Parameters of a Single Equation in a

Complete System of Stochastic Equations,” Annals of Mathematical Statistics, 20, 46-63.

Andrews, D. W. K. (1991): ”Heteroskedasticity and Autocorrelation Consistent Covariance Matrix

Estimation,” Econometrica, 59(3), 817-858.

Angrist, J. D. and Imbens, G. W. (1994): ”Identification and Estimation of Local Average Treatment

Effects,” Econometrica, 62, 467-475.

Angrist, J. D. and Imbens, G. W. (1995): ”Two-Stage Least Squares Estimation of Average Causal

Effects in Models With Variable Treatment Intensity,” Journal of the American Statistical Association, 90,

431-442.

Angrist, J. D., Imbens, G. W., and Rubin, D. B. (1996): ”Identification of Causal Effects Using Instru-

mental Variables,” Journal of the American Statistical Association, 91, 444-455.

Angrist, J. D., and A. Krueger (1991): ”Does Compulsory Schooling Attendance Affect Schooling and

Earnings,” Quarterly Journal of Economics, 106, 979-1014.

Angrist, J. D. and A. Krueger (1994): ”Why Do World War II Veterans Earn More than Nonveterans?”

Journal of Labor Economics, 12, 74-97.

Benjamin, Daniel J. (2003). “Do 401(k)s Increase Saving? Evidence From Propensity Score Subclassifi-

cation,” Journal of Public Economics, 87(5-6), 1259-1290.

Berkowitz, D., Caner, M., and Fang, Y. (2006): ”Are Nearly ’Exogenous Instruments’ Reliable?” mimeo.

Bound, J., and D. A. Jaeger (1996): ”On the validity of season of birth as an instrument in wage equa-

tions: A comment on Angrist and Krueger’s ’Does compulsory attendance affect schooling and earnings?’,”

NBER Working Paper 5835.

Bound, J., D. A. Jaeger, and R. M. Baker (1995): ”Problems with Instrumental Variables Estimation

When the Correlation Between the Instruments and the Endogenous Explanatory Variable is Weak,” Journal

of the American Statistical Association, 90(430), 443-450.

Chernozhukov V. and C. Hansen (2004): “The Impact of 401K Participation on Savings: an IV-QR

Analysis.” Review of Economics and Statistics. 86(3), 735-751.

Chernozhukov, V., Hong, H., and Tamer, E. (2007): ”Estimation and Inference on Identified Parameter

Sets,” Econometrica, 75(5), 1243-1284.

40
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Symmetric Asymmetric P(γ=γ1)=.5 P(γ=γ1)=.9
90% Confidence Interval (‐0.645,7.289) (‐0.282,6.759) (‐0.645,6.162) (‐1.007,3.179)

Table 1.  Interval Estimates for Two Point Example

90% confidence intervals for example where γ may take on two values: γ1 and γ2.  When γ=γ1, the estimate of β is one with
a standard error of one, and when γ=γ2, the estimate of β is four with a standard error of two.  Intervals in the "Support  
Restriction" columns are obtained imposing only that γ takes on one of its two possible values.  "Symmetric" is the union of 
the two symmetric intervals, and "Asymmetric" is the minimum length union.  The "Fully Specified Prior" columns report 
"prior‐weighted" unions where the column heading indicates the prior specification.  

Support Restriction Fully Specified Prior
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γ=0 γ=2500 γ=5000 γ=7500 γ=10000
13222 9636 6049 2463 ‐1124

s.e. 1913 1934 1915 1917 1920

γ=0 γ=‐.075β γ=‐.15β γ=.075β γ=.15β
‐3.799 ‐4.302 ‐4.959 ‐3.401 ‐3.079

s.e. 0.611 0.707 0.858 0.544 0.495

γ1=0, γ2=0, γ3=0
γ1=0, γ2=0, 
γ3=.005 γ1=0, γ2=0, γ3=.01

γ1=.005, γ2=.005, 
γ3=.005

γ1=.01, γ2=.01, 
γ3=.01

0.1077 0.0797 0.0516 0.0792 0.0508
s.e. 0.0196 0.0192 0.0192 0.0192 0.0192

A. 401(k) Example
Table 2.  2SLS Estimates for Different Values of γ in Empirical Examples

B. Demand for Margarine Example

C. Returns to Schooling Example

Point estimates,         , and estimated standard errors, s.e., for the treatment effect of interest for various values of 
γ, the "direct effect" of Z on Y.  In the 401(k) example, Z is whether an individual's firm offers a 401(k) plan, and Y is 
net financial assets.  In the demand example, Z is the log wholesale price of margarine of a given brand, and Y is the 
log market share of that brand.  In the schooling example, Z 1, Z2, and Z3 are respectively indicators for being born in 
the second through fourth quarters of the year.

ˆγ

ˆ( )β γ

ˆγ

ˆγ

ˆγ

ˆγ

ˆ( )β γ

ˆ( )β γ

ˆ( )β γ
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Figure 1:  95% Interval Estimates from 401(k) Example

Union of Symmetric CI

Minimum Length Union of CI

Bayesian

Local

Prior Weighted Union of CI

Note: This figure presents 95% confidence intervals for the effect of 401(k) participation on net financial assets

using each of our proposed methods and across various prior settings. The definition of δ differs between

the support only intervals; “Union of Symmetric CI” and “Minimum Length Union of CI”; and the intervals

that use the full prior; “Prior Weighted Union of CI”, “Local”, and “Bayesian.” The intervals given by the

curves “Union of Symmetric CI” and “Minimum Length Union of CI” impose only the prior information

that the support of γ is [−2δ, 2δ]. For the remaining intervals, we impose the prior that γ ∼ N(0, δ2).
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Figure 2:  95% Interval Estimates for 401(k) Example with Positive Prior

Union of CI

Local

Point Estimate

Bayesian

Note: This figure presents 95% confidence intervals for the effect of 401(k) participation on net financial

assets across various prior settings using priors that the direct effect of 401(k) eligibility on net financial

assets is nonnegative. The definition of δ differs between the different intervals. The “Union of CI” intervals

impose only the prior information that the support of γ is [0, δ]. The “Local” interval imposes the prior

that γ ∼ U(0, δ), and the “Bayesian” interval imposes γ is normally distributed with mean and variance

corresponding to the mean and variance of a U(0, δ) random variable.
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Figure 3:  95% Interval Estimates for 401(k) Example with Positive Prior
and Differing Strengths of Instruments

Strong Instrument

Moderate Instrument

Weak Instrument

Note: This figure presents 95% confidence intervals for the effect of 401(k) participation on net financial

assets for different strengths of instruments across various prior settings using priors that the direct effect of

401(k) eligibility on net financial assets is likely nonnegative. The definition of δ differs between the different

intervals. The “Union of CI” intervals impose only the prior information that the support of γ is [0, δ].

The “Local” interval imposes the prior that γ ∼ U(0, δ), and the “Bayesian” interval imposes γ is normally

distributed with mean and variance corresponding to the mean and variance of a U(0, δ) random variable.

The strong instrument is 401(k) eligibility from the data. The moderate and weak instrument are formed

by adding noise to 401(k) eligility.
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Figure 3:  95% Interval Estimates from Margarine Example with γ|β Prior

Bayesian
Local

Union of CI

Note: This figure presents 95% confidence intervals for the price elasticity of the demand for margarine across

various prior settings. The definition of δ differs between the different intervals. The “Union of CI” intervals

impose only the prior information that the support of γ is [−2δ|β|, 2δ|β|]. The “Local” and “Bayesian”

intervals impose the prior that γ ∼ N(0, δ2β2).
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Figure 5:  95% Interval Estimates from Returns to Schooling Example
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Note: This figure presents 95% confidence intervals for the returns to schooling across various prior settings.

The definition of δ differs between the different intervals. The “Union of CI” intervals impose only the prior

information that the γ takes on values within the cube [−2δ, 2δ]3. The “Local” and “Bayesian” intervals

impose the prior that γ ∼ N(0, δ2I3) where I3 is a 3× 3 identity matrix.
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