Trembling-Hand Perfect Nash Equilibrium

Let \(G \) be any finite normal form game. A strategy \(\sigma_i \in \Sigma_i \) is totally mixed strategy if \(\sigma_i(s_i) > 0 \) for all \(s_i \in S_i \).

A strategy profile \(\sigma \) is a trembling-hand perfect Nash equilibrium if there exists a sequence of totally mixed strategy profiles \(\sigma^n \) converging to \(\sigma \) such that \(\sigma_i \in B_i(\sigma^n_i) \) for all \(n \).

Fact: Every trembling-hand perfect Nash equilibrium is a Nash equilibrium.

Proof: Let \(\sigma \) be a trembling-hand perfect Nash equilibrium. Pick any \(\sigma'_i \in \Sigma_i \). Note that \(U_i(\sigma_i, \sigma^n_i) - U_i(\sigma'_i, \sigma^n_i) \geq 0 \) for all \(n \). Then, continuity of \(U_i \) implies \(U_i(\sigma_i, \sigma_{-i}) - U_i(\sigma'_i, \sigma_{-i}) \geq 0 \) and therefore \(\sigma_i \in B_i(\sigma_{-i}) \) for all \(i \in I \).

Theorem: Every finite normal form game has a trembling-hand perfect Nash equilibrium.

Proof: Pick a profile \(\sigma^0 \) of totally mixed strategies. Pick also a sequence of \(\epsilon^n_i \in (0, 1) \) converging to 0, for each \(i \). Define, \(u^n_i(s) := U_i((\epsilon^n_i\sigma^0_i + (1 - \epsilon^n_i)s_i)_{i \in I}) \) for all \(s \in S \). Let \(G^n \) be the game obtained from \(G \) when each \(u_i \) is replaced with the corresponding \(u^n_i \). By the Nash equilibrium existence theorem, there exists a Nash equilibrium \(\sigma^n \) for each \(G^n \). Since each \(\Sigma_i \) is compact, there exists a convergent subsequence of \(\sigma^n \). Without loss of generality, assume this subsequence is the sequence itself and let \(\sigma \) be its limit. We will conclude the proof by showing that for some \(N \), \(\sigma_i \in B_i(\sigma^n_{-i}) \) for all \(i \in I \) and \(n \geq N \). Then, eliminating the first \(n \) elements of the sequence \(\sigma^n \) and renumbering yields a sequence such that \(\sigma_i \in B_i(\sigma^n_{-i}) \) for all \(i \in I \).

For each \(s_i \) such that \(\sigma_i(s_i) > 0 \), there exists an integer \(N(s_i) \) such that \(\sigma^n_i(s_i) > 0 \) for all \(n \geq N(s_i) \). Let \(N \) be the maximum of these \(N(s_i) \) over all \(s_i \in S_i \) and \(i \in I \). Then, for all \(s_i \) such that \(\sigma_i(s_i) > 0 \), \(s_i \in B_i(\sigma^n_{-i}) \) for all \(n \geq N \). Hence, \(\sigma_i \in B_i(\sigma^n_{-i}) \) for all \(n \geq N \) as desired.

Exercise: Make the following claim precise and either prove it or provide a counter example.

If we had used the construction used in the proof of the previous proof as the definition of trembling-hand perfect Nash equilibrium nothing would have changed.