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A THEORY OF DISAPPOINTMENT AVERSION

By Faruk Gur!

An axiomatic model of preferences over lotteries is developed. It is shown that this
model is consistent with the Allais Paradox, includes expected utility theory as a special
case, and is only one parameter (B) richer than the expected utility model. Allais Paradox
type behavior is identified with positive values of B. Preferences with positive B are said
to be disappointment averse. It is shown that risk aversion implies disappointment
aversion and that the Arrow-Pratt measures of risk aversion can be generalized in a
straight-forward manner, to the current framework.

Keyworbps: Preferences over lotteries, expected utility theory, independence axiom,
risk aversion, Arrow-Pratt measures of risk aversion.

INTRODUCTION

THE PURPGSE OF THIS PAPER is to develop an axiomatic model of decision
making under uncertainty that (i) includes expected utility theory as a special
case, (ii) is consistent with the Allais Paradox, and (iii) is the most restrictive
possible model that satisfies (i) and (ii) above.

The difficulty is in providing a precise sense in which (iii) can be satisfied. We
propose to do this as follows: We will present an intuitive explanation of the
Allais Paradox. Then we will replace the independence axiom of expected utility
theory with an alternative axiom which explicitly incorporates our intuitive
explanation. An additional axiom which does not conflict with the intuitive
explanation or with expected utility maximization will also be imposed. Analysis
of the resulting model will reveal that it does indeed satisfy (i) and (ii) above
and that no further qualitative restriction can be imposed without violating
either (i) or (ii). Our aim is to show that the type of behavior exhibited by a
large number of subjects in Allais’ original experiment can be interpreted
intuitively and justified within the framework of a reasonable model.

With this in mind, in what follows we characterize preferences that are
described completely by a real-valued function u on the set of prizes and a real
number B> —1 (Theorem 1). We show that u is unique up to an affine
transformation and B is unique. Hence we isolate a class of preferences that is
one parameter richer than von Neumann-Morgenstern preferences. We further
show that B = 0 corresponds to the case of expected utility theory (where u is
the von Neumann-Morgenstern utility function). We describe preferences with
B >0 as disappointment? averse and establish the equivalence of strict disap-

11 am indebted to Elchanan Ben-Porath, Eddie Dekel, Darrell Duffie, David Kreps, Mark
Machina, Dilip Mookherjee, Ariel Rubinstein, Hugo Sonnenschein, Robert Wilson, two anonymous
referees, and especially Outi Lantto for their help and criticism.

% The term disappointment was first used by Bell (1985) and Loomes and Sugden (1986). While
we have borrowed the word from them, our motivation and the class of preferences that we consider
are different.
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pointment aversion (i.e. B > 0) and Allais Paradox type behavior (Theorem 2).
Finally we show the relationship between risk aversion and disappointment
aversion (Theorems 3-5). In particular we show that in this model risk aversion
implies disappointment aversion.

THE ALLAIS PARADOX?

Consider an individual who is faced with the following two choice problems:

ProBLEM 1: Choose either p, or p, where p, is a degenerate lottery which
yields 200 dollars for sure and p, is a lottery that yields 300 dollars with
probability .8 and 0 dollars with probability .2.

ProBLEM 2: Choose either p, or p, where p, is a lottery which yields 200
dollars with probability .5 and 0 dollars with probability .5 and p, is a lottery
which yields 300 dollars with probability .4 and 0 dollars with probability .6.

The propensity of decision makers to choose p, if confronted with the first
problem and p, if confronted with the second, is a phenomenon that is now
widely known as the Allais Paradox. The term paradox is due to the fact that
such preferences are not consistent with expected utility maximization.* In
particular, this pair of choices is inconsistent with the independence axiom,
which is a necessary condition for expected utility maximization. The indepen-
dence axiom states that given any three lotteries p,, p,, and r and a number
a €(0,1], p, is preferred to p, implies ap, + (1 —a)r is preferred to ap, +
(1 —a)r (where ap,+ (1 —a)r denotes the lottery which yields any prize x
with probability ap,(x)+ (1 — a)r(x)).

Letting r be the lottery which yields 0 dollars for sure, a@ equal %, and
observing that p,=ap,+(1 —a)r, p,=ap,+ (1 —a)r establishes that the
Allais Paradox above constitutes a violation of the independence axiom. Ob-
serve that in Problem 1, lottery p; has no chance of yielding a disappointing
outcome whereas lottery p, has a .2 chance of yielding a disappointing outcome.
One possible explanation of why the independence axiom fails in this particular
example is that the lottery with a lower probability of disappointment suffers
more when it is mixed with an inferior lottery (i.e., » = 0 dollars for sure); that
is, if the lotteries were nearly indifferent initially, the lottery with the higher
probability of disappointment becomes preferred after being mixed with the
inferior lottery.

® This is not Allais’ (1979) most famous example. This particular version is sometimes called the
“Allais Ratio Paradox.” It is also referred to as the common ratio effect or common consequence
effect by Kahnemann and Tversky (1979). We use it here because the intuitive explanation of the
type we wish to isolate is easier to express in terms of this slightly simpler example. However, the
same intuitive argument applies to both this and the original version of the Allais Paradox and
the notion of disappointment aversion resolves both versions.

* To check this note that p, > p, implies ©(200) > .8u(300) + .2u(0) and B, < j, implies .51(200)
+ .5u(0) < .4u(300) + .6u(0); i.e. u(200) < .8u(300) + .2u(0), a contradiction.
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In the words of Savage (1972, page 102), “Many people prefer Gamble 1 (p,)
to Gamble 2 (p,) because, speaking qualitatively, they do not find the chance of
winning a very large fortune in place of receiving a large fortune outright
adequate compensation for even a small risk of being left in the status quo.
Many of the same people prefer Gamble 4 (p,) to Gamble 3 (p,); because,
speaking qualitatively, the chance of winning is nearly the same in both gambles,
so the one with the much larger prize seems preferable.” While 300 and 200
dollars hardly qualify as very large and large fortunes, it is clear that Savage’s
interpretation of the original version is closely related to our intuitive explana-
tion here. What Savage calls the chance of winning is one minus what we have
called the probability of disappointment which we will define formally in our
model.

Before we begin our formal analysis two basic questions need to be ad-
dressed. First, why concentrate on the Allais Paradox as opposed to other
systematic violations for the expected utility hypothesis? Second, what distin-
guishes our approach from other axiomatic models of choice under uncertainty
that allow for Allais Paradox type behavior?

There is a large body of work on observed violations of the expected utility
model. Historically the Allais Paradox has played a very significant role in the
development of this literature. This is no doubt in part due to the intuitive
appeal of the Allais Paradox choices. Hence it would appear that the Allais
Paradox is a natural starting point for any attempt at reconciling the normative
theory of choice under uncertainty with the existing empirical evidence.

One can identify at least three distinct ways that the non-expected utility
literature has dealt with observed violations of the expected utility theory:

(a) By emphasizing the need for a purely descriptive theory. Such work has
either attempted to describe the actual decision making process that is used by
the subjects (see Kahneman and Tversky (1979) and Rubinstein (1988)) or to
identify useful (i.e., consistent with the existing empirical evidence) functional
forms. Regret theory (Bell (1982), Loomes and Sugden (1962)), the disappoint-
ment theory of Bell (1985) and Loomes and Sugden (1982), the subjective
expected value models used in the psychology literature (see Edwards (1953)
and Tversky (1967) among others) are some of the many examples that can be
included under this category. What-is common to this particular body of work is
the emphasis on descriptive aspects and skepticism regarding relevance of a
normative theory. Hence the models mentioned above often violate even the
most basic desiderata of choice under uncertainty (transitivity, stochastic domi-
nance, etc.).

(b) By rejecting the normative appeal of the independence axiom. Allais
(1979) and Machina (1982) belong in this category. Allais argues for a cardinal
measure of utility over sure prospects and postulates that individuals’ utility for
uncertain prospects will depend on the distribution of the cardinal measure,
typically its first three moments. Machina (1982) considers preferences that can
be represented by a “smooth” preference functional and develops the machin-
ery for analyzing the local properties of a preference functional. He offers two



670 ‘ FARUK GUL

empirical hypotheses which he states in terms of these local properties. The first
is risk aversion. The second which is called Hypothesis II is shown to imply
behavior consistent with the Allais Paradox and a number of other observed
violations of the expected utility theory. A more detailed comparison between
the model of this paper and Machina’s generation of expected utility theory will
be provided after the formal analysis of the next section.

(c) By modifying the independence axiom. This class of papers starts by
offering similar (typically weaker) alternatives to the independence axiom. The
resulting model is defended by pointing out that it is consistent with observed
violations of expected utility theory and by arguing that the alternative assump-
tion is more compelling than the independence axiom. Some examples of this
type of work are: Chew and MacCrimmon (1979), Dekel (1986), Fishburn
(1983), and Yaari (1987).

This paper belongs among the work cited under (c) above. What distinguishes
the model of this paper is our emphasis on the Allais Paradox and the direct
role it plays in our axiomatization. Hence we provide a narrow interpretation of
the Allais Paradox and search for a generalization of expected utility theory
which is consistent with this interpretation and yet allows us to retain as much
of the insight offered by expected utility theory as possible.

The Model

For some b,w such that b >w, let X =[w,b] be the set of all prizes. Let
.Z be the set of all simple lotteries over these prizes. That is, p €_.Z implies
that supp (p), the support of p is finite. For any p,q €.# and a €[0,1], ap +
(1 —a)g denotes the lottery r €_# such that for all x€X, r(x)=ap(x)+
(1 — a)g(x). When there is no risk of confusion we use x € X to denote the
lottery p such that p(x) =1. = is a binary relation on .. We use p >q, “p is
strictly preferred to ¢g”, to denote p =g and not g =p. We use p~gq, “p is
indifferent to g”, to denote p > g¢q and g = p.

Since, typically, we want to interpret x € X as a quantity of money, x >y iff
x >y, will be a maintained assumption throughout this paper.

DeriNiTION 1: For any > and p, let
B(p, =) ={qe-Z|xsupp(q) implies x = p};
W(p, z) ={q€-£|x €supp(q) implies p xx}.

We sometimes use B(p), W(p) instead of B(p, =) and W(p, ).

Thus B(p) and W(p) denote the set of lotteries with supports consisting of
prizes respectively, better than and worse than p.
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DeriniTiON 2: (@, g, r) is an elation /disappointment decomposition (EDD) of
p iff g B(p), r€e W(p) and aq + (1 —a)r =p.

Thus an EDD of p is constructed as follows: The lottery is divided into two
parts, those prizes which are preferred to the certainty equivalent of p (called
elation prizes) and those prizes which are less preferred to the certainty
equivalent of p (called disappointment prizes). Then we normalize by dividing
the probability of all elation prizes by «, the sum of all elation prize probabili-
ties and obtain g. Similarly we divide all disappointment prize probability by
1 — a and obtain r. Hence ag + (1 — a)r =p (note that ag + (1 —a)r is p, not
just indifferent to p). Obviously if the certainty equivalent of p is not in the
support of p there is a unique EDD for p. Otherwise there will be an infinity of
EDD’s for p. To see this note that (.2, x, x), (.7, x, x) and (0, b, x) are all EDD’s
of x.

Next we define elation, e(p), and disappointment, d(p), probabilities for a
lottery p. Note that if p does not yield its certainty equivalent with positive
probability, then e(p) + d(p) =1 and D(p) = {(e(p), g, r)} for some q,r €.2.

DermviTioN 3: e(p)=X,, ,p(x) and d(p)=XL,.  p(x).

We use D(p) to denote the set of all EDD’s of p. Instead of (a,q,r) €
D(aq + (1 — a)r) or equivalently (a, g, r) € D((a, g, r)) we simply write (a, g, r)
€D where D= U ,_,D(p). (Note that by definition if (a, g, r) is an EDD it
must be an EDD of ag + (1 — a)r.)

Axiom 1—Preference Relation: > is complete and transitive.
AxioM 2—Continuity: For all p €.2 the sets (g €. |q =p} and {q € L|p =
q} are closed (under the topology generated by the L' metric).’

Axiom 2 implies that the function CE: .#— [w, b] such that CE(p) ~p (.e.
CE is the certainty equivalent of p) is well-defined.

Next we will present a restriction of the independence axiom to the case in
which the disappointment probabilities of the lotteries p, and p, are the same
and no elation (disappointment) prize of p; switches over to being a disappoint-
ment (elation) prize of ap; + (1 —a)x. The motivation for this is the intuitive
explanation of the Allais Paradox that was presented earlier. Consider the
lotteries p/ =tp, + (1 — t)x as ¢t decreases from 1 to a. If p, = p, and no elation
(disappointment) prize of p; switches to being a disappointment (elation) prize,
then the disappointment probabilities of p| and p5 are always the same; hence
our intuitive explanation of the Allais Paradox is not applicable so we would
expect the conclusion of the independence axiom to be valid.

*To be more precise, let f: #—_#' where f(p) is the cdf associate with p. Then, Axiom 2
requires that f({g € Z|q = p)) and f({q €-£|p = q)) are closed (for every g €.7) in the relative
topology on f(.#) generated by the L! metric.
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Axiom 3—Weak Independence: p, x=p,, a<l[0,1], z€ X implies ap, +
(1 —-a)z =z ap, + (1 — a)z whenever there exists (A, q;,r;) € D(p,) such that q; €
B(ap;,+ (1 —a)z) and r,€ W(ap, + (1 — a)z) fori=1,2.

It can be seen from the proof of Theorem 1, that Axioms 1-3 imply
betweenness. That is if > satisfies Axioms 1-3 and p > qg(p ~¢q), then p >
ap+(1—a)g>qg(p~ap+ ({1 —a)g) for all a=(0,1). Hence preferences
which satisfy Axioms 1-3 belong to the class studied by Dekel (1986).

Axiom 3 captures our intuitive explanation of the Allais Paradox by enabling
the independence axiom to fail when disappointment effects are present.
However, in order to verify the “minimality” criterion (iii) discussed in the
introduction, we need to determine if the class of preferences which are
characterized by Axioms 1-3 can be restricted further without excluding ex-
pected utility preferences of our intuitive explanation. To put it differently, are
there situations in which the independence axiom would be applicable but our
intuitive explanation would not? Consider the following example:

Let ax+(1—a)wz=ap+ (1 —a)w and p € Blap + (1 — a)w). Thus the de-
cision-maker prefers substituting x in place of p in ap +(1 —a)w when p
consists of elation prizes of ap + (1 —a)w. Now assume that p € W(ab +
(1 —a)p). Hence p consists of disappointment prizes of ab + (1 — a)p. Note
that the independence axiom would imply that ab+ (1 —a)x zab+ (1 —a)p
whenever ax + (1 —a)w = ap + (1 — a)w. Furthermore observe that ab + (1 —
a)x, ab+ (1 —a)p, ax + (1 —a)w, and ap + (1 — a)w all have the same disap-
pointment probability (1 — «). Thus substituting x in place of p does not result
in the type of effect discussed in our intuitive explanation of the Allais Paradox.
Hence we would again expect the independence axiom to hold (i.e., ab + (1 —
a)x = ab + (1 — a)p). This will be Axiom 4. To see why this particular applica-
tion of the independence axiom is not covered by Axiom 3, note that by
requiring that no elation prize switches to being a disappointment prize, Axiom
3 severs the connection between the individual’s evaluation of elation prizes and
his evaluation of disappointment prizes.

AxioMm 4—Symmetry: Fori=1,2, (a, p,,w),(a, b, p,) € D implies
ap,+(1—a)wxzap,+ (1 —a)w iff

ab+(1—a)p,zab+(1—a)p,.

X—- R and y:[0,1]1 > [0,1] such that: () (a;,q;,r;)) € D(p,) for i=1,2 implies
przpy iff yle)L,u(x)g(x) + 1 — y(a )DL, u(x)r(x) > y(ay)X, ulx)g(x) +
(1 — y(a )X, u(x)r(x); (i) y',u' satisfy (1) above implies u' = au + b for some
a>0,beR and y' =v; (iii) u is continuous and there exists B € (—1,%) such

THEOREM 1: x> satisfies Axioms 1-4 if and only if there exist functions u:
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that

y(a) = forall a€]0,1].

a
1+(1-a)B
Proor: See Appendix.

Theorem 1 establishes that if Axioms 1-4 hold, then there exists a utility
function V: .£— R which represents > and furthermore V(p) can be calcu-
lated by taking an EDD (a, g, r) of p, computing the expected utilities of the
elation and disappointment parts (g and r respectively) with respect to the
utility index u, and taking a y(a) weighted average of these utilities. Hence u
and B are parameters of the individual’s preferences and V(p) is defined
implicitly by the procedure above. To see that V( p) is not explicitly defined note
that the certainty equivalent of p needs to be known in order to determine an
EDD of p.

However, a simple and finite algorithm (see Appendix) will enable us to
construct all EDD’s of p and commute V( p) for arbitrary u and B.

The fact that V(p) is well defined for any > which satisfies Axioms 1-4 is
guaranteed by Theorem 1. However, this does not preclude the possibility that
there might be no non-expected utility preference which satisfies Axioms 1-4.
Defining V(u, B8, p) implicitly by V(u, B8, p) = y(a)Eu(q) + (1 — y(a))Eu(r) for
some a,q,r such that ag+ (1 —a)r=p and x<supp(g) implies u(x)>
V(u, B, p) and x € supp (r) implies u(x) < V(u, B, p) and showing that V(u, B, - )
is a well defined function for arbitrary strictly increasing, continuous u# and
Be(—1,0) would establish that Axioms 1-4 characterize a rich class of
preferences. This can be done using simple manipulations of the definition of
V(u, B, p).

Observe that expected utility theory corresponds to the special case y(a) = a;
that is, 8 = 0. Furthermore, if B8 > 0, then y(a) < a for all a € (0,1) and y(a) is
convex. If —1 < B <0 then y(a) > a for all @ €(0,1) and y(a) is concave. We
say that > is disappointment averse if B >0 and > is elation loving if
B €(—1,0]. Note that unlike risk aversion, disappointment aversion is, by
definition, a global property. Theorem 2 below (and its proof) reveals that B is a
measure of the extent to which > is prone to Allais Paradox type behavior.
Since the preferences which satisfy Axioms 1-4 are only one-parameter ()
richer than expected utility preferences, it would appear that no additional
qualitative restrictions can be imposed without excluding either our intuitive
explanation of the Allais Paradox or certain expected utility preferences.

THEOREM 2: Let x satisfy Axioms 1-4 and p ~ q. Then if B > 0 (B <0) there
exists a >0 such that (i) a <a, e(p)>e(q) implies ax + (1 —a)p > (<)ax +
(1—-a)g for x>p; (i) a<a, d(p)>d(q) implies ax+ (1 —a)p > (<)ax +

(1 —a)q for p > x.
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Proor: See Appendix.

Let (u, B) denote the generic preference satisfying Axioms 1-4.
Define
u(x) for x such that u(x) <v,

¢(x,v) ={ u(x) +Bv
1+8

Observe that by using the definition of v(p) provided in Theorem 1 we obtain
that ¥ #(x,v)p(x) = v iff V'=uv(p), hence ¢ is the local utility function for the
preference (u, B) (see Dekel (1986) for the definition and analysis of local utility
functions of this form).

Roughly speaking, given Axioms 1, 2, Axiom 3 guarantees that the local utility
function has the following property: All elation prizes are evaluated with
respect to one utility function and all disappointment prizes are evaluated with
respect to another utility function. Symmetry (Axiom 4) guarantees that these
utility functions represent the same preferences. That is, the utility function for
elation prizes (u(x) + Bv)/(1 + B) is a (positive) affine transformation of the
utility function for disappointment prizes, u(x).

Abandoning the symmetry (Axiom 4) assumption would lead to the following
local utility function:®

é(x,v) =

for x such that u(x) >v.

uy(x) for x such that u,(x) <v,
u,(x) —u,(uz'(v)) +v for x such that u,(x) > v,

where u,,u, are two distinct functions from [w, b] to R. Note that Axiom 4
implies u, — u,(u;*(v)) + v and hence u,, is an affine transformation of u, and
expected utility implies u, = u,.

It can be shown that for preferences which satisfy Axioms 1-4, g >0 iff
d(Zp(x,v)p(x))/dv is an increasing function of d(p), the probability of disap-
pointment (among p such that V(p)=v). This observation can be used to
extend the notion of disappointment aversion to preferences which satisfy
Axioms 1-3. For such preferences d(Z¢(x,v)p(x))/dv is a decreasing function
of d(p) iff (u'(y)/u(y)) <1 for y such that u,(y)=v. But now disappoint-
ment aversion has become a local property and global disappointment aversion
can be imposed by requiring disappointment aversion at every point y. With this
extended definition of disappointment aversion the results that Allais Paradox
implies disappointment aversion (Theorem 2) and that risk aversion implies
disappointment aversion (Theorem 3) can be generalized to preferences which
satisfy Axioms 1-3.

We end this section by noting that imposing Axiom 4 is consistent with our
objective of seeking a model in which any deviation from expected utility theory
can be ascribed to disappointment aversion. Furthermore adding Axiom 4

® The existence of some local utility function is guaranteed by Dekel’s (1986) Proposition 1 and
the fact that Axioms 1-3 imply betweenness. Furthermore Axiom 3 implies that (local) preferences
over disappointment outcomes and elation outcomes (but not combinations of disappointment and
elation outcomes) are independent of v. Then a suitable normalization yields the representation
provided above.
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enables us to analyze a particular simple subclass of the preferences that satisfy
Axioms 1-3 for which we can obtain a nearly closed form representation.

DISAPPOINTMENT AVERSION AND RISK AVERSION

In this section we analyze the relationship between disappointment aversion
and risk aversion and develop measures of risk aversion for preferences satisfy-
ing Axioms 1-4. Hence, in what follows we will concentrate only on preferences
satisfying Axioms 1-4 and sometimes use (u, 8) to denote such preferences.

TueoreM 3: (u, B) is risk averse (in the sense of weakly not preferring mean-
preserving spreads) iff B >0 and u is concave.

Proor: Dekel (1986) establishes that > is risk averse iff the local utility

function is concave. Note that ¢(x,v) is concave if B >0 and u is concave.
Q.E.D.

There are two main implications of Theorem 3. The first one is that risk
aversion implies disappointment aversion. The second is that disappointment
aversion and the concavity /convexity of u determine the individual’s attitude
towards risk.

The possibility of having concave u and B < 0 or convex u and 8 > 0 enables
us to obtain preferences that display risk aversion with respect to certain types
of gambles and risk loving with respect to others. For example, if g =4 and
u(x)=x for x<0 and u(x)=>5x when x>0 (hence x is convex), then the
individual will be risk averse with respect to even chance gambles and gambles
which yield a large loss with small probability but will be risk loving with respect
to gambles that involve winning a large prize with small probability if his initial
income is low. Hence, there are preferences consistent with Axioms 1-4 such
that at all income levels, the individual would not accept fair even chance
gambles, yet would still be willing to buy less than fair insurance. Furthermore
such an individual would be willing to buy, at certain income levels, tickets to
the state lottery.

It is possible to develop measures of absolute, relative, and comparative risk
aversion for preferences satisfying Axioms 1-4, similar to those developed by
Arrow and Pratt for expected utility theory. Of course, these measures coincide
with the corresponding Arrow-Pratt measures when B = 0. However, it is
interesting that essentially the same Arrow-Pratt measures are appropriate even
when B #0. More specifically, let R%(x)= —u"(x)/u'(x) and R} (x)=
—xu"(x)/u'(x); then by noting that 8 does not depend on x and essentially
replicating the corresponding proofs of expected utility theory we obtain the
following theorem.

THEOREM 4: (u, B) is increasingly (decreasingly, constant) absolute (relative)
risk averse iff R°(R") is increasing (decreasing, constant).

DEeFINITION 4: =, is more risk averse than =, iff p =, x implies p =, x for
all pe Z, xeX.
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TueoREM 5: (uy, B,) is more risk averse than (u,, B,) if B, > B, and R;(x) >
R (x) for all x € (w, b). Furthermore if (u,, B,) is more risk averse than (u,, B,),
then B, > f3,.

Proor: See Appendix.

Machina (1984) provides the following stronger notion of comparative risk
aversion: x, is more risk averse than x, iff for all A €[0,1], p,p' €%}
A+ =Mp~, Ap'+(1—Mx and Ap'+(1 —A)p~; Ap'+(1 —A)x implies
X <X.

Given Theorem 3 and the observation that B8 and the curvature of u
determines the curvature of the local utility function, we would expect that
being more risk averse corresponds to having a higher 8 and a more concave u.
This is almost correct in the sense that (u,, 3,) is more risk averse (in the
stronger sense) than (u,, B,) iff R;(x) > Rj(x) for all x €(w,b) and B;>0>
B,. To see why B;>0>pB, cannot be replaced by B;>pB,, note that if
B, >B,>0, then both (u,,B,) and (u,,B,) are risk averse (Theorem 3).
Furthermore the certainty equivalent y,, of Ap+(1—2A)p’ for (u,,B,) is
greater than its certainty equivalent y,, for (u,, 8;) (Theorem 5). Then, at y,,
the local utility function ¢, is smooth whereas the local utility function ¢, has a
concave kink. This means that ¢, is less concave than ¢, at y,. Machina (1982),
however, shows that more risk aversion is equivalent to the greater concavity of
the local utility function.® Thus the comparison fails. Intuitively the fact that
y, >y, makes it possible for (u,, 8,) to view p’ as increasing the probability of
disappointment while (u,, 8,) views p' as decreasing the probability of disap-
pointment and therefore is less reluctant to accept it.

OTHER MODELS ON DECISION MAKING UNDER UNCERTAINTY AND
EXPERIMENTAL EVIDENCE

It should be noted that although we have so far concentrated on the case
where X is a compact interval, it is clear that the type of preference that we
have been considering can just as well be defined on . when X is either finite
or an unbounded interval and . includes nonsimple lotteries. All of the
qualitative conclusions of this paper (Theorems 2-5) would still hold. If X is
finite, however, Axioms 1-4 are not sufficient to characterize (u, 8) preferences.
This is due to the fact that our proof necessitates that certainty equivalents be
well defined. The case of unbounded X and/or nonsimple lotteries can be dealt
with as is done in expected utility theory. For nonsimple lotteries a finite
algorithm for explicitly computing V(p) would no longer exist. Instead an
algorithm which converges to V(p) can be constructed.

The most striking feature of these preferences is that by adding only one new
variable, B, to the expected utility model, we are able to construct a class of

N symmetric argument applies to the case 0> B; > B,.
Theorem 4 of Machina (1982) assumes the global differentiability of local utility functions.
However, similar arguments can be used for the preferences considered here.
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preferences which include the EU model as a special case, are compatible with
many of the observed violations of this model, and enable us to explain these
violations in terms of the notion of disappointment aversion. Observe that when
we are comparing binary lotteries with each other or binary lotteries with sure
things, then the functional form we have considered can be expressed as

Viax+(1—a)z) =m(a)u(x) +m,(1—a)u(z)

(1-a)(1+pB)

1+(1—a)B u(z)

“Tra-ap

where x >z and obviously m,(1 —a) =1 —m(a).

But this is very similar to the subjective expected utility models that have
been used extensively in the psychology and economics literature (see, for
example, Kahneman and Tversky (1979)) and is a special case (for binary
lotteries) of Quiggin (1982).

Note also that for the case of B8 > 0, the weight function of the good prize is
convex. Hence, a small increase in the probability of the good prize increases
utility much more, when the chance of getting the good prize is already high.
This is very suggestive of what Kahneman and Tversky (1979) refer to as the
tendency for “people [to] overweight outcomes that are considered certain,
relative to outcomes that are merely probable,” i.e., the so-called certainty
effect. The class of (u, B) preferences also have the following feature: If X is
finite and | X|=n, then the preferences of any individual can be determined
uniquely by asking him # — 1 simple questions and solving a quadratic equation.
This is only one more than the number of questions one would need to ask
under the assumptions of expected utility theory.

Consider a person, with preferences (u, 8), who will receive income x in state
1 and income y in state 2. Let a and (1 — «) denote the probabilities of states 1
and 2 respectively (see Figure 1). An indifference curve for such a person will be
described by the equation

a (1-a)(1+B)
1+(1-a)B

u(x) +

m u(y)=U forx>y

FiGurE 1
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and
11_;; u(y) + ?1(1_,_—-:[?u(x) = for y > x.
Hence
dy au'(x) )
&~ T U-auwnarp T
d_y_ auw(x)(1+ ) if y>x.

& (1-a)u'(y)

Thus if u is concave and B > 0, then these preferences would look as in Figure
1 above. Note that the shape of the indifference curve on either side of the 45°
line is determined by the curvature of u and the nature of the kink is
determined by B. In particular there will be a kink so long as B8 # 0. Figure 1
shows why B > 0 is necessary for risk aversion (see Theorem 3). This particular
shape of the indifference curve has two important implications. The first is that
risk averse individuals will purchase full insurance at less than fair odds; the
second is that these preferences are not “differentiable” when B8 # 0 and hence
do not belong to the class of preferences considered by Machina (1982).

Figure 2 illustrates the indifference map of (u, 8) for lotteries over three
prizes x, y, z where x <y <z. Hence any point (p,, p,) in Figure 2 corresponds
to the lottery p such that p(x)=p,, p(y)=1-p, —p,, and p(z) =p,. After
normalizing u so that u(z) = 1 and u(x) = 0, the indifference curve through any
lottery p such that p >y is defined by equation (1) and the indifference curve
through any p such that p <y is defined by equation (2):

_(1+B)[u(y)p, +v—u(y)]
1+ Bv-(1+B)u(y)

_ (u(y) +Bv)p,+v—-u(y)
- 1-u(y)

Both 1 and 2 can be derived from the definition of V(p) provided in Theo-
rem 1.

Equations 1 and 2 imply that the indifference curves on the top half of Figure
2 all intersect at the point ((1 —u(y))/u(y)B,(1+B)/B) and indifference
curves on the bottom half of Figure 2 all intersect at the point (—1/p,
=1+ Bu(y)/B(1 —u(y))). Hence for >0 all indifference curves in the
bottom half are “fanning out” and all indifference curves in the top half are
coming together from left to right (as depicted in Figure 2). For B <0 the
opposite is true. Hence for the case of lotteries over three prizes, taking the
preference (u, B) and “flipping” half of its indifference map, we obtain the type
of preference considered by Chew and MacCrimmon (1979) and Fishburn

(1) P,

for v>u(y),

(2) P,

for v <u(y).
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FIGURE 2

(1985) which are defined by the property that all indifference curves originate
from the same point.

Machina (1982, 1987) considers a large class of systematic violations of the
expected utility model and shows that these violations, which are frequently
encountered in experiments, all imply that indifference curves in Figure 2 are
fanning out. Since any individuals with preferences (u, 8) will have indifference
curves that fan out either in the top half or the bottom half (but not both) of
Figure 2, no such individual can exhibit all of the violations considered by
Machina.

It is undeniably true that fanning out over some range is necessary for Allias
Paradox type behavior. The preference (u,8) will display the fanning out
properly over the range concerning the Allais Paradox if and only if g > 0.
Hence there is no conflict between Machina’s observation regarding fanning out
and Theorem 2. There are however substantial differences in the two interpre-
tations of the Allais Paradox and the underlying approaches to violations of
expected utility theory. Whereas Machina views the Allais Paradox as a special
case of (global) fanning out, we have emphasized our narrower intuitive expla-
nation and sought to provide a model which incorporates this intuitive explana-
tion while retaining many of the features of expected utility theory. In the case
of lotteries over three outcomes no two distinct lotteries can be indifferent and
have the same disappointment probability. Thus Figure 2 understates the
similarity between (u, B) preferences and expected utility theory. To see this,
consider the following example: Suppose > satisfies

2 2 2
then Axioms 1-4 imply that > satisfies

1 1 1 1 1 1
(3) —><(—X1000+5><800)+—><100~E><880+§><100~400;

1 (1 1 1 1 1
4 — X | = +1000+ = X800} + = X 50 ~ = X 880 + — X 50.
) 2 (2 2 80) 2 2 2
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Under Axioms 1-4 the necessity of satisfying (4) whenever (3) is satisfied does
not conflict in the displaying Allais Paradox type behavior at every income level.
Under Machina’s interpretation any individual who displays Allais type behavior
at every income level and satisfies (3) must violate (4). This follows immediately
from fanning out.

Not surprisingly there is some empirical and experimental evidence conflict-
ing with Axioms 1-4 and Hypothesis II. In particular for 8> 0 (which we
consider to be the more important case), (u, 8) will be consistent with the
common ratio effect, partly consistent with the common sequence effect (includ-
ing the Allais Paradox), and inconsistent with the common ratio effect with
negative numbers (see Machina (1987)). Conversely for 8 <0, (u, ) will be
consistent with the common ratio effect with negative numbers, partly consistent
with the common consequence effect (excluding the Allais Paradox), and incon-
sistent with the common ratio effect.

Neilson (1989) considered lotteries over three prizes and concludes that
existing empirical evidence suggests the need for preferences which fan in on
the top part and fan out on the bottom part of the probability triangle (i.e.,
exactly the situation depicted by Figure 2). The model of this paper (for g > 0)
always has this property. To put it another way, we have identified Allais
Paradox with precisely this mixed-fanning property.

CONCLUSION

We have taken what is considered to be the most compelling argument
against the independence axiom and attempted to find an alternative to ex-
pected utility theory which is immune to this particular argument and yet retains
as much of the expected utility theory as possible. The notion of disappointment
aversion offers good intuition as to why the independence axiom is so often
violated. Axioms 1-4 aim to capture the notion of disappointment aversion that
lead to a rather restricted class of preferences with acceptable normative
properties capable of accommodating many of the experimental results. The
simple characterization of these preferences suggest that they might constitute a
useful step in better understanding the failure of the independence axiom.

Graduate School of Business, Stanford University, Stanford, CA 94305, U.S.A.

Manuscript received April, 1988; final revision received April, 1990.

APPENDIX
Proor oF THEOREM 1: The proof will make use of the following two lemmas.

LemMma 1. (I) x>y, A €(0,1) implies x > Ax + (1 —A)y >y.

(I A,as(©,1), y>z, p=ay + (A —a)z imply (1) Ax+ (1 —A)p > p whenever x >p; 2) p> Ax
+ (1 — A)p whenever p >x; (3) x ~Ax+ (1 —A)p whenever x ~p; (4) x> Ax + (1 —A)p whenever
x>p; (5) Ax + (1 — A)p > x whenever p > x.

(I1D) 11 above holds for arbitrary p.
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Proor: (I) Assume the contrary; then there exists A such that Ax+ (1 —A)y=x or y =Ax +
(1 —A)y. Take the first case and let o =inf{A €[0,1]|Ax + (1 —A)y =x}. By Axiom 2 a €(0,1)
and ax + (1 —a)y ~x. Then Axiom 3 implies that a?x+ (1 —a?)y ~ax+ (1 —a)y if x =ax +
(1 —a?)y = y. But this follows immediately from Axiom 3. Hence a?x + (1 —a?)y zax+ (1 —a)y
> x. But a? <« which contradicts the fact that « is the infimum. A similar argument establishes a
contradiction for the y > ax + (1 —a)y case.

(IT) (1) Assume the contrary; hence there exists A,a €(0,1), p=ay + (1 —a)z, and x € X such
that x >p and p = Ax + (1 — A)p. Then by Axiom 2 there exists A* € (0, 1) such that A*x + (1 — A*)p
~p.Let T={(y,2)lay+ (1 —a)z~p}and A ={y* —z*>0ly* = A*x + 1 = AN ay* + (1 —a)z*) =
z* for (y*, z*) € T}. By assumption 4 is nonempty. Let 8 = inf A. Then by Axiom 2 there exist y*
such that ay* + (1 — aXy* — 8) ~ p and then, by Axiom 3, A*x + (1 — A*)ay* + (1 — a)(y* — 8)) ~p.
Therefore, by Axiom 2, 8 = 0; otherwise we can find y such that 5 > A*x + (1 — A*}ay + (1 —a)(y —
8)=y5—8,ap+(1 —aXy—38)~p, and 0 <8 <8, which contradicts the fact that 6 = inf A. But if
8 =0, by Axiom 2, A*x + (1 — A*)y* ~p and y* ~p which contradicts (I) above.

(2) follows from a symmetric argument.

(3) follows from (1) above and Axiom 2.

(4) If x>y, then set

A (1-2)a
At(A-Na  ard-na’

Then by (I) and (II) (2) above we have p >tz + (1 — t)p whenever ¢ € (0,1). Set t =(1 —AX1 —a) to
obtain p>tz+ (1 —t)p=Ax+Q —A)p. But x>p by (I), so x >Ax+ (1 —A)p.

If y >x thenlet a*x + (1 —a*)p ~x and T = {(y*, z)|y* za*x + (1 —a*Nay* + 1 — @)z*) = z*
and ay* + (1 —a)z* ~ p}. Define y =inf{yl(y, z) € T for some z € X}. Observe that y =x. Other-
wise by Axiom 3 (and Axiom 2) a*x + (1 — a*)}ay + (1 — a)Z) ~ p for some Z. This would imply that
there exists y' <y and z' such that (y', z") € T, a contradiction to the fact that y is the infimum.
But if y =x we have a*x + (1 —a*)ax + (1 —a)z) ~x and Z <x which contradicts (I) above.

(5) follows from a symmetric argument to the one provided in (4) above.

(I1I) The results of (II) can be generalized to p with arbitrary supports as follows: assume that
(1)-(5) hold for all p such that |supp(p)l<n. Then for p such that |supp(p)l=n+1 we can
conclude by Axiom 2 that there exists v € (w, b) such that v ~p. Let A={A €0, D|p=Ax+ (1 —
A)p} for some x > p. If (1) is false, then A is nonempty. If inf 4 = 0, then choose (a, g,r) € D(p)
such that x’ ~ p implies x’ € supp(r). Next let (a, y, z) ~ p for some y > z. By Axiom 2 such y and
z exist. Finally choose A* €A N{A>0ly=Ax+(1A—-ANay+ (1 —a)z) =z, re W(Ax+ (1 —A)p)}.
By Axiom 2 such A* exist. Then Axiom 3 implies A*x + (1 —A*)p ~A*x + (1 —A*)ay + (1 — a)2).
But by (II) A*x + (1 — A*)ay + (1 — a)z) > p, hence a contradiction.

If inf A # O there exists some © € (w, x) such that § = CE(ax + (1 — a)p) for some a € (0, 1) and
for all € > 0 there exists &’ € (@, a + ¢) such that CE(a'x + (1 —a')p) < CE(ax + (1 — a)p).

Set p =ax + (1 — a)p and observe that inf A = 0where 4 ={A €(0,1)|p = Ax + (1 — A)p}. Hence
we can use the argument above to establish the desired conclusion.

(2) follows from a symmetric argument.

(3) follows from Axiom 2 and (1) above.

(4) Assume the contrary; then choose a such that 0 <a <A*, a €(0,1), g,r €.# and z <x such
that (a,q,r) € D(ax+ (1 —a)p), A* =inf{A|]Ax +(1 —A)p =x} and x' €supp(p) and x’ <x im-
plies x’ < V. By Axiom 2 all of this is possible. Then set ¢ = (A* —a)/(1 — a) and observe that

ax+(Q-c)ax+(1—a)p)=Xx+(1-2*)p~x, by Axiom 2,
a+(Q-c)ax+(Q—-a)p)~cx+(1—-c)(ax+ (1 —a)z), by Axiom3.

Hence x ~ (cx + (1 — ¢)ax + (1 — ¢)(1 — a)z), contradicting (I) above.
(5) follows from a symmetric argument. Q.E.D.

p=

Next we will define a binary relation R on %= {p €_#|w € supp(p) implies b & supp (p)}.

sRs' iff (@, s,r) €D, (a,s',r) € D implies as + (1 —a)r = as' + (1 —a)r. We write sIs’ to denote
sRs' and s'Rs.

It is easy to see that Axiom 2, Axiom 3, and Lemma 1 (IID) imply the following, stronger version
of A3:

Axiom 3: For i=1,2(a,q,,1r)€D(p), g;€BAx+ (1 —A)p)and e Wax+ (1 —=2A)p), A €
[0,1] implies p; = p, iff Ax +(1 —A)p; =Ax+ (1 =A)p,.
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But Axiom 1, Axiom 3*, and Lemma 1 (III) imply that R is preference relation on .2 0

LemmMA 2: sly implies for all A €[0,1), As + (1 —A)p ~Ay + (1 — A)p whenever
s€B(As+(1=A)p)UW(As+ (1-2A)p).

Proor: It follows from Axiom 3* and Lemma 1 (II) that s € B(As + (1 — A)p) implies sly iff
As+ (1 =A)p~Ay+(1—A)p. Assume that s € W(As + (1 — A)p). Then by Axiom 3* and Lemma 1
(III) we have As+ (1= Mp~Ay+Q —=A)p iff as+ (1 —a)b~ay+ (1 —a)b for all a sufficiently
small. But then Axiom 4 implies that As+ (1 —A)p~Ay+ (A —-ANp if as+ (A1 —aw~ay+ (1 -
a)w for all a such that s € B(as + (1 —a)w); thatis, Ass=(1 —A)p~Ay+ Q1 —A)p iff sly. Q.E.D.

Proor or THEOREM 1: Define w, such that w <wy <b and a function a,: [wg, b] = (0, 1] such
that ag(x)x + (1 —ag(x))w ~w, for all x €[wg, b]. Axiom 2 and Lemma 1 establish that « is
well-defined and continuous. It is easy to show, using Lemma 1, that «, is strictly decreasing. Next
define ug: [wg, b] = [0,1] by

_ ag(b)(1 —eo(x))
“o(¥) = ey (B) o)

If follows from the continuity and strict decreasingness of « that u, is continuous and strictly
increasing. We will now show that (*) sRr iff ¥,uy(x)s(x) > T,uq(x)r(x) for all s,re.£(wgy)
where _Z(wy) ={p €.Z|x€supp(p) implies x>wy}. To do this first we will show that
ag(Ou(x)b + (1 —u(xNwol + (1 — ag(xDw ~ ap(x)x + (1 — ax(x))w. By Lemma 1 (IID), part (3),
tag(b)b + (1 — Owy + (1 — a(b)w ~ w. Set

p = Lz alx)
1-ag(b)’
So,
ag(b)(1—ao(x)) ao(x) —ag(d) .
1 —ag() b+ 1= ag(b) wo+ (1 —ag(x))w ~wg;
hence,
ag(b)(1 —ao(x)) _ ao(b)(1 - ap(x)) w _ W~ W
00| T =an®aon” |1~ U= ag®)aoln) ) ] + (1= aolx))wwe;
ie.,
ao(x)[uo(b)b +(1- “o(x))wo] + (1= ap(x))w ~wy.
Therefore

ao(x)[”o(x)b +(1- “o(x))wo] + (1 —ag(x))w ~ag(x)x + (1 —ag(x))w.

Then, applying Lemma 2 yields that for all s such that supp(s) =2,
(:) seB(as+(1—a)p)UW(as+ (1—a)p)

implies as + (1 —a)p ~ay + (1 —a)p iff L u(x)s(x)=u(y). Hence, applying (%) repeatedly es-
tablishes that () holds for arbitrary s. A3 and Lemma 1 imply that ay + (1 —a)p = ay’ + (1 — a)p.
Therefore () establishes the desired conclusion.
Choose some sequence {w,};_; ;. such that w <w,,; <w, for i=1,2... and lim;_ . {w,} = w.
Define a;: [w;, b] — [0, 1] by substituting w, in place of wy in the definition of «. Furthermore
let

ai(b) (1-a(x))
1-ai(b) a(x) =

u(x)=
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By the argument above, u, satisfies (*). Note that on the interval [w,, b] both u, and u, { satisfy (*);
hence u,,;=au;+c by a familiar argument from expected utility theory. u,, (b) =u,(b) =1, so
a =1 — c. Furthermore u,(w,) = 0; hence 0 < ¢ and therefore 0 <c <land u, ;=1 —cu,+c>u,.
Hence u,(x) is an increasing sequence. Let j*(x) = inf{jlw, <x} for all x € (w, b]. Define u(x) by
u(x) =1lim, , v, u,(x). Clearly u(x) is well-defined for all x € (w,b}; furthermore for all i,u,
satisfies strict monotonicity, (*), and continuity, and hence u satisfies those properties also. Note
that since lim, _,,, u(x) =0, u can be extended to [w,b] with all of those properties by setting
u(w)=0.

Next define y: [0,1] = [0,1] by y(a) =u(x) where ab + (1 —a)w ~x. It follows from Axiom 2
that y is well-defined and continuous. From Lemma 1 it follows that y is strictly increasing.
Furthermore y(1) =1, y(0) = 0. We will show that y(a) =a/(1 + (1 — a)B) for some B € (—1,).
Let @ > @& and y(a) = u(x), y(@) = u(y). By definition ab + (1 — a)w ~ x. By Lemma 1 (II) part (3)
Aab+ (1 —A)x+ A1 —a)w~x. Choose A such that (1 —Au(x)=u(y). Then ab+ (1 —a)w~
a[aAb+ (1 = A)x]+ 1A —a)(@ —A)x + Aw). From (*) and Axiom 3 we have

ab+(Q—a)w~a[db+ (A -x]+ (1 -a)y.
By taking a &/« convex combination of both sides with w and applying Axiom 3 we get

(1-a) a—a

@b+ (Q—-@)w~da[Ab+(1—-A)x]+d y+ w.
(23
Let a satisfy a + (1 — @)u(y) = u(x); then Axiom 3 and (*) yields
. . . . a(l-a) a-d
ab+(1-ayw~a(A+(Q-A)a)b+|a(l-A2)(1—-a)+ y+ w.
o o

Then by Axiom 3

ab+ (1—a)w D D
where D=1-a&(1 —AX1 —a) — (@(1 — a)/a). But this implies that
a(A+(1-21)a)

D
Substituting the value for A and a, and some simplifying, yields:
B u(x)a(l—a)
a(l—u(x)) —a@(a—u(x))’

Substituting y(a) for u(x) and y(&) for u(y), we obtain

v()é(l -a)

~&(A+(1—Ayob+[1_&(A+(1—Ay)]w

A
a=

u(y)

@)= @) —ala—(a)
that is,
O ST @ ar@
y(a)(1-a) v(a)(1 —a)
Define
_a—y(a)
A==y
then,
y(a)

T1+(1-a)B(a)’
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If we can show that B(a) is a constant, we are done. For 0 <& <a < 1,
a-v(a)

O @a-a

Substituting

v(&) =

A

1+ (1-a)B(a)

into the above equation yields B(&) = B(a). Hence B is constant. B > —1 follows from the fact that
b>ab+ (1 —a)w for all @ €(0,1) (by Lemma 1). Next we will show that the function

V(p) =v(a) Lu(x)a(x) + (1 = y(a)) Lu(x)r(x)

represents = for (a, g, r) € D(p). To show this we will prove that (a, x, z) € D implies (a, x, z) ~y
iff y(a)u(x) + (1 — y(a@))u(z) ~ u(y). Then, the fact that V represents » will follow from Lemma 2
and the observation that ax* + (1 —@)y* > ax* + (1 — a)z* iff y* > z*.

(a,x,z)~y iff a(cb+ (A =-c)y)+(1—a)(dy+(1-d)w)~y

for ¢ = (u(x) — u(y))/(1 —u(y)) and d = u(z)/u(y) (by Lemma 2).
Hence (a, x, z) ~y iff ach + [a(1 —c)+ (1 —a)d]ly + 1 —aX1 —d)w ~y. Hence (a, x, z) ~y iff
th+ (1 —t)w~y where

ac
Tla(l—o)-(-a)d
But by construction
th+(1-t)w~y iff
y(t)=u(y), ie.iff

t
m=u(y), i.e. iff

u(y)(1+B)
- L+u(y)g
Substituting for ¢, ¢, and d yields
(a,x,z)~y iff

(1+B)(u(y) —u(2)) . .
T u(x) —u(z) +Blu(y) —u(z)] which holds iff

y(@)u(x) + (1= y(a))u(z) = u(y).

Hence we have proven part (i) and (i_ii) of the theorem. That u is unique up to an affine
transformation follows from the familiar argument of expected utility theory. The uniqueness of vy is
obvious. Q.E.D.

An Algorithm for Computing V(p)

Let {x{, x,,... x;} be the support for some lottery p. Without loss of generality assume x;>x,_;
forall j=2,3,... k. If CE(p) & {xy, x,,... x;), then there exists a unique j* such that {x, x,,... X}
constitute all the disappointment prizes of p and {x,, , x;,, ... x;} constitute all the elation prizes
of p. Hence there are k — 1 candidates for an EDD of p. These are (a,,g;, 7)) (for j=1,2,...,k— 1)
where «; = Zf‘,ﬁlp(x,), g(x)=0 for x & {x, i Xjy1,.-. X}, g(x) =pfx)/a; for x e
(11, %40 %, rj(x) =0 for x & {x;, x,...x}, and r(x)=p(x)/(1 —a)) for x € {xy, x,... x}.
Let V(a,,q,,r;) = y(a)Eu(g)) + (1 — y(a))Eu(r;) where y(a)=a/(1 + (1 —a)B). The condition
u(x;) < I}(ozj, q;,r) < u(x, 1) will be satisfied if and only if j = j*. For j*, I}(aj., g+, rj+) =V(p) and
{(a;-, qj*,rj*)}=D(p). Hence in at most kK — 1 steps we can isolate the unique EDD of p and



DISAPPOINTMENT AVERSION 685

determine V(p). If CE(p) € supp (p) then there will exist a unique j* such that
V(@jo_1, @o_1s 1) = V(aps, gju, 1,0) = u(xpp). For j<j* =1, Way,q;r) and for j>j*,
V(a;,q;,1,) <ulx;). Thus D(p) = {(a,q, lag + (1 —a)r =p and q(x) = 0if x & {x;u, X;0_1,... X},
r(x)=0if x & {x;, x,... x;s}}. Furthermore for all (a, g,r) € D(p), a,q,r) = u(x,.) =V(p). So
again in at most k — 1 steps, V(p) and D(p) can be determined.

Proor oF THEOREM 2: Let e(p) > e(q), x > p, and B > 0. Then there exists (e, 5, 7) € D(p) such
that a = e(p). Furthermore, by Axiom 2, there exists @ > 0 such that s € B(ax + (1 —a)p) and
re W(ax + (1 —a)p) for all a <a. Then for a <a,
au(x)+ (1 —a)ac

V(ax+ (1 —a)p)=vy(a+ (1 -a)a)- +(1-vy(a+ (1 —-a)a))d

a+(1-a)a
where ¢ = X u(y)s(y) and d = X, u(y)r(y). Hence,
dV(ax+ (1 —a)p u(x)—c
% ='y'(a)(1—a)c+y(a)——(~—)——~—y'(a)(l—oz)d.
a 0 a

Substituting y'(a) =1+ 8/(1 + (1 — @)B)? and y(a) = /1 + (1 — a)B and rearranging terms yields
dV(ax+ (1—a)p) u(x) ac+(1-a)(1+B)d
da .,,:0_ 1+(1-a)B 1+ -a)B)
Cu()-V(p)  u(x)-V(p)
S 1+(1-a)8 1+(1-e(p))B’
Repeating the same argument for g yields
dV(ax + (1—a)q) B u(x)—=V(q)
da o 1+ (—e(@)B
By assumption V(p) = V(g) and u(x) — V(p) > 0. Hence e( p) > e(q) implies
dV(ax+ (1—a)p) S dV(ax +(1-a)q)

>

da -0 da m0
which establishes that ax + (1 —a)p > ax + (1 — a)gq for sufficiently small a. All remaining cases
follow from symmetric arguments. Q.E.D.

Proor oF THEOREM 5: First we will prove that B, > B; implies »>; is not more risk averse than
>, . Choose x € (w,b) and & > 0. Let « solve

au(x+e)+ (1 —a)1+B)u(x—¢)
1+(1-a)By

Then obviously x ~p where p(x + £) = a and p(x — &) = 1 — «. Using Taylor series expansion of u,
around x we obtain

1+ 1 —a)Byu(x) =afu(x)+euj(x)]
+(1=a)(1 +B1)[ui(x) —eui(x)] + o(e);

u(x)=

hence
1+
a=_— ﬁl +o(e)
Similar argument establishes that if a'(x + )+ (1 —a')(x —¢) ~, x, then
1+8
‘=21 0(e)
2+B

Hence for ¢ sufficiently small «’ > a. Thatis x >, a(x + &) + (1 —aXx —¢) =p.
Next assume that R{(x) > R%(x) for all x €(w,b), B;>B, and px; %. Then, in particular
p ~1 x for some x > X. Since u; and u, are unique only up to affine transformations we can, without
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loss of generality, assume that u,(x) = u,(x) and u{(x) = u5(x). Then note that u(y) <u,(y) for all
y €[w,b]. Let (a,q,r) € D(p, =,). Then we have

7i(@) Lur(»)a(y) + (1= v1(a)) Lur(»)r(y) = uy(x).
y y

But u,(x) = u5(x), v{(a) < y,(@) and u,(y) <u,(y); hence

72(‘1)2”2()’)‘1()’) +(1 ‘72(“))2“2()’)’()’) >uy(x).
y y

Therefore

uy(x) < Y ur(¥)p(¥) + B2 3, (ua(y) —uy(x))p(y).

y<x

Since V5(p) =L, u(»Ip(y) + B X, . (uy(y) = Vo(p)p(y), Vo(p) = u,(x), which establishes that
P =, x =, X and proves that x; is more averse than x>, . Q.E.D.
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