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ASYMPTOTIC EFFICIENCY IN LARGE EXCHANGE
ECONOMIES WITH ASYMMETRIC INFORMATION

By FARUK GUL AND ANDREW POSTLEWAITE

We provide conditions on an exchange economy with asymmetric information that
guarantee that when the economy is replicated sufficiently often, there will be an
allocation which is incentive compatible, individually rational, and nearly efficient. The
main theorem covers both the case in which aggregate uncertainty remains when the
economy is replicated and the case in which replication eliminates aggregate uncertainty.
In addition, we demonstrate how our theorem does or does not apply to standard
asymmetric information problems such as the buyer’s bid double auction problem,
Akerlof’s lemons problem, and insurance with asymmetric information.

Keyworps: Implementation, incentive compatibility, incomplete information, general
equilibrium, noncooperative games, large economies, rational expectations equilibrium.

1. INTRODUCTION

THERE HAS BEEN IN RECENT YEARS voluminous research showing the various
ways that asymmetric information among agents in an economy can preclude
the attainment of a (first best) Pareto efficient outcome. It is plausible that every
economic situation involves some asymmetry of information: every agent proba-
bly knows something about his utility function or production technology that is
not known to all other agents. It then follows that in every economic problem,
there may be inefficiency due to the asymmetric information.

Despite the seeming ubiquity of this asymmetric information induced ineffi-
ciency, many economists believe that in many circumstances competitive mar-
kets generate efficient, or nearly efficient, outcomes. Although seldom spelled
out, this belief is based on a notion that while there may be asymmetry in
agents’ information, it is relatively unimportant for the problem at hand because
any single agent has only a small amount of information not known by the other
agents.

It is an attractive idea that there should be a concept of an agent’s being
informationally small, and when agents are informationally small, the ineffi-
ciency due to asymmetric information is small. There are two immediate
difficulties with the notion, however. First, it may be that the aggregate effect of
many agents, each of whom is informationally small, prevents efficient market
performance. A second difficulty with the notion is that the measure of informa-
tional smallness isn’t obvious. One of the first of the papers showing that
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markets may perform poorly in the presence of asymmetric information,
Akerlof’s (1970) lemons paper, has a large number of agents each of whom has
private information only about the car that he has for possible sale. By many
criteria, it might seem that each agent is informationally small here and yet
(what is plausibly) the market outcome is as far as possible from the outcome
that would have arisen had the asymmetry not existed.

Various models aimed at describing the effect of asymmetric information on
the performance of markets can be distinguished according to how they model
the market mechanism and how they define a market outcome. Often, models of
financial markets begin with a particular extensive form game, designed specifi-
cally to mimic a given trading institution, and investigate the efficiency proper-
ties of that game. This approach has the advantage that it enables conclusions
regarding the actual performance of the given institution. However, these
conclusions are often very sensitive to minor modelling decisions (implicit in the
choice of the extensive form game) about which we are often less than certain.
We avoid this difficulty by choosing not to model a particular mechanism but
rather to take the essential feature of all market mechanisms, voluntary partici-
pation both in trade and in the sharing of information (that is, individual
rationality and incentive compatibility), and use the revelation principle to
investigate the restriction imposed on efficiency by voluntary participation.

As a result, our theorems identify classes of situations in which markets might
(rather than will) be efficient. Insisting on voluntary participation (in the above
sense) also distinguishes our approach from those that use rational expectations
equilibrium to define market outcomes since rational expectations equilibrium
prices often appear to convey information that agents would not willingly
provide given the consequences of its availability. The typical rationale for using
the rational expectations equilibrium concept is presumably that agents are
informationally small and therefore market prices would only be slightly af-
fected by the information of any single agent and competition will presumably
lead agents to reveal their information. One of our main objectives is to get a
better sense of what it means to be informationally small. Thus, we are led to
use a framework in which incentive constraints are modelled explicitly.

We stress that our aim in this paper is not to argue that large numbers of
agents will always eliminate the inefficiencies caused by asymmetry of informa-
tion among agents. We will provide conditions that ensure that large numbers of
agents will, in fact, eliminate those inefficiencies. These conditions will be
satisfied in some problems with asymmetric information but will fail to hold in
others. We will show in Section 3 that two frequently studied problems involving
asymmetric information, the market for lemons studied by Akerlof and the
market for insurance with adverse selection, do not satisfy the conditions of our
theorem.

A sufficient condition for (essentially) eliminating the incentive problem turns
out to be the following: the incremental impact of each agent’s information
(given the information of others) on the demand of every good should be small.
Under our assumptions, increasing the number of agents ensures this. We will
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explain why informational smallness in the above sense is not attained in
Akerlof’s model and insurance problems with adverse selection even when the
number of agents is large.

In Section 2.1 we offer a simple example of the type of structure analyzed in
this paper. The example aims to provide insight into our Theorem, the proof of
which is somewhat complicated. Section 2.2 contains our model and results. We
leave to Sections 3 and 4 a discussion of our results and their relation to other
papers.

2.1. Example

There are two people who live in a duplex, Andy (A), who lives on the top
floor, and Bob (B) who lives on the bottom floor. B owns a smoke alarm; the
alarm is of more value to 4 than to B since A lives on the top floor and is more
likely to be trapped by a fire than would B. Neither person will benefit from the
alarm unless the alarm is in his home. The values to each person depend upon
the probability of there being a fire, of course. Suppose it is common knowledge
that A does not smoke, but only B knows whether B smokes or not. It is
common knowledge that A believes the probability that B smokes to be 1/2.
The possibility that B smokes is exogenous; call the state in which B smokes s
and the state in which he does not smoke n. The utilities to 4 and B from
having the smoke alarm and $m in the states s and n are given as follows:

state:

agent K n
A m+10 m+3
B m+8 m+1

The utility to either person of $m with no smoke alarm is m.

We can see that regardless of the state, the only efficient outcome is that the
alarm be transferred from B to A. If the outcome is to be (ex post) individually
rational, 4 must give B between $8 and $10 in the state s and between $1 and
$3 in state n. If there is a mechanism that achieves an outcome for this problem
that is ex post Pareto efficient and ex post individually rational, it must be the
outcome of a revelation game in which the agents report their private informa-
tion truthfully. Since only agent B has private information, this is easy to check.
It is easy to see that the best we could do to relax the incentive constraints on
agent B while maintaining individual rationality would be to have agent 4 pay
$8 in state s and $3 in state n. But it is clear that agent B will not reveal
truthfully if he faces these prices, but will announce state s regardless of the
true state. Thus there is an incompatibility between incentive compatibility and
the achievement of individually rational and Pareto efficient outcomes.

Now suppose we replicate the problem in the following way. Let there be r
duplex houses each containing a pair that looks like the pair 4 and B above. In
each duplex the person living on the bottom will own the smoke alarm and will
have exclusive information as to whether he smokes or not. Assume these
potential smokers will each have probability of 0.5 of smoking and that whether
smokers in different duplexes smoke is independent.
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How does this r-fold replication change the conflict between efficiency and
incentive compatibility? In fact we will see that the replication process asymp-
totically eliminates the conflict. Consider the following mechanism for reallocat-
ing the smoke alarms. All smoke alarms will be sold for $5 or not sold at all.?
Every B is to announce whether or not he smokes. Those announcing that they
smoke will keep their smoke alarm and not trade. Those announcing that they
do not smoke will sell their smoke alarms to the upper level tenants of the
buildings inhabited by B’s who have announced that they smoke. If there are
fewer B’s who announce that they smoke than those who announce that they do
not smoke, there will be excess supply of alarms; in this case we ration the
sellers uniformly by selecting the appropriate number of sellers randomly from
the set of B’s who have announced that they do not smoke. In the opposite
case, that in which there are more B’s who say they smoke than say they do not,
there will be excess demand for alarms. We uniformly ration the buyers in this
case.’

It is easy to see that B’s will announce truthfully in the face of this scheme.
Any B who does not smoke should say that he does not so as to have some
possibility of selling his alarm for a price higher than his reservation price. Lying
will guarantee that he does not trade, yielding a lower expected utility. Next, a
B who does smoke should say he does since the best that can happen is that he
sells the alarm for less than his reservation value. Hence the outcome is
incentive compatible.

The outcome is trivially individually rational by the construction of the
mechanism. The sense in which it is asymptotically efficient is as follows. Every
alarm that is transferred goes from a person whose value is $1 to a person
whose value is $10, for a gain of $9 or $4.50 /person trading. The inefficiency is
that there may be excess supply of alarms (more persons announcing they do
not smoke than announcing that they do), or excess demand (fewer smokers
than nonsmokers). In the first case, there will be smoke alarms left in the hands
of the rationed sellers who value them at $1 when there are people who value
alarms at $3 without them. In the case of excess demand, there will be
unsatisfied buyers who value the alarms at $10 and smokers who kept their
alarms when they valued them at $8.

But the proportion of the alarms that are in the hands of people who value
them less than others without alarms is going to zero. By the law of large
numbers, the probability that the actual number of smokers is arbitrarily close
to 1/2 is going to 1. Thus with probability 1, the proportion of the potential
gains from trade (in the absence of private information) that are realized by the
mechanism is going to 1.

In the next section, we present our model and results. In Section 3 we discuss
whether several important problems involving asymmetric information do or do

2 The price can as well be any price between 3 and 8.
3 The mechanism used in proving the main theorem does not use rationing but rather taxes every
trading agent by a fixed small amount.
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not fit into our model. We leave to Section 4 a general discussion of our results
and their relation to other papers.

2.2. The Model

Let N={1,2,...,n} be a set of economic agents. Let 0,7,,7,,...,7, be n+1
distinct random variables each with the following properties:

(i) Finite support: There exist finite sets ©,7,,T,,..., T, such that P(H0,
t,eT, fori=1,2,...,n)=1.

(ii) Full range: For any § € ® and t € [1/_,T, P(6=6, i =1)> 0.

(iii) Nontriviality: For any 6,6 with 6 # ¢’, there exists t € [1/_,7; such that
P(t]0) # P(t)6). )

Henceforth we will use P(6), P(t,) etc. to denote P(6 = 6) and P(f; =t,). Also
note that the probability spacc on which the random variables are defined is

suppressed. We will use T to denote I'17_,7; which is the support of the random

vector (f,,1,,...,%,). The symbols ¢,7 will be used to denote generic elements
of T and ¢,t,f will be used to denote generic elements of 7,. Also we
will use ¢_; to denote (¢,¢y,...,¢_(,t;1y,---,t,) and (¢_;,¢) to denote
(Etys e tis B bty e e e s b))

The consumption set of agent i is R’ and w, €R’,, is the endowment of
agent i. The utility index u; of agent i is a function u;: R'. X T X ® - R where
u,(-,t,0) is continuous, strictly concave, increasing, and bounded for every t € T
and 6 € 0. The collection e = ((7,,w,, u;,); c 5, 8) will be called a private informa-
tion economy PIE. Let D,(-,¢,8) denote the demand function of an agent with
preferences u,(-,t,6) and endowment w;. Note that D,(p,t,8) is well-defined
for any p €Int S’~! (where Int $’~! is the interior of the /— 1 dimensional
simplex). We will be interested in P.I.LE.’s that satisfy the following regularity
condition: for all i €N, £ >0, p € Int §'"" and ¢/, 7, € T, such that ¢, #f,, there
exists p', t_;, and 0 s.t. D,(p',(¢t_;,t)),8)# D(p',(t_,,£),0) and |lp —p'll <e.

Thus the regularity condition requires that the demands of two different types
for an agent should never be identical for all prices in some open ball for every
realization of the relevant uncertainty.

An allocation x = (x, x,,..., x,) for the PIE e is a collection of functions x;
such that x;: T— R',.

An allocation x for the PIE is incentive compatible (I1C) if

Ui(x|ti)>U[(X,i,-|ti) forall i€N,t,{ €T, where
U(xlt,) =Y Y U(x(t),t,0)P(6,¢lt;,) and
0 ¢

Ul(x,Blt) =2 ZUi(x(t—i’fi)’(t—i’ti)’B)P(o’t—ilti)‘
0 1,

An allocation x is said to be:
Feasible (F) if Z(x(t)—w;)=0forall tT.
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Ex Post Individually Rational* (XIR) if
Yu(x,(t),t,0)P(01t) > Yu(w;,t,0)P(0lt)
9 0

forallieNand teT.
Ex Post Efficient (XE) if (i) x is feasible; (ii) for any allocation y,

Eu(y,(t) t,0)P(0lt) > Zu (x;(r),t,0)P(81t)

for all i€ N and ¢t € T and for some € T and
JENYu(yi(1),1,0)P(6l2) > Yu(x,(7),7,0)P(67)
0 0

implies y is not feasible.
Ex Post e-efficient (X_E) if (i) x is feasible; (ii) there exists E C T such that
P(t €E)>1—¢ and for any allocation y,

Yu(yi(1),t,0)P(01t) > Yu(x,(t),1,0)P(6lt) +¢

for all i € N and ¢t € E implies y is not feasible.

We will be concerned with r-fold replicas of a given PIE. For any e =
{(f,-,w,-, u)icn>0) consider a PIE e ={(F;,,w;,u;); e nxr 0} Where R=
{1,2,...,r}. e" is said to be an r-fold or r replica of e if:

® w,s w; for all s €R;

(ii) the joint distribution of 0,%,,15,..-,1,, is the same as the joint distribu-
tion of (9,17,,1,,...,%,) for all s ER;

(iii) for any 6 @ i,jEN,s,§ €Rsuchthat s #§, tj €T, t; €T, P(f,; =t
and #; =1;160) = P(f;, =t/ ,|0)P(¢; = 1] 6);

(1v) u,s(v t" 0)—u (v,t7,0) for all v ER',ieN, s€R, and t"€T" where

—(tl,tz,...,t,f) and tsfe T for all s€R.

Thus an r-fold replica of e contains r “copies” of each agent i € N. A priori
each copy of an agent i is identical, i.e., has the same endowment and “same”
preferences. However, the preferences of agents depend on # and the informa-
tion of other agents in their “cohort” (i.e., s € R). Furthermore, the realization
of type profiles across cohorts is independent given the true value of 6. Thus as
r increases each agent is becoming “small” in the economy both in terms of
endowment and information. Note that for large r an agent may have a large
amount of private information about the preferences of a small fraction of the
economy (i.e., his own cohort) and/or a small amount of private information
regarding the preferences of everyone (through his information about 6).

Tueorem: Let e = {(f,,w;,u,),c v, 0} be a private information economy satisfy-
ing the regularity condition. Then for any € > 0 there exists ¥ such that for all r > 7
there is an allocation x" for the PIE e” (i.e., the r-fold replica of e) which satisfies
IC, IR, and X E.

4 By ex post we mean conditional upon the realization ¢. Expectations are still taken over @ since
by assumption, it will never be observed.
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While we leave the proof to the Appendix, we will provide a brief outline of
the logic. The agents announce their types, and the most likely 8 conditional
upon the vector of announcements is determined. Given this 6, we consider the
artificial nonrandom economy that has a distribution of agents’ characteristics
the same as the distribution on T conditional upon 6 and determine the net
trades each possible realization ¢ of T (that is, each possible cohort) would
receive in a competitive equilibrium allocation for this artificial economy. By the
law of large numbers, the actual distribution of agents’ characteristics in a
particular realization (given 6) of a replicated economy will be arbitrarily close
to the distribution of characteristics in this artificial economy if there are
sufficiently many replications.

Suppose then, that the bundle each agent receives as a function of the vector
of announcements is the bundle he would receive in the competitive equilibrium
of the artificial economy. If all agents are announcing truthfully, this bundle is
trivially individually rational since it is what the agent would receive in a
competitive equilibrium bundle in the artificial economy. Would any agent have
any incentive to report other than his true type? There are two possibilities.
First, a different announcement might change the estimate of the most likely 6,
and hence the competitive equilibrium allocation used to generate his bundle.
However, as the number of replicas gets large, the probability that this could
happen goes to zero. The second possibility is that the agent’s misrepresentation
does not alter the most likely 6, but changes the bundle that the agent gets. But
the envy-free property of competitive equilibrium guarantees that such a change
can never improve an agent’s welfare. In fact, we utilize the regularity assump-
tion to construct bundles that make each agent receive a strictly less desirable
outcome with positive probability by misrepresenting. Thus as r increases the
second effect dominates the first and hence the unique optimal strategy is to
report truthfully.

There is one complication with the argument above; we know that with
probability nearly one the distribution of agents’ characteristics in the realiza-
tion of the replica economy will be close to the distribution of characteristics in
the artificial economy, but not identical. This means that the allocation in which
each cohort gets the vector that it would have gotten in the competitive
equilibrium allocation for the artificial economy is not feasible. To handle this
problem, the bundles from the competitive allocation for the artificial economy
are adjusted in a way that ensures feasibility without upsetting either incentive
compatibility or individual rationality. The approximate ex post efficiency of the
outcome follows from the fact that each agent receives a bundle that is a
competitive equilibrium bundle for an economy not much different from the
actual realization of the random economy.

3. APPLICATIONS AND LIMITATIONS OF THE ANALYSIS

3.1. Informational Smallness and Multilateral Bargaining

The model as described in the previous section differs sufficiently from other
models of asymmetric information that it is worth commenting on its interpreta-
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tion and application to familiar economic problems involving asymmetric infor-
mation. A PIE is composed of a set of agents, each of whom has preferences
that depend on his information which is represented by the realization ¢;, the
information of others, ¢_;, and some unobservable parameter 6. In spite of the
fact that 0 is not observed, the agents’ information causes them to revise their
prior beliefs about 6. Note that the unobservability of 6 necessitates that
allocations do not depend on it.

One of the main objectives of this paper is to formalize the sense in which
agents need to be informationally small in order to render nearly efficient
ex post allocations attainable. The theorem of this paper and its proof suggest
that the following definition of informational smallness is suitable for this
purpose.

An agent is informationally small in the market for some commodity v if, for
most realizations of the relevant uncertainty, the incremental effect of the
agent’s information (given the information of other agents) on the demand for v
is a small proportion of the aggregate endowment of v. The agent is informa-
tionally small if she is informationally small in every market v. Notice that it is
not necessary for an agent to have a small amount of information; the incremen-
tal information of an agent given the information of everyone else should be
small. Consider the ways an agent may fail to be informationally small: first,
even if the agent has private information only about her own preferences, in
general she will not be informationally small if she owns, or is the principle
demander of, a large fraction of the aggregate endowment; second, an agent will
fail to be small if her incremental information affects the preferences of a large
fraction of the population. The replica structure of e” avoids the first difficulty
by ensuring that every agent’s endowment becomes an arbitrarily small propor-
tion of the aggregate endowment and that there are increasingly many other
agents with the same preferences. To see how the second difficulty is avoided,
note that the incremental effect of an agent’s information is significant only on
her own cohort (i.e., a small fraction of the population). Furthermore, while the
private information of the agent on the aggregate parameter of the economy 6
may be significant, the incremental effect of this information is also small given
the realization of types in the other cohorts.

With this definition of informational smallness, we can see how the proof
works. Take any “state” w. Let p and x(w) be Walrasian equilibria for the
complete information economy associated with w. The information smallness
requirement ensures that we can, by wasting a small proportion of the aggregate
endowment, ensure that each agent prefers the allocation she receives in this
economy to the demand of any of her other types ¢;. The discreteness (which
follows from the finiteness of @ and T) enables us to do this for every relevant
state individually, thus yielding an IC allocation. Ex post individual rationality is
also ensured by taking a Walrasian allocation. The simplest example of an
‘economic problem to which our model can be applied is the case of a “private
values” economy. Consider the case in which 6 is degenerate, i.e., there exists 6’
such that Prob(d = 0') = 1, and suppose that n = 1. Thus, the economy to be
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replicated consists of a single individual whose preferences depend on his
private information, ¢,. The r-fold replica of this economy consists of r indepen-
dently drawn agents; each of these agents knows his own preferences and the
distribution from which other agents’ preferences were drawn. The theorem
states that for this private values case, if the number of such independently
drawn agents is sufficiently large, there are random allocations for the PIE that
are incentive compatible, individually rational and nearly (ex post) Pareto
efficient.

It is useful to compare the above example with the work of Gresik and
Satterthwaite (1989).5 Gresik and Satterthwaite considered an environment in
which there is a good which might be bought or sold and a number of buyers
and sellers, each of whom knows his own reservation price for the good but only
the distribution from which other agents’ reservation prices were drawn. In this
model, Gresik and Satterthwaite prove that the expected inefficiency of an
optimal trading mechanism—that is, the mechanism that maximizes expected
surplus from trading—goes to zero as the number of traders gets large. Further,
they calculate the rate at which the convergence occurs.

To embed this problem in our model, one would consider an initial economy
with 6 again taking on a unique value and n equal to the number of sellers plus
the number of buyers. Our replication process then mimics the way in which
they let the number of agents go to infinity. The difference between the models
is that while Gresik and Satterthwaite restrict themselves to risk neutral agents
and unitary demand, our model allows general preferences and commodities. Of
course Gresik and Satterthwaite’s main contribution is computing the rate of
convergence while our result deals only with convergence to an ex post efficient
allocation.

In the private values case described above, it is clear that when the number of
replicas of the basic economy is large, aggregate uncertainty is small since we
are taking a large number of independent draws from a given distribution. The
fact that aggregate uncertainty is disappearing is not fundamental to the
asymptotic elimination of the incentive problem. To see this, notice that we can
easily represent aggregate uncertainty by identifying different distributions of
agents’ preferences with different 8’s. Thus, even for a large economy there is
uncertainty about the distribution of agents’ preferences (and hence the set of
Pareto efficient allocations). The proposition states that, as in the no aggregate
uncertainty case, the incentive problem asymptotically disappears. This discus-
sion points out one further way in which our model is more general than that of
Gresik and Satterthwaite: they assume independently drawn reservation prices
while in our model, the case in which @ is nondegenerate allows for a particular
nonindependence of the reservation values.

In closely related work Satterthwaite and Williams (1989) analyze the rate of convergence to ex
post efficiency of the buyer’s bid double auction mechanism for the environments described below.
Wilson (1987) shows that the equilibria of the buyer’s bid double auction converges to an efficient
outcome.
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The private values example illustrates a problem for which our proposition
assures that replicating an economy will asymptotically eliminate the conflict
between efficiency and incentive compatibility. As we emphasized in the intro-
duction, our aim is not to argue that large numbers will always eliminate the
conflict between incentive compatibility and Pareto efficiency. Our model and
the replication process we employ are not appropriate for some economic
problems of interest.

3.2. Akerlof’s Lemons Problem and Insurance
with Asymmetric Information

Consider the application of our model to Akerlof’s lemons problem. To see
more clearly the problem that arises here, we will return to the example in
Section 2.1 and reinterpret it in a manner consistent with the lemons problem.
B owns a car and is considering selling it to A. B knows whether he has
maintained the car well or not. In either case, A values the car at $2 more than
B, but the actual value depends upon whether or not the car has been
maintained.

There is clearly no change from our earlier conclusion that there is a conflict
between incentive compatibility and efficiency. Suppose we now replicate the
example. In the initial economy n =2, with the first agent being A and the
second B. 6 is degenerate, i.e., O is a singleton (since it is known that each of a
seller’s two types has probability .5). Z, is also degenerate since the buyer has no
private information; 7, takes on two different values (each with probability 1,/2),
representing the seller’s private information that the car has been maintained or
not. Each agent’s utility function depends on the realization of 7,. If we
replicate this initial economy one time, we have an economy with two A4’s and
two B’s. There are now two cars, owned by the two B’s; each of the four agents
values the cars depending upon ¢,, and ¢,,, the types of the two sellers.

It is easy to verify that replicating the lemons model in this manner is
inconsistent with the assumptions of our theorem (since the number of com-
modities is increasing and the types of agents in one cohort enter the utility
functions of agents in other cohorts®). Given the intuition outlined above, it is
also easy to see why the theorem fails for this particular replication process: The
incremental effect of a seller’s demand for his own car remains large even as r
increases.

One might object to this explanation on the grounds that the definition of a
commodity is somewhat ambiguous and that we have arbitrarily chosen a
particular definition consistent with our intuitive explanation. Thus one might
argue that we could just as well have defined the commodity space as R2 (i.e.,
cars X money) or R (i.e., good cars X bad cars X money).

® Whether it is the increasing number of commodities or the fact that an agent’s utility depends
upon the types of other agents that is at the heart of the problem is discussed in the last section.
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The intuition above rests on the assumption that two objects, x and y, will be
considered the same commodity only if they yield the same utility in every state
and that they will be considered different commodities only if every agent can
distinguish between them (given her information) in every state.” The first
criterion would rule out the possibility of choosing R? as the commodity space
and the second criterion would rule out R3.

We will consider next the problem of the provision of insurance in the face of
asymmetric information. While there may be more than one way in which the
problem can be embedded into our model, we will describe one way to do so
that points out the similarity of the problem to that of the lemons problem.
Suppose there is a publicly observable event (we will call it an ‘“accident”) that
affects the value of some asset belonging to an agent. Suppose further that there
are two agents, one of whom knows precisely the probability of the accident,
while the other knows only the distribution over the possible probabilities, each
of which is strictly between zero and one.

The commodity set in this case will be vectors of the consumption good(s)
contingent upon the event that the accident has occurred or not. The agent who
knows the precise probability will have a type that corresponds to his private
information, the probability of accident. Both agents’ utility functions will
depend on this type, since it determines the probability that they will get the
vector of consumption goods contingent upon the accident; as long as the
probability of an accident is strictly between zero and one, the agents’ prefer-
ences will be strictly increasing in these contingent commodity vectors. For this
example, ® is again a singleton; if there were multiple possible distributions
over the probabilities of accidents, one could use a nondegenerate 6 to index
the distributions.

The above describes an initial economy for the insurance problem. When we
replicate the economy, we have four agents. In the standard insurance problem,
agents’ accidents are typically independent. Thus, the consumption set will now
be vectors of consumption goods contingent upon either agent having or not
having an accident; that is, the number of commodities has increased as it did in
the lemons problem. Also as in that problem, agents utilities depend directly
upon the types of agents in cohorts other than their own. Thus for reasons much
the same as in the lemons problem, the insurance problem falls outside the
scope of our result.

Again, it is worth noting that the incremental effect of each agent’s informa-
tion on the demand for her own insurance does not become small as the
number of agents increases. As in the lemons model, it is easily verified that, for
the r replica economy, the commodity space must be R’,*! (insurance contracts
for the r agent X money) in order to satisfy our criterion on the definition of a
commodity.

7 Note that this is indeed a reasonable definition of a commodity when dealing with incentive
problems. If the first condition fails, agents will not be indifferent between two different ways of
consummating a particular trade. If the second condition fails, agents will not be able to verify if the
prescribed trade has indeed taken place.
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4. DISCUSSION

1. We assumed that the agents’ initial endowments were independent of their
types. Among other consequences, this assures that the total endowment in an
economy is nonrandom. Since the set of feasible allocations is known, we don’t
have to confront the possibility of infeasible outcomes. Our theorem can be
extended to the case of random endowments by rewriting the proof in terms of
net trades provided each agent knows her own endowment given by her type j.

2. As mentioned above, the private values problem in which agents are drawn
from a finite set is covered by our theorems. One would certainly expect the
conclusion of the theorem to hold in the case in which a sequence of agents is
drawn from a distribution over a compact set of agents’ characteristics. This
involves only an extension from a finite number of possible types to a compact
set of possible types. The techniques used in the proofs of our theorems don’t
work in this case, however. So far, we have been unable to extend our results to
include this case. Thus, it is not simply an expositional convenience that we have
limited our attention to the finite case.

3. There are two possible types of limiting results for the environment we
consider in this paper. A relatively simple result would be that it is possible to
design a game in which truthful revelation of an agent’s private information (his
type) leads to a Pareto efficient allocation and truthful revelation is “nearly” a
Bayes equilibrium, where “nearly” means that no agent can achieve more than
a small utility gain by misreporting.® A simple example of such a game is one
that associates the Walrasian equilibrium allocation for the complete informa-
tion economy described by the agent’s announcements. Under quite general
assumptions, any agent who misreports his private information can have only a
vanishingly small effect on the Walrasian price as the economy gets large.
Hence, the utility gain to any agent who misreports will also become vanishingly
small as the economy gets large.

But if we are to take seriously the possibility that agents behave strategically,
we should assume that they will not content themselves with approximately
optimal choices.” The problem is potentially very important because while
approximately optimal behavior may result in efficient outcomes, this certainly
doesn’t imply that precisely optimal behavior will result in approximately
efficient outcomes. The cumulative effect of many individual agents’ adjust-
ments from approximately optimal behavior to optimal behavior, the subsequent
adjustments to these adjustments, etc., can be large. There is no reason to
expect that there will be a Bayes equilibrium anywhere near an approximate
Bayes equilibrium. Thus we are led to the approach in the paper: Design a
game in which the Bayesian equilibrium allocations are nearly efficient.

4. In this paper we have taken an approach that is sometimes called weak
implementation. We ask only that for a given game, there be some equilibrium

8 This is analogous to the result of Roberts and Postlewaite (1976) for the case of dominant
strategy mechanisms for complete information economies.
Or alternatively, we should model explicitly why they do so.
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that is nearly efficient when the economy is replicated; there may also be many
other equilibria that are not close to being efficient. There are two comments
we will make regarding this.

First, even weak implementation answers the question “To what extent does
asymmetric information prevent the attainment of an efficient allocation in an
economy?” The second comment is that there is a good possibility that substan-
tially more complicated games than that presented in this paper might strongly
implement nearly efficient outcomes. That is, there may be extensions of the
game presented here that will ensure not only that there is some equilibrium
allocation that is nearly efficient, but that all equilibrium allocations are. This is
a fruitful subject for further research.

5. Since our proof only establishes the existence of some X_E, XIR, and IC
allocation(s)'? it is reasonable to inquire if there are other allocations with these
properties and, if so, whether there is any particular reason to focus on the
allocations that we have constructed. To answer the first part, note that for the
argument of our proof to work it is sufficient to choose some allocation which is
strictly envy-free in net trades for every e’, while we have chosen a Walrasian
allocation in each e’. Clearly, the latter is sufficient but not necessary. More-
over, since each agent does not know the realization of the other types in his
cohort and 6, envy-freeness in every e? is itself not necessary for incentive
compatibility. Thus, in general, there will be other allocations which satisfy all
the criteria of our theorem. However, the allocation(s) constructed in the proof
are special in that they are essentially the only ones which resemble separating
rational expectations equilibria of e’. To see this, assume that each e has a
unique Walrasian equilibrium and that the Walrasian correspondence is contin-
uous at this equilibrium with respect to perturbation of the density P(-|6).
Thus, for r large and each realization sufficiently close to the expected realiza-
tion of types given 0, every separating rational expectations equilibrium would
yield allocations close to xﬁr for every type t; of agent i. Hence, as r
approaches infinity, the uniqué separating rational expectations equilibrium of
e’ converges (in distribution) to x”, the allocation in our proof.!!

6. A special case of asymmetric information is one in which the information
that any single agent possesses is redundant to the total information of the
remaining agents regardless of the state of the world. In this case, it is known
that any allocation can be a Bayes equilibrium outcome of some game (see, e.g.,
Blume and Easley (1983), Palfrey and Srivastava (1986), or Postlewaite and
Schmeidler (1986)). In general, if not all information held by agents is redun-
dant, there may not be any Pareto efficient allocation that is achievable as a
Bayes equilibrium. Palfrey and Srivastava (1986) have investigated a similar

11 the proof, we choose some Walrasian allocation from each . Thus if there is some &°
which has multiple Walrasian equilibria, our procedure will not yield a unique allocation for &”.

" In fact, if we could speak of a limit economy for r =  such that the distribution of #’s always
matched the expected distribution given some 6, then the equilibria of our proof would correspond
to the separating rational expectations equilibria, irrespective or the multiplicity of continuity of the
Walrasian equilibria of &°.
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question to that dealt with in this paper. They considered a stochastic replica-
tion procedure for an economy that can be described roughly as follows.
Consider a fixed finite set of states of the world and some set of partitions on
that set of states. An agent’s information is represented by a probability
distribution over partitions of the set of states and a prior over the states
themselves. For a given realization, an agent will know his partition of the states
and the event in that partition in which the state of the world lies. The
stochastic replication of an economy is then a sequence of independent draws of
particular agents. Palfrey and Srivastava show that any allocation that is achiev-
able with complete information can be asymptotically achieved when the num-
ber of replications goes to infinity.

The primary difference between our work and that of Palfrey and Srivastava
is that they take the states of the world to be exogenously given. Since there are
a finite number of partitions (by assumption), as they replicate, the probability
that for the actual realization, any agent’s information is redundant in the sense
mentioned above goes to one. Palfrey and Srivastava use this to prove their
result.

For the replication process in our model, as the number of agents increases,
the number of states increases as well. Thus the possibility of achieving nearly
efficient allocations comes about not because agents asymptotically have no
private information, but because the private information they have becomes
asymptotically unimportant in terms of the aggregate variables of the economy.

Mas-Colell and Vives (1991) develop and analyze a model that is much more
similar to this paper. They consider, as we do, economies in which larger
numbers of agents do not diminish the monopoly an individual agent has on
some information. Mas-Colell and Vives construct a mechanism for private
values economies (economies in which an agent’s type enters only his own utility
function) that yields the Walrasian equilibrium allocation for a continuum
economy and prove that the Bayesian equilibrium allocation correspondence is
upper hemicontinuous. All equilibria for sufficiently large economies must then
be nearly efficient since the limit allocation is.

Their results differ from ours in that their approach allows one to say
something about all Bayesian equilibrium allocations, whereas our results allow
one to draw conclusions only about a particular allocation. On the other hand,
their results deal with the private values case with no aggregate uncertainty, a
more restrictive set of environments than dealt with in this paper.

7. Stiglitz and Greenwald (1988) show that in certain parameterized models,
the outcome is inefficient for nearly all values of the parameters. This is, of
course, not inconsistent with our results. The models that we examine have
asymmetric information that generally precludes the possible attainment of
efficient outcomes. Our results show that in some circumstances, this ineffi-
ciency asymptotically vanishes.

8. In the application of our model to the Akerlof lemons model, we pointed
out that the natural way of replicating the lemons model was inconsistent with
the assumptions of our theorem since in the natural replication process, the
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number of commodities is increasing and the types of agents in one cohort enter
the utility function of agents in other cohorts. One might suspect that it is the
latter—the fact that an agent might have information that is relevant to all
other agents—that was important, since the information of such an agent might
be expected to have a significant impact on the price of a good even when there
are many other agents. More specifically, one might conjecture that the asymp-
totic existence of an incentive compatible, individually rational, nearly efficient
outcome might arise by replicating an economy in which agents’ types did not
enter other agents’ utility functions. There is a difficulty with such a conjecture,
however, as illustrated by the following example.

Consider a standard two sided asymmetric information problem (as in
Myerson-Satterthwaite (1983)) which satisfies the condition that agents’ types
enter only their own utility function. In the two person case, there may be
impossibility of designing incentive compatible mechanisms which guarantee
outcomes that are both ex post individually rational and ex post efficient. If we
replicate the problem by generating many pairs of agents with independent
valuations (across pairs) and in which only a specific pair cares about the object
they are to allocate, the inefficiency resulting from the asymmetric information
may not disappear. In such a situation, the presence of additional pairs doesn’t
affect the problem facing any particular pair of allocating the good between the
two agents. Of course, we have the number of commodities equal to the number
of pairs here. If we were to put a uniform bound on the number of commodities
for all numbers of agents, we would not be able to carry out the procedure. This
example, in a sense, shows that restricting agents’ types to enter only their own
utility functions but still allowing the number of commodities to go to infinity
will not assure that the inefficiency due to the asymmetry of information
asymptotically vanishes.

The problem is that the replication leaves unchanged the importance of each
agent’s private information about the “value” of the relevant good. Fixing the
number of commodities is a simple way of guaranteeing that each agent’s
demand for any good becomes small asymptotically. Presumably one could find
alternative conditions that would guarantee this.!?

9. A last comment is on the distinction between common value problems and
private value problems. In our model private value problems are those in which
agents had private information that was of direct relevance only to themselves.
This would be represented by agents whose utility functions depended only on
their own type. Common value problems could be represented in two ways.
First, an agent’s type might enter all other agents’ utility functions. Both the
lemons problem and the insurance problem had this feature. Our replication
process excluded such problems.

There is a second way in which there might be common values, however.
Agents’ utility functions might depend on 6 and types might be correlated to 6.
In this way, agents’ types may be of interest to other agents not because they

12 We thank Martin Hellwig for helpful discussions on this issue.
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enter directly into utility functions, but because they are correlated to § which
does enter. Standard finance problems are typically of this sort. Agents’ infor-
mation about a risky asset is of interest only in predicting unknown characteris-
tics of the risky asset.

Note that this second way in which we might represent common values is
consistent with our replication process. We would represent the set of unknown
characteristics by © and replicate the set of agents by adding cohorts that have
types (observe signals) that are correlated to 6. Thus, our theorem covers some
problems in which there are common values. We should point out that we must
make a regularity assumption that at least some agent’s demand must depend
on his type; this rules out the “pure” common value case in which no agents’
types enter utility functions, only 6 enters the utility functions. We consider this
a topic for future work.
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APPENDIX

ProoF ofF THEorRem: Let ¢°={u,,,w,,C,, for m € M} be an Arrow-Debreu economy where
M=NXT, w,,=w, is the endowment of agent (i,t) €M, C,, = R’, is the consumption set of m
and #,,(x)=u/x,¢,0) is the utility function of m = (i, t). Furthermore, let there be a mass P(¢]8)
of each agent (i, #) in the economy e®. Let DS(p) denote the demand of agent m in the economy e®.
Note that the aggregate excess demand function z defined by

2(p)= L P(110)(D(p) ~w,)

satisfies all the conditions of Theorem 2, Chapter 2, p. 28 of Arrow and Hahn (1971). Thus there
exists p% x% a Walrasian equilibrium of e®. That is, x® = (x%),, < »s» p® € Int '~ such that
(1) E(z(p%))=0;
(2) ﬁm(xm) > ﬁm(xfn) implies p(xm - Wm) >0.

We will consider two cases:

(a) Forall ieN, t,,t; €T, there exists ¢_, and § € O such that x8 #x%, for m =(i,¢,,t_,) and
m'=(i,t,t_).

(b) Condition (a) above fails.

We will prove the theorem for case (a) and then modify the proof by using the regularity
assumption on p to prove case (b). This will be the only occasion in which the regularity assumption

is used. Thus, if (a) is satisfied, then the regularity requirement is not needed.
First, for every A € (0, 1) define (y?),, < o as follows:

Ym =

w,  otherwise.

. 0 L= .

P {)\x,’}, if  x,, #W,;
Given the strict concavity and monotonicity of u,, it is clear that for A sufficiently large but <1:
(I) Every agent m either strictly prefers her allocation y? in e to her endowment w, or
P _ m m
ym = Wm;

(D either X, P(t|0)Xy}, — W,,) <0 in every coordinate or y? =,, for all m (this follows from
the fact that w, € R/, , for all m);

(D) either m = (i, t) strictly prefers yf, to y&, for m'=(i,t') or y& =y?%,.
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Define the function F by

F(ﬁ? X) = Zﬂt(xm - wm)

m

where B=(B,),cr and x =(x,,),, e m-
Let 8% =(P(¢10)), c 7- Thus (II) is equivalent to

3) F(B%,y%) <0 or yf=w, foralm.
By the continuity of F it follows that there exists > 0 such that
4) F(B,y?) <0 forall B satisfying [IB%—pBll<3s.

Let L(B)=Min, p® F(B,x) subject to x€R’, and u,(x)>1a,(x8)+e/4. Since x? is a
Walrasian equilibrium, L(B?) > 0. Furthermore, since L is continuous, there exists & > 0 such that

) L(B)>0 forall gsuchthat [B—pg%l<s.

Define for all r>1,t €T, and t" € T", f(¢', ), the frequency of ¢ in ¢" by f(¢',¢) =1 /r)#{s <
rlt/ =t} and f(t")=f(t",1), <+ where #4 denotes the cardinality of the set A.

Let T5@) ={t" T |lIf(t") — B°ll <8} and T% = U,T;%5(8). By the nontriviality (iii) of P for all
& > 0 small enough,

(6) TE5(0)NTE(0')+¢ implies 6=¢6"
Now we are ready to define the desired allocation for the random replica economy e”:
w, ift"&TSs;
X' (") = ¥, i1 TH(0).

To show (F), (IC), (IR), and (X,ER), we will argue that for each of these conditions one can
choose & appropriately such that, for § € (0, 8), choosing r large enough establishes the desired
conclusion.

Feasibility: For any given A choose & such that (4) is satisfied. If " & T, then every agent
receives her own endowment; hence, there is nothing to prove. If ¢" € T;5(6) then

Y (e () =w) =r Y LDy - w,)

=r-F(f(t"),y") <0

by (4).
Incentive Compatibility: Note that

@ u(x1t,) = L P(I"eT5(0)t,) - 1 P(0'lt" € T5(0) and 1,,)
/] 0
. ZP(?;’= 1 eT5(0),0,1,) u(y5.1,0) +[1-P(t"&T3)] -4
—,

where t=(¢_,¢,), and A is some weighted average of the utilities of w, in various states (¢, 6).
(Note that A is bounded over all r.) Thus, according to x”, there are two sources of uncertainty.
First, there is the probability that the observed frequency of t’s will be close to the expected
frequency given some 6[ P(i” € T'(8)t,,)]. Second, there is the probability that the 6 identified in
this manner will (or will not) be the correct one. It follows from the law of large numbers that as r
approaches infinity P(¢+" € T%(6)|0 and t,) approaches 1. Therefore, P(f" € T5(0)|t,) =P(i" €
T%(0)10 and ¢,,) - P(8|t;,) approaches P(8]t,,). Furthermore, by Bayes’ law

P(i"eT}(0)I¢' and ¢,,) - P(0'lt,5)
P(i" e T5(0)lt;)

P(0'lt"€TH%(0)and 1,,) =
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Thus P(6'|t" € T5(0) and ¢,,) approaches 0 as r — « for 8’ + 6 (by (6)). Therefore, (7) becomes

uz(trltl.v) = ZP(Glti)ZP(i-*!le!tl.\)ul(ylel?tve)
0 t_,

where ¢ =(t_,,¢t;;). Note that this is a weighted average of u(y),t,0) =1,(y5). By hypothesis (a),
agent ¢, will, by reporting ¢} # t;, affect his allocation in at least one state (¢_;,8). Furthermore, by
(I) above, the agent will receive a less desirable outcome and since P(6|¢;) and P(¢_,|6,¢,,) are all
nonzero (by the full support assumption on P), this will lead to a strictly lower utility for
misrepresentation in the limit and hence also for » large enough. Since there are a finite number of
players and types for each player, we can choose r large enough that this is true for all i/ and ¢,. This
establishes incentive compatibility.
(Ex-post) Individual Rationality: The ex-post utility of x” for any agent /,¢;, is given by

®) L PO, (x7(7), 15,0).
‘]

If t"&TX%, then clearly x” is IR since x'(¢")=w; Suppose t" € T5(6) for some 6. Again, if
x"(t") = w,, there is nothing to prove. If not, then by (III) we know that u,(x"(¢"),¢t,,0) > u,(w,,t,,0).
Hence, the proof hinges on showing that P(6]¢") can be made arbitrarily close to 1 for each t" € T}
(note that this is a stronger statement than the one made in proving IC above where it was shown
that by the law of large numbers P(8|t" € T,5(6)) approaches 1).

We will show that for all sufficiently small ¢ > 0 there exists 6 and 75 such that " € 7,5(0) for
8€(5,1) and r>F75 implies P(|t")>1—¢'. This, together with the boundedness of u,, will
establish the desired conclusion.

By Bayes’ Law

P(O)P(1"10)  P(9)P(1'10)
P(t")  T4eoP(B)P(1'16)’

P(6]t") =

By the multinomial formula

A r! N
P(t |0)=mnp(t|0) .

teT

Let H(B,B)=T1, B for B=(B,) <7 and B’'=(B}), - Hence

r! ,
P Gy )
and
. P(d) | H(ﬁ*",f(t")))'
©) PO =1+ L 50 (H(B*’,f(r")) '

Observing that H(-, f(+")): S”"! > R is continuous and has a unique maximum at B =f(¢")
establishes that for & sufficiently small and " € T%(9), H(B®, f(¢")) > H(BY, f(+")) for 8 + 6. Thus
for r large enough, all the terms after the summation in (9) above are close to zero; hence, P(6]t")
is close to 1 as desired.

(Ex-post) e-efficiency: Consider v” such that for all i, s

T (0 (7, 12,0) - P(817) > T (xE, (1), 15,0) P(OI") + 5
6 ]

1 . . €
(10) = Ze:ui(yg;,ts,ﬂ)P(Glt )+ 5

forall ¢"€TX%(0) by(5).

Note that since P(t" € T%)>1—-§ for r>F; then for § <e, Tj§ can serve as the set E in the
definition. Since u,’s are bounded and the fact that P(8[¢t")>1—8 for r>7; and "€ T;5(0)
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implies that for sufficiently small  and some 75 then
(11) w0 (17),17,0) > u;(vh,,15,0) + ¢

Define v* = (t7});, e nx7 bY U = f(t', 19)0% ,£-=,L‘,-'_;(t').
Note that by the concavity of u,(-,t,6), (11) implies that for § sufficiently small and r > 75,

(12) u;(vh,t, 0)>u,(yﬁ,t,0)+s.

Furthermore,

PN CACORO LD VR VD MCACORLD

tossa.tl=t i

(13) - Z Z Er (t’ t)(l’ll 1)

ssat]=t i

—r F(F(T) ).
But f(¢") € B5(8?) whenever t" € T%(8) so by (5)

PP F(f(17),t%)>0;
hence there exists ¢ €{1,2,.../} such that

F.(f(t7),0*)>0

which by (13) implies z” is not feasible and completes the proof.

All that remains to be shown is that if the hypothesis (a) is not satisfied (i.e., in case (b)), then the
regularity assumption can be used to modify the proof above in the appropriate manner. Notice that
a problem arises only with the proof of incentive compatibility since the other proofs did not utilize
hypothesis (a). Here the difficulty arises from the fact that if types ¢, and ¢} (¢; +# t]) of agent i always
receive the same allocation for every one of the other agents, then in the limit (as r — ©), ¢, (and ¢)
will be exactly indifferent between announcing ¢, and ¢;. But then for any r < « the effect of this
announcement on the event that the observed ¢” will (or will not) belong to "€ T;§ cannot be
ignored. Choose 8 such that y? +w, for some ¢_; and ¢ = (¢_,,¢;) (if there is no such 6, there is
nothing to prove). Thus the first part of (3) is satisfied with strict inequality. By the regularity
assumption, there exists a price p’ #p? arbitrarily close to p® such that the demands of m =
(i,(t;,t_;)) and m' = (i,(¢},¢_,)) are distinct. Furthermore, by the continuity of the demands, this
price can be chosen close enough to p® so that some of the demands still satisfy I-III above.
Replacing y?, with the demand of m at p’ and y?, with the demand of m' at p’ enables us to
complete the proof as in the case of hypothesis (a). A similar argument works if there are more than
two types who have exactly the same demand for every ¢_; and 6.
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