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Conditions which guarantee the existence of a (subjective) expected utility
tepresentation of preferences, when the state space is finite, are presented. The key
assumptions are continuity and an analogue of the independence axiom. Journal of
Economic Literature Classication Number: D80.  © 1992 Academic Press, Inc.

1. INTRODUCTION

Ramsey  [17]} and Savage [18] have formulated the subjective or
personalistic view of probability by imposing consistency or rationality
requirements on preferences over bets on events and deducing utilities and
probabilities as parameters of these preferences. While the concept of sub-
jective probability is not the only conceivable nor the consensus view of
probability, it is accepted to be the only coherent view in some and at least
a useful alternative in many discussions of the foundations of probability.

The Savage framework involves a set of states of the world £, a set of
consequences X, and the set of acts F, which are mappings from £ to X,
The interpretation is that, since the true state of the world seQ is not
known (possibly because it has not yet “occurred”), the individual's
preferences over the dcts depend on both the consequences of the acts (at
each state) and how likely he considers the states to be.!

Savage shows that, given a set of “rationality” assumptions on the
preferences of the individual, there will exist a unique (finitely additive)
probability measure u on the set of all subsets of £2 and a unique (up to
positive affine transformations) utility function on consequences such that

* 1 am grateful to Dilip Abreu, David Kreps, Mark Machina, Ennio Stacchetti, and Robert
Wilsen for their comments. Firancial support from the Alfred P. Sloan Foundation is grate-
fully ackpowledged.

! A detailed analysis and interpretation of the Savage postulates can be found in Savage
[18]. Fishburn [8] and Kreps [13] also provide comparisons with the other choice models
discussed in this paper.
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the act f will be (weakly) preferred to the act g if and only if the expected
utility of f is greater than or equal to the expected utility of g. One of the
assumptions imposed by Savage necessitates that © be infinite.?

It is easy to see why the case of fmite @ is problematic. Assume that 2
and X are both finite and the individual has preferences which are
represented by the function U(f)= e ulfls) 1i(s). Furthermore assume
that U(f)# U(g) whenever f#g. Gince F is also finite, it is clear that
changing u and p slightly will not effect how U ranks the acts in F. Buf this
shows that in general there is little hope for obtaining a unique representa-
tion of the preferences. Even more problematic is an example due to Kraft,
Pratt, and Seidenberg [11] which shows that if @ is finite and R is a com-
parative probability relation satisfying the di Finetti assumptions, on the
set of all subsets of £, it may be the case that there exists no probability
measure which represents R. However, Savage’s postulates (P2) and (P4)
yield a comparative probability relation and his proof involves constructing
a probability measure which represents this relation by utilizing the very
assumption (P6) which requires that € be infinite. Hence, the example of
Kraft, Pratt, and Seidenberg poses a serious problem when £ is finite.

INSERT HERE
2. THE THEOREM

Following Savage [18], instead of “f(s)= g{s) for all sea’ the state-
ment “f =g on & will be used.

Assumption 1. 7 is a preference relation (Le., complete and transitive).

Assumption 1 is standard and requires no elaboration.

An event ¢ will be called null if /=g on a implies f~ g. A state s will
be called null if {s} is null. It follows from Assumption 1 that a is oull if
and oaly if 5 is null for all s€ Q.

Assumption 2 below plays a central role in our representation theorem.
For the purpose of gxposition, assume momentarily that an “objective ran-
domization” device exists. Suppose further that for some x, y, z€ [m, M1,
¥ is indifferent to an act which yields y with probability p and z with
probability 1 — p. For an expected utility maximizer, this is equivalent to

ulx)= pu(y) + (1— pluiz).

So that x lies proportion p of the way from z to y “in utility terms”

2 Technically, this assumption {P6), by-itself, does not require that € is infinite. If the
individual was indifferent among all acts, a possibility which is precluded by another 3avage
postulate (P5), (P6) could be satisfied vacuously.

'
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While we do not have an objective randomization device, it is still the case
that if x~ f for some f such that f=y on @ and f=z on a° then

Culx)= Prob(a) u{ y) + (1 — Prob(a)) u(z)

So again, x lies in proportion Prob{a) of the way from z to'y “in utiiity
terms.” Finally note that, by the characteristic linearity property of
expected utility theory, if two acts f and ‘g are indifferent, then moving
each outcome by any third act A toward corresponding outcomes of f and
g by the proportion Prob(a) “in utility terms” preserves the indifference.
This is the content of Assumption 2 below.> :

Assumption 2. f'(s} ~ af(s)+(1—a) h(s), g'(s)~ ag(s)+(1 —a) h(s)
for all se£2 and a is not null implies /7 g if and only if fog. '

Assumption 2 is analogous to the independence axiom. In words, it
states the following: Take arbitrary acts f, h and some non-null (i.e, not
null) event a. Consider the act f” constructed from £, h, and a by requiring
that the outcome of f' in any state s to be indifferent (as a constant act)

to the act which vields 7(s) if @ occurs and h(s} il a° occurs {note that we
_' are not requiting that it be possible to construct such an f'—Assumption 2

applies only if such f* can be constructed). Similarly, construct g’ as above
by using g in place of f. Then f is strictly preferred to g if and only if f”
is strictly preferred to g’. As in the independence axiom, we require that
preference be preserved when both f and g are “mixed” with the same &
in the stylized sense described above. However, the finiteness of £ makes
Assumption 2 much weaker than the independence axiom since, because of
this finiteness mixture, space arguments cannot be utilized.

To sce why Assumption2 is the appropriate analogue of the inde-
pendence axiom for the case in which £ is finite, suppose that } satisfies the
requirements of expected utility theory. Hence, there exist p, a probability
measure on €, and 1 X — R, a utility function, such that (4, #) represents
2 in the sense of Savage [187]. Now consider the acts f, g, and & of
Assumption 2. Let P,, P, and P, be the probability distribution of each of
these acts. If there existed act f* and g* such that P..=u(a) P+
(1—p(@)P, and P.=ua)P +(1- w(a)) P, then the independence
axiom would imply that f>g iff f*>g*. Furthermore, it follows from the
fact that (u, ©) represents ) that f*~ f' and g* ~ g’.* Thus we obtain f7 g
if f=rg* il fg. But since Q is finite, we cannot count on the existence
of acts such as £* and g*; hence we use the condition f >giff f¢ (e,
Assumption 2) instead of f ygill f*>g* (ie., the independence axiom).

T am grateful to Mark Machina for suggesting this intuitive explanation of Assumption 2.
“ This property (ie., /*~ f'} is closely reiated to the isometry condition used in Nakamura
[14] to obtain a similar representation theorem.
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Assumption 3. x>y implies x? y. Furthermore, there exist a, = Q such
that a,x+(1—a,)y~a,y+ (1 —a,)x foral x, y~ X.

The first part of Assumption 3 imposes monotonicity over constant acts.
The second part requires that it be possible to partition the £ into two
“equally likely events.” It should not be considered a particularly stringent
requirement—provided that there is one coin that the individual considers
to be “fair,” replacing 2 with € x {Heads, Tails} would satisfy the require-
ment. The monotonicity over constant acts is not necessary. The theorem
minus the conclusion that u is strictly increasing would still hold if the
‘monotonicity requirement were replaced with the condition that there
exists x, y € X such that x> y.” _

Since X is a subset of the reals, it is possible to view F as a subset of
RY where N=|2|. Hence veR" denotes feF if v,=f(s;) where
0Q=1{51,35, s Spy}

Thus, G Fis said to be closed if G is a closed subset of RY.

Assumption 4. TForall feF, the sets B(f)={geF] g}f} and W(f)=
{geF|f?g} are closed.

Assumption 4 is continuity of 7 in the sense of Debreu [5]. Given the
earlier discussion of the difficulty of obtaining existence and unigueness of
numerical probabilities, its importance is clear. It replaces (P6) of Savage
which requires that (the subjective) probability measure that is ultimately
constructed from preferences be non-atomic. Hence €2 is required to be an
infinite set. In a sense, we are substituting one kind of continuity for
another. ’

THECREM. [f ) satisfies Assumptions 1-4, then there exists a probability
measure p on the set of all subsets of 2 and a function u: X — R such thar

(@) flg i T w(f(8)) pls) =, ulgls)) uls);

(it} wu is continuous and strictly increasing ;

(i) if () above holds when p is replaced by the probability measure 1’
and u is replaced by u': X - R, then pf' =y and v’ = cu+ b for some c >0,
beR.

The conclusions (i) and (i) are the standard conclusions of expected
utility theory. Assumption 4 also guarantees that u is continuous. The
monotonicity requirement of Assumption 3 guarantees that u is strictly
increasing. Thus certainty equivalent are well-defined and f is strictly
preferred to g whenever f stochastically dominates g.

5 The proof, however, would have to be modified. In particular, as I have been informed by
Ennio Stacchetti, Lemma 8§ of the appendix would require & somewhat lengthier proof.
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3. CONCLUSION

- A finite state version of the Savage theorem has been provided. Assump-
tions 2 and 4 appear to circumvent the problem posed by the Kraft, Pratt,
and Seidenberg example in a manner similar to the Anscombe Aumann
approach. They use the “roulette lottery” probabilities to determine the
“horserace lotiery” probabiiities; here the richness of the set X is used for
the same purpose.

Although this paper was obviously motivated by Savage [18], the
method of proof that is utilized bears a strong resemblance to the approach
outlined by Ramsey [17] in that “even chance” events are used to deter-
mine the utility function and the resulting utility function is used to
calibrate the remaining probabilities. In spite of the fact that the proof
relies heavily on Assumption 3, the existence of even chance events are not
necessary for the conclusions of the theorem. It is, however, necessary for
the “uniqueness” of u that there exist at least two non-null states. Hence,
it might be that the theorem holds when the even chance event requirement
is replaced which the weaker condition that there are at least two non-null
states (in which case all of the conditions would be necessary and suf-
ficient). However, it is clear that a proof without even chance events would
require a substantially more complicated argument, which I 'am unable to
furnish.® .

Alternative axiomatizations of subjective expected utility theory for the
case in which 2 is finite can be found in Davidson and Suppes [4] Debreu
[7]. Hens [107, Suppes [20], Nakamura [14], Stigum [19], and Wakker
{227. Davidson and Suppes [4] deal with the case in which X is also finite.
They establish, under somewhat restrictive assumptions, the existence of a
subjective expected utility representation (with a non-additive probability
measure). Debreu [ 7] considers the special case in which £ consists of two
equally likely states and Hens [10] and Stigum [19] utilize differentiability
conditions to obtain the desired representations. Stigum also imposes
quasi-concavity on the preferences.

Nakamura [14] and Wakker [227] provide dlfferent axioms which also
yield a Savage type representation result for finite £. The key assumption
of Nakamura s an isometry or bisymmetry condition” which apparently
plays a role similar to that of Assumption 2. Wakker’s related theorem
imposes the same topological properties on X and } as our theorem, but

®The lack of necessity of the “even chance” events requirement has recently been
established by Chew and Karni [5]. ] :

7 Axioms related to this isometry/bisymmetry condition can be found in Aczel {17, Chew
[33, Fishburn [9], Krantz Luce, Suppes, and Tversky [12], Pfanzagl [15] and
Quiggin [16]. :
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his “no contradictory tradeoffs” axiom differs substantially from Assump-
tion 2 and the related isometry condition of Nakamura. Both Nakamura
[14] and Wakker [22] provide extensions of their basic framework to
accommodate non-additive probabﬂlty measures.

APPENDIX
Proof of the Theorem. Let (x, y), denote a,x+ (1 —ay) .

Lemma 1. x> y implies

iy x2(x y)ory
(i) (x, 2)o?(y, Z)o whenever z 2 .

Proaf. (i} Assume (x, y)O?x; then by A4, there axists X¥e(y, x) such
that (%, ¥)o~ x. BY A3, (%, £)o”( 3. ¥)o; hence by A2, (%, X)o7 (x, x) which
contradicts A3. A symmetric argument establishes that (x, Plo? V.

(ii) By (i) above and A4, there exists 7, X such that ¥~ (y, z}, and

~(x, 2)o. But by A3, x>y, so applying A2 yields x>y, Hence,
(x, 2)g? (¥, 2)o. Repeating the argument for {y,z), and (y, z), completes
the proof. |

Note that by Lemma 1 and A4, for all (x, y}, there exists a unique ¢ such
that t~(x, ¥),.

LEMMA 2. (i) There exists a continuous function w:X >R such that
(x, y)0>(w, 2)g iff u(x) +u(¥) = u(w)+u(z), u is continuous and unique up
to ( positive) affine transgformations.

(i) wu is strictly increasing and can be taken o be such that

w(X}=[0, 1].

Proof. (i) Theorem 1 of Debreu [4] states that if ) is a preference on
Sx 8 for some connected separable S, and } satisfies A4 and (*) below,
then (1) is satisfied. Noting that X is connected and separable establishes
that (i) hinges on showing:

(%2, y1)o>(x1= ¥2)o and {x;, )’2)02(352, ¥s)o implies (yq, x3)0>(.]"3: X1)o-
' : ()

To prove (), note that by Lemma 1 and A3, (M, y2)0>(x2,m)0 so by
the premise of (»), Ad, and Lemma 1, there exist j; < y;, Xy Zx; and 1e X
such that (x,, ¥i)o~{X, ¥2)o~{ A similar argument yields X;<xj,
$.2 v, and 7 such that (%5, y,)o~ (x5, Fado~1.

RN "
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Let /= (F1, %1)o, £=(J5, %), h= (x5, ;) and a=a,. Then A2 and A3
vield f~g if (t, Hg~(L #)g. Thus by A3, (7, %;)~(Fs, %) Then
Lemma 1 yields the desired conclusion. )

(ii} Follows from (i) and A3 (monotonicity). 1

Lemma 3. (i) For ahy voeX define y,~(y;,_,,x)g for izl. The
sequence {y,} converges to x.

(i) Let S=1{xy, x5, X3, .., X,). We say that y, reaches x through S iff
yi~ (v x)fori=1,2,..,nand y,=x.

For yye X and x € (m, M) there exists some ( finite) § such that y, reaches
X through S.

Proof. (i) Assume wlog that x> y, (if x= y, there is nothing to prove;
if x < y,, the argument 15 symmetric}). Then by Lemma ! and A3, y;is a
strictly increasing sequence and y,<x for all i. Assume lim y,=7<x. Let
P~ (¥ x)y. Again by Lemma 1 and A3, j< j<x. So (120 F+F)> 7>
Vizi~{(pn X)o. Hence by A3, (1/2(9+ F)H{y: x)o- But lm(y,, x)o=
(7, x)o~ F2(1/2)($ + 7) contradicting A4.

(1) Again wlog assume x> y,. Let y;~ (y,_1, M)y. By (i), »; con-
verges to M. Let n=inf{i | y;>x}—1 (since lim y,= M, n is well-defined).
Hence y, 1<x<y,~(¥,_,, M),. So by A4, A3, and Lemma 1, there
exists z such that x~(y,_,, z). Thus sctting x, -HM for i=1,2,..,n~1
and x, =z establishes the desired §. |

Lemma 4. Let S={f1, fas w0 fo) We say that g, reaches [ through § if
Jorall seQ2, gis)~a, g, 1)+ (1—ay,) fils) fori=1,2, ..,nand g,= f.
(i) ggeF, fls)s(m, M) for all s implies Ihere exists § such that
go reaches f through 5.
(ii) If go reaches f through § and §, reaches f through S then gy g £o
iff £27 and for all s€ 2, go(s)> &o(s) Uff f(5)>F(s).
Proof. (i) Follows from a repeated application of Lemma 3. )

(i) The first statement in: (ii) follows from a repeated application of
A2; the second statement follows from Lemma 1 and A3. ]

Lemma 5. f(s)= () for all s€ Q and f(s*) > §(s*) for some s* not null
implies f > g [This is essentially Savage's Postulate 3.

Proof. We will establish the result for the case in which f=g on
@\{s*}. Then the transitivity of } vields the desired conclusion. By
Lemma 4(i), for x € X, there exists S such that f reaches x through S. Then -
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by Lemma 4(ii), £ reaches g such that F=x on Q\{s*} and g(s)=y<x,
through S. Furthermore, by Lemma 3{ii) we can make y arbitrarily close
to x so that M?g>m; hence by A4, there exists xeX such that £~ Z.

Letting f=x>y=g, h x, a=a, and applying A2 yields x>%~ g. Hence
by Lemma 4(ii), f= I :

For a non-null 4 defme CE(a, f) to be x such that f =x on a, f=f on
a‘ implies f ~ f. Lemma 5 and A4 guarantee that CE(a, ) is well-defined.
CE(f) will be used to dcnote CE(2, /).

IemMa 6. If f=gonal, f'=¢g on_a“,fef’ on a, and g= g' on a, then
f>g implies g [ This is Savage’s sure-thing principle (Postulate 2)].

Proof. 1 g'(s)e(m, M) for all 5 then let 'S be any finite sequence such
that f reaches f through S where f=xe(m M) on g and f=g' on a".
Such an § exists by Lemma 4(i). Then by Lemma 4(ii), g reaches some g
such that g= g’ on a° through 5. Now replace each &, in § with 4] such
that hi=h, on a and h,=g; on a°. Call the resulting sequence §'. Hence
frgiff f/>g by Lemma 4(ii). If there exists s€a such that g(s)e (m, M)
then define fl! g1 f’b gll by fl(S)Na*f(S)+(1“a*)x7 gl(S)Na* g(S)+
(1—a)x, fis)=a,f'(s)+ (1 —a,)x and gi(s)=a,g'(s)+(1- a,)x for
all se @ and some x € (m, m). By Lemma 1, gi(s)e (m, M) for all s€£2. So
apply the above argument to obtain f,7g, iff 17 g}. But by A2, fog iff
fivg, and g iff 17 g} which establishes the desired result. [

Define (x, ¥), to be ax+ (1—a)y. Let pla)=u(CE(M,m),} for all
ac . .

Leia 7. pla) ulx)+ (1 — p(a) u(y) = u(z) and lu(x) —u(y) = (1/2")
for some ne N implies (x, ¥),~ (2, z),.

Proof. If a is null or 4° is null the result is trivial, so assume that both
a and a° are not null. The proof will use induction on n. Let #n=0; hence
li{x)— u( ¥} = 1 which implies that either x=M and y=m, or x =m and
y =M. For the first case, we have ulz) = p{a) u(x) + (1 — p(a)) u( ) = p(a).
But by definition (M, m),~ (2, z'}, for some z’ such that u(z") = p(a); but
u is one-to-ome, hence z'=z, and therefore (z,z),~(x, y),. For the
(m, M), case, note that by A3, (M, m)y~(m M);. Hence by AZ,
(CE{M,m),, CE(m, M), )~ (CE{m,m),, CE(M, M),),. Therefore (z,2),~
(m, M), for z, £ such that £ = CE(m, M), and u(z) = p(a). But by Lemma 2,
we have w(Z)+ulZ)=1; hence u(Z)=1— p(a). Thus (m, M),~ (Z, 2}, for
some % such that u(2)=1— p(a)= pla) ulm)+ (1 p{a)) u(M)= p{a) u(x)+
(1 — p{a)) u( ¥). But since u is one-to-one, this establishes the desired result
for n=0.
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Assume that the lemma holds for n and let p(a) u{x)+ (1 — p(a)) u( y)=
u(z), |u(xy—iu{y) =(1/2"TY). Find %, 7 such that |u(¥)—u(7)|=(1/2")
and either 2 x> y>= 7 or 72 y>x = X% Since » is continuous, such X, 7
always exist. Without loss of generality, assume x> x> y> 7. Let u* be
such that (1/2)[w(%)+u*]=u(x) and choose w such that u(w)=u*.
Note that u* =2u(x)—u(®) <u(x) <1 and 2u(x)=2[u(y)+ (12" )]=
2u(y)+ (12" and w(X)=u(F)+ (1/2"). Hence u* = 2ulx)— u(x}=
2u(y)—u(7) = u(y)=0. Therefore u*¢[0,1] and w is well-defined.
By the induction hypothesis (%, 7),~ (2, Z), for some Z such that
w(z)= p{a) u{x) + (1 — p(a)) u( ¥} (again, we are using the continuity of u
and the fact that »(X) = [0, 11). ‘

Then by A2, {CE(X, w),, CE(F, w)y),~ (CE(Z, w),, CE(X, w)s),- Note
that w(F}+i(w}=u(§)+2uy)—u(7)=2u(y) and u(x}+u(w)=u(X)+
2u(x) —u(X) =2u(x). Therefore by Lemma 2, (x, ¥}, ~ (CE(z, w)o, CE(Z, w}p),.-
Again by Lemma 2, CE(Z, w), =2z’ such that w(z")y= (1/2)[w(Z) +u{w)]=
(U2 pla)yu(X)+ (1= pla)) u(5)+2u(x}—u(x)] = (1/2)[2u(x)+ (1 — p(a))
(u( 7Y —u(x)) ] =ulx)+ (1 — pla))u( y) —u(x)}=pla) u(x)+ (1— p(a)) u( y).

Therefore (x, y).~ (2, z'), for some z' such that w(z'}= p{a} u(x}+
{1~ pfa)) ui y). But this establishes that z' =z and concludes the proof. |

Lemma 8. pla) u(x) + (1—pl@)u(y)=u(z), |u(x)—u(y)l=(H2") for
some hyne N, h<2" implies {x;, y),~ (2, z},.

Proof. Again by induction, let L'(n) be the lemma for a fixed n. L'(0)
and L'(1) foilow from Lemma 7. To show that Z'(n) implies Z'(n + 1) for
nz1, assume that |u(x)—u(y)| = (#/2"*+"'). Now use induction on A. Let
L*(I) be the proposition when k=1 (note that n+1 is fixed). L*(0) is
trivial. L*(1) follows from Lemma 9. Hence what remains to be shown is
that L*{/) implies L*/+1) for /=1 ¥ / is odd, /+1 is even, so
(I+ 1)/(2" 1) =(s/2") for some integer 5 and hence L'(r) establishes the
desired result. So let [ be even. Without loss of generality, assume

Culx)=u(y) (u(y)>u(x) is symmetric). Choose x,, ¥; such that u(x,)=
u{x)— (172" 1Y), w(y,) =u(y)+ (1/2"*") and w such that (x, y),~ (w, w),
{such w exist by continuity). Then by A2, (CE(x, %1}, CE(», ¥1)o)u~
(CE(w, x1)o, CE(w, y,)o). Let 1, =CE(x, x,)o and £;=CE(}, y;)o. By
Lemma 2, u(f;)=u(x)—(1/2"*%) and u(t;)=u(p)+(1/2""'). Choose [
such that w(?)=pla)u(r)+(1—pla)yulr;). Hence |u(t))—ulty) =
u(x)—uw{p)— (12" = (27 **). But then by L*1), (iy, ).~ (% D).
Let w,=CE(w, x,); and w,=CE{w, x;);. Hence (7, 7),~ (wyi, Wy,
By Lemma 2, wu(w;)={1/2)[u(w)+u(x,)], w(w,)=(1/2)[u(w}+u(y)]
and hence [u(w,)— u(w,)| = (1/2)[u(x,) —u(y,)]= (1/2)[u(x) —u(y)] -
(127 1y =(I/2"*1). Choose ¢* such that u(#) = p(a)u(w;)+ (1— p(a))
u(w,). Then by L*(I), (wq, wy),~ (&', ¥ ).~ (1, t'),. Hence by Lemma 1,
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f=¢ and therefore w(t)=u(f)= p(alu(t;)+ (I —p{a))u(s;). Hence
pla)u(z; )+ (1~ pa)) ul(ty) = p(a) u(w,)+ (1 - p(a) u(wy) which implies
pla)(u(x) — (1/277%) + (1= pla))(u(y+ (1/27*2)) = pla)(1/2)(u(w) +
u(x)— (1/27 1)) + (1 = p(@))(1/2)u(w) + u(p) + (17274 1)),

Therefore w(w)= p(a) u(x)+ (I — p(a)) u{ y) =u{z). Hence w=z and
(Z, Z)aN(ws W)aN('x’ y)a° I

LEMMA 9. (x, 1) 2(wz), iff pla)ulx)+(1—p(a)) uly) = pla) ul(w) +
(1— p(a)) ulz). o

Proof. The result follows if it can be shown that (x, y)~r¢ iff
pla)u(x)+ (1 —-pla)w{y)=u(z). It follows from Lemmag that
play=1— p(a°). Furthermore the result is trivial if g is null, ¢° is null or
x, yé(m, M). Hence wlog assume that ¢ and «° are not null, and
x, y e (m, M). To prove the only if part of the statement, let = CE(x, y),
and {x;} be a sequence which converges to x from above and satisfies
lu(x;) —u(¥)] = (k2™ for some integers k;, »,. Since the set {(k/2") ]|k,
nelN, and k<2"} is dense in [0, 1] and since u is strictly increasing and
with u(x}=[0,1], such a sequence exists. Let 7, be such that u(t,)=
playu(x,)+(1—p(a))u(y). Then by Lemma?, f,~(x,, y), and by
Lemma 5, ¢, ~ (x,, ¥).” (%, ¥)~t Hence u(z,)>u(t) for all n. X is com-
pact, so t, has a convergent subsequence; wlog assurne it converges to f.
Then by the continuity of wu, Um{ p(a)u(x,)+ ({1 — pla))u(y)l=
pla)y u(x) + (1 — pla)) u(y) = u(?) = u(r). The reverse imequality is
established by a symmetric argument. To prove the if part of the statement,
note that (x,, y)>¢ implies (by A4), (x, y)?t. Again a symmetric arguiment
completes the proof. || ‘

Lemma 100 Let g b2, anb=0, f=x on a,f=y on b, g=z on
aub, g=7 on (avwb), then pla)u(x)+p(b)u(y)=plawb)u(z) implies
f~g

- Proof. First we will show that p(aub)= pla)+ p(b).

Note that if & is null, then CE(M,m),=m; hence pla)=
#(CE(M, m),)=0. :

Therefore, if @ and & are both null, then obvicusly auw b is null so
plawb)=0=p(a)+ p(b). If only one of & and & is nvll (say a) then
CE(M, m), =CE(M, m), ;5 S0 plawb)=p(b)= p(b}+ pla). If neither a
nor b iz null, then let Z=CE(aw b, (M, m),). ' :

Hence (M, m),~ CE(M, m),~ (z, m),._,. Therefore by Lemma 9,

pla)=plaub) ulz). - W
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By Lemma6, (m, M),~{Z, M), , Let t=CEfm, M),; then by
- Lemma 9, : ‘ ‘

p(b)=1— p(bY=u(t)= plaub) u(Z)+ 1 — pla b). (2)

Equations (1) and (2) yield p(aw b)= pla)+ p(b).

If either @ or b is null, then obviously /'~ g. If both a and & are not
aull, then let z=CE(aub, f). By Lemma®6, (x, ).~ (2} ¥)aus- Let
t'=CE(x, »),. By Lemma 5, : '

pla) u(x)+ (1= pa)) u(y) =u(t')= plav b) u(z') + (1 —plaw b)) u(y).

Noting that p(awb)=p(a)+ p(b) yields plaub)ulz’)= pla) u(x)+
(1—p@))u(yy=plawb)ulz); hence z=2z which is the desired
conclusion. ||

Let U(f)=1Y.gul(f(s)) p(s). We establish the existence of the desired
representation by showing that frg iff U(f)=U(g) (note that the
additivity of p has been proven in Lemma 10).

Let Qo= {5, 52, .., 55} denote the set of non-null states. For fe F define
Fisfar o [ as follows: z,= f(s)), fi=f For nz2, f,=z, on a, and
fo=f._, on a¢ where a,=1J7_, {s;} and z, is such that pla,)u(z,)=
p(s.) w(f(s,)) + pa, 1) u(z,_,). By construction U(f,}="U(f,,.) and by
Lemma 9, f,~ f.., for all n= 1. Furthermore fy=2zy on Q° Then f~z
and U(f)=U(fx_)=u{z) (the last equality follows from the fact that
p(2)=1, p is additive ‘and p(s)=0 for s e\Q° hence p(R%)=1).
Repeating the same argument for g yields z’ such that U(g)=wu(z") and
Z~g If f} g, then by Lemma 1, z 22" Hence U(f)= u(z) zu(zY=U(g)
(since u is increasing). Similarly if U(f)= U(g), then u(z) = u(z'). Hence
f~z?z’~g. A :

'The uniqueness (up to affine transformations) of u follows from
Lemma 2. But the uniqueness of p follows from the uniqueness of . Since
(M, m),~x implies p{a)u(M)+ (1- pla)) u{m)y=u(x) so that p(a)=
(1) — u{m))/{(u( M) — u(m)) which is invariant across affine transformations
of u. §
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Insert for “Savage’s Theorem with a Finite
Number of States”
by Faruk Gul

Finally even if it is assumed that the comparative probability relation implied by (P4)
can be represented by some probability measure, an expected utility rep;esentation does
not follow from the remaining Savage postulates when (P6) is abandoned.

The purpose of this paper is to provide an analog to Savage’s theorem when 2 is
finite. This will be done by replacing Savage’s “continuity” assumption (P6) on {2 with
a continuity assumption on X and his sure thing principle (P2), preference among con-

-sequences postulate (P3), and qualitative probability postulate (P4) with an assumption
which formally resembles the independence axiom of von Neumann and Morgenstern [21].

Given the importance of Savage’s theorem it would appear that it is worthwhile to
inquire what is at stake in obtaining a Savage representation when {1 is finite. Furthermore
unlike Savage’s continuity postulate the type of continuity that is assumed in this paper
is familiar from the theory of the consumer. Thus the finite state version of the theory
enables a more unified treatment of individual choice (with or without uncertainty). In
the same vein, the similarity between the assumption which replaces the (P2), (P3) and

(P4) postulates and the independence axiom enables a more unified approach to Savage’s
theorem and the work that assumes extraneous probabilities (such as von Neumann and
Morgenstern [21] and Anscombe and Aumann [2]). Finally, since the objective is to obtain
a normative theory, an alternative axiomatization of subjective expected utility, to the
extent that the axioms are considered reasonable, should serve as a useful compliment to
Savage’s theorem. | -

The statement of the assumptions and the theorem are provided in the following
section. A proof of the theorem is in the appendix. The paper concludes with a brief
discussion of the result and the related literature.

Let £ be a finite set of states, X = [m,M] C Rwherem <M and F={f | f: Q —
X}. The individual’s preferences on F' will be described by a binary relation )/ CFxF.
The binary relation )/ is said to be a preference relation if it is transitive and complete.
The symbols ) and ~ are used to denote the strict preference and indifference relations
associated with ) . '

An act f is said to be a constant act if there exists ¢ € X such that f(s) == z for all
s € 2. A constant act is often identified with its'unique consequence . Hence we write
T )/ ¢ in place of f )/ g when f is a constant act. For any event ¢ C Q and z,y € X,
az + (1 — a)y denotes the act f such that f(s) = « for all s € a and f(s) = y for all
s € \a. The event Q\a is denoted by a°.



