BAS C. VAN FRAASSEN

PROBABILISTIC SEMANTICS OBJECTIFIED:
I. POSTULATES AND LOGICS”

Probabilistic semantics is the study of languages in which the admissible
valuations are identified as probability functions. There is now a sizable
body of work on this subject, in which binary (conditional) probability
functions are defined directly on the syntax.! I shall refer to that as ‘pre-
objective’. In what I call ‘objective’ probabilistic semantics the syntax is
interpreted in an extra-linguistic structure (a model or frame) on which the
probabilities are defined. This first paper will be a study of pre-objective
probabilistic semantics, with the dual aim of giving reasons to doubt its
sufficiency, and of displaying its essential structure as a preliminary step
toward ‘objectification’. The analogy I have in mind, obviously, is the
transition from ‘state-description’ and ‘model set” semantics of modal logic
to ‘possible world semantics’. But I share the hope that the results will be
of such richness as to yield a significant supplement to the familiar truth
conditions and worlds semantics. In section 1 I shall make some brief
remarks on the philosophical problems that motivate the study. The
remainder will propose new probabilistic analyses of some familiar logics,
ending with the conclusion that there is no reasonable (pre-objective) treat-
ment of quantification. Part II will discuss arguments with infinite sets of
premises, and introduce natural relations and groupings of probability
functions that give some idea of what the models will have to be like. And
Part IIT will propose a model theory along those lines.

1. THE IDEA OF PROBABILISTIC SEMANTICS

Various problems in philosophical logic and philosophy of language have
led to suggestions that the standard truth condition/possible worlds seman-
tics is inadequate, if not entirely mistaken, as a general framework. Many
such suggestions point to pragmatics, but some point (instead, or addition-
ally) to ways in which semantics may be enriched. Among the latter, recourse
to probabilities is a recurring theme. In ‘Reference and Understanding’,
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Hilary Putnam argues that our ability to understand use of the language is
not explicable in terms of knowledge of truth conditions; he discusses con-
ditions of warranted or correct assertability, and mentions Carnap’s and
Reichenbach’s related ideas on probabilistically qualified assertion.? Hartry
Field (1977), arguing that truth and reference are indispensable to seman-
tics, argues also that there is a second semantic dimension, the ‘conceptual
role’ of expressions, which is to be explicated in terms of subjective pro-
bability. He mentions especially the vexing problem of “Peter believes that
Hesperus is not Phosphorus”; the semantics of propositional attitudes being
currently a disaster area in philosophical logic.3

Exploring the resources of probability for semantics, there is a great deal
of technical work to draw on. For preobjective probabilistic semantics there
is a basic result due to Popper, the acticle by Field, and much recent work
by Harper, Leblanc, Morgan, and others. For the analysis of classical pro-
positional logic I shall use essentially Popper’s postulates, simplified with
hindsight. For intuitionistic logic and for quantification theory I shall
explore some departures from the extant literature. In the non-triviality
and strong completeness proofs I shall exploit the constructions I intro-
duced earlier for a representation theorem.*

Before launching the formal development, however, I wish to make some
motivating remarks and introduce informally some of the intuitive concepts
we draw upon.

What is necessary may not be g priori certain; that is, we may not be able
to ascertain that it is so without recourse to experience. At least, this is a
view that has been cogently argued and widely accepted. Examples offered
of necessary truths which are not a priori are the statements that Hesperus
is identical with Phosphorus (Kripke) and that water is H, O (Putnam). The
history of logic offers other, more recondite and less fashionable, examples
of this distinction. If this is correct then one statement may be a priori
certain and the other not although their truth value is the same in all possible
worlds. Hence if this view is accepted we must attempt to develop a seman-
tic theory in which the semantic correlate of a statement is not the set of
possible worlds in which that statement is true, and is not determined by
this set.

A rough guiding idea that has appeared in other contexts is that intra-
person synonymity of two statements is determined by that person’s propo-
sitional attitudes. This idea is not easily explicable, if only because the
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objects of the so-called propositional attitudes are not plausibly identified
as expressions. A person may believe that 4, not realize that sentence B is
tautologically equivalent to sentence 4, and for that reason not agree that
he believes that B. In that case (in the conviction perhaps that he would
agree, were he to realize a certain fact of logic) we would presumably be
happy to report that he does believe that B. This does not entirely make
nonsense of the attempt to represent a rational person’s state of belief by
means of a function defined on the sentences of a language; but it does
make it at least an idealization.

On the other hand, it is a pertinent idealization. Suppose we think of
belief as a theoretical notion related operationally to experiments with bets
in the way outlined by such Bayesian writers as De Finetti, Savage, and
Jeffrey. Then it is important to point out that a person betting against
nature may be in a Dutch Book situation (that is, may have engaged a set of
bets such that he will necessarily experience a net loss) because he does not
realize that some a priori uncertain statement is necessarily true. Coherence
in the sense of obedience to the axioms of probability theory cannot rule
out such a situation. Hence even with a commonly used idealization, which
in effect equates tautologically equivalent statements, we find a genuine
and important difference allowed among attitudes toward statements which
have the same truth-value in all possible worlds.

The idealized model to be used here as intuitive guide for the logical
theory is accordingly as follows. A person’s epistemic state can be repre-
sented by means of a conditional probability function defined on the set
of sentences of a language. What is being represented can at present only
be described informally as follows. This person envisages a large space K
of possibilities, which he first of all divides into two parts, 4 and B. He is
unconditionally sure that the actual situation is identical with one of the
possibilities in 4. His unconditional degrees of belief are equal to degrees
of belief condition on (the actuality lying in) K, hence his degree of belief
that (the actual lies in) 4, given K equals 1. But he also allocates degrees
of belief on the supposition that his unconditional certainty is mistaken,
i.e., that the actual lies outside of 4. This divides B into two parts, B, and
B, . He is sure that actuality lies in B, given that it lies outside A. Of course
he may consider it more probable that the actual situation is in B} than
that it is in B, given that it lies outside A. It is part of the idealization that
such comparisons are numerically representable in a unique way. Further
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discussion of the plausibility and possible improvement of this idealized
model I shall leave to epistemological studies where it is frequently encoun-
tered.

2. LOGICAL ANALYSIS OF PROBABILIFIED LANGUAGE

Suppose that a person’s epistemic state can be represented by a conditional
probability function. Then we can say that for him, 4 implies B exactly if
the probability of B is at least as high as that of 4, on every specifiable
condition. Let SY be a syntax with various sentence connectors, such as
&, v, D, ~; also two special sentential constants t and f, For convenience,
each sentence B can be written variously as y(4), Y(C), etc.;in a single
context, y(A4) and Y (C) are understood to be the results of substituting
respectively A and C for all occurrences of an atomic sentence £, which is
foreigh to A and C, in a certain sentence. For example, that certain sentence
may be (4 D E), in which case {(4) = (4 D A) and Y(C)=(4 D ).

By the above characterization of implication, 4 and B have the same
place in the web of implicational relations, for a given person whose state
is represented by P, exactly if P(4|C) = P(B|C) for all sentences C of SY. I
shall use the functional notation g(+) in the obvious way: g(+) = @ means
that g(x) = ¢ and g(-) = h(-) that g(x) = h(x), for all arguments x in the
domain (assumed common) of g (and 4). Thus 4 and B have the same impli-
cational place exactly if P(4|-) = P(B|-). I shall restrict this study entirely
to those binary functions defined on SY in which sameness of implicational
place is carried over by the sentence connectors:

(2-1) A real binary valuation of SY is a binary function m defined
on SY, with range in the real numbers and such that if
m(A|-) = m(B|-) then m(y(4)|-) = m(y (B)I-) and
m(- | (A)) = m(- |y (B)).

For such binary valuations we can define the reduction SY/m of SY modulo
the equivalence relationship m(4|-) = m(B|-). We find that SY/m is an
algebra with n-ary operator [{/] defined by [y] ([4,), ... [4.]) =
[W(A4,,...,A4,)] and partially ordered by the relation [4] < [B] defined
by m(A|-) <m(B]-), where square brackets indicate the relevant equiva-
lence class in SY. Moreover, m induces a binary function of SY/m, defined
by [m] ([4] |[B]) = m(A|B), so that m can always be thought of as the
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composition of an interpretation of the syntax in an algebra, plus a binary
valuation on that algebra.

In all the literature I know, the probability functions used have been real
binary valuations in this sense, though this is usually guaranteed by the
special postulate that if P(4|B) = P(B|A) = 1 then P(-|A4) = P(-|B).

3. THE POSTULATES

What should a function be like to be called a conditional probability func-
tion? To begin, I think that it should be a real binary valuation with bounds
zero and one; secondly it should have some reasonable additivity property
if one can be formulated at all (not necessarily as strong as the one I shall
use below); and thirdly, to honor the conditionality epithet, it should be
‘conditionalizable’. My explication of this third notion is that a class of
postulates for a syntax with conjunction should be reasonable in the sense
that the following holds:

BASIC LEMMA. If P satisfies the postulates, and P4 is defined as
P(+|— &A4), then P* also satisfies the postulates.

We refer to P4 as P conditioned on A. Usually the Basic Lemma is provable
by inspection. Popper had a postulate which violates it: P(4 |B) # 1 for
some 4 and some B. This rules out the abnormality, the constant binary
function with value 1. I take it that there is no good reason for such a
postulate. Here is a list of postulates for discussion:

QL 0<P|B)<PA|A &B)=P(t|B)=1
P(f1C) = 0 unless P(+|C) = 1

QIL PA&B|C)=PB & A|C)

QIIL P(A &B|C) = P(A|C)P(B|A & C)

QIV. P(A vB|C)+ P4 &BIC) = P(A|C) + P(B|C)

Qv. PAIB&-)=1iff PBDAl-)=1

QVL P(AD (B D C)|E)=P (4 &B) D CIE)

QVIL.  PA|C)+P(~A|C)=1, unless P(-|C) = 1
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Of these, QIV—VI are redundant given the others, v and D being uniquely
definable. Later I shall add postulates for quantifiers. The class of real
binary valuations P which satisfy postulates QI—Qn for all sentences 4, B,
C, E of SY, I shall call the class CQ(I—#n). We must first ask which of these
classes are reasonable in my sense.

(3-1) If ¥V # n < VII then the Basic Lemma holds for CQ(I-n)

A note on QV: it and QVI were suggested by Birkhoff’s axiomatization of
intuitionistic logic.5 They are demonstrably different from the postulates
proposed in Morgan and Leblanc (1980) for intuitionistic logic, with neg-
ligible overlap in the sets of functions defined. In such areas as quantum
logic, and logics of subjunctive conditionals, QVI will not be correct. For
the former, QIV is also too strong; in the case of the latter, however, we
generally have a material as well as a genuine conditional, and QV—QVI
hold for the material one.

Proof of (3-1) is by inspection for all but QV in CQ(I—VI). In that case
we argue that PE(4|B & +) = 1 iff P(A |(B & *)& E) = 1 iff P(A|(E & B)
& ) =1 (for which, see (3-2) (i) below) iff P(E & B) D A[|-) =1 by QV,
iff (ED (B DAY )=1by QVLiff PBDA|E & ) =1 by QV again, iff
P(BD A|- & F) =1 (see below), iff PE(B D A|-) =1, as required. The
missing justifications are supplied, inter alia by:

(3-2) The algebra SY/P forms a
(i) semi-lattice with [&] as meet, [f] and [¢] as zero and
one if P is in CQ(I-1II);
(ii) distributive lattice with [v] as join if P is in CQ(I-IV);
(ili) Heyting algebra with [D] as relative pseudo-complement
if P is in CQ(I-VI)
(iv) Boolean algebra with [~] as complement if Pis in
CO(I-VII).

A Heyting algebra (also called pseudo-Boolean algebra) is defined as a
distributive latice with zero and relative pseudo-complement, i.e. operation
—such that x <y — ziff x A y <z for all elements x, y, z. A Boolean
algebra is a distributive lattice with complement, i.e. operation® such that
XAaX*=0andXvX*=1

Result (3-2) is proved by means of elementary calculations which I shall
give here for some parts of (i) and (ii) only. Suppose first that [£] < [4]
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and [E] < [B], and we have already established that [C & D] < [C] for all
C, D. Then we note that P(F & A|C)=P(E|C)YP(AIE & C)y= P(E|C)
PEIE&C)=PE&E|C).S0 [E & A) = [E & E] = [E]. But also P(E &
AIC)=P(A & E|C)=PAIC)EIA & )< PAIC)PBIA & C)=P(4 &
B|C). Thus [4 & B] > [E & A] = [E] . Suppose next that [4] < [E] and
[B] < [E] and let us prove that [4] v [B] < [£]. It follows from (i) and
the suppositions that [A] = [4 & E], [B] = [B & F], and accordingly that
[A&B&E] =[A&B].SoP(AvB|O)=PA&E|C)+ PB&E|C)—
P(4 & B & E|C) by these observations and QIV, which equals P(£|C)

[P(AIE & C)+ P(B|E & C)— P(4 & B|E & C)] by QIII, which is P(£|C)
P(A v B|E & C) by QIV, which is less than or equal to P(£|C) by QI. So

[4 v B] <[E] in SY/P.

To prove distributivity, we need to show that [A & (B v C)] = [(4 & B)
vA&C).ButPA& B vOIEY=PAIE) [PABIA&EY+P(CIA&E)—
P(B & C|4 & E)] by QIIL, QIV, and QIII again; which equals P(4 & B|E) +
P4 & C|E) — P(A & (B & C)|E) by (i) and those same postulates. By QIV
again, that equals P((4 & B) v (4 & C)|E), as required.

Soundness of classical and intuitionistic propositional calculus for
languages with appropriate syntax SY and classes of admissible valuations
CQ(I-VII) and CQI—VI) follows now at once from familiar results relating
those logics to lattices. Note that in intuitionistic logic, negation is defined
by 74 = (4 D f). For the lattice-theoretic concepts and results I refer to
the summary by Fitting, the detailed proofs of Rasiowa and Sikorski, and
to Balbes and Dwinger (see bibliography). Note finally that IV—-VI are
redundant given I-IIT and VII, this latter set being sufficient to yield a
Boolean algebra with join and relative pseudo-complement uniquely defin-
able.

4. CONSTRUCTION OF CONDITIONAL PROBABILITY
FUNCTIONS

Preliminary to a discussion of completeness, and partly to establish non-
triviality, I shall describe constructions of functions belonging to the various
reasonable classes.

4-1) A simple valuation of a lattice L with zero element is a map
v of L into the real numbers such that (0) = 0, v(a) < v(d)
ifa<b,and v(av b)+ v(an b)=1v(a)+ v(b).

In Birkhoff’s terminology these are a kind of isotone valuation.
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The method of construction (see note 4) begins with the observation that
if v, and v, are simple valuations (possibly identical) and V(a|) is defined
to equal v, (a A b)/v, (B) if v, (B) is positive; v, (a A b)/v,(b) if v,(B) but not
v, (b) is positive; and 1 otherwise, then V has the properties expected of
conditional probability. There is no reason to restrict the construction to
two, or even finitely many, simple valuations.

The intuitive picture we may use is of a person who has a large stock of
absolute (i.e., one-place) probability functions, well-ordered by a certain
preference relation. He will use the first to give unconditional probability
judgments (“I am sure that the mass of the moon in kg. is not a rational
number’). But if asked for a judgment conditional on a supposition which
contradicts his unconditional certainty, he relies on the first function in
his stock which assigns a non-zero probability to a rational number (“If it
is a rational number, I am sure it is a rational number above 10”"). Renyi
spoke here of a dimensional ordering; for example:

The position of the particle is certainly not in cube ¥, ;but if it is in cube V, it is
certainly not on its side V, ; if it is on ¥, , certainly not on the edge V, , and if on the
edge V,, certainly not exactly on the vertex V.

This seems a reasonable ordering of certainties, since a plane has zero
volume, a line zero area, and so forth.

4-2) Let VA be a non-empty well-ordered class of simple valu-
ations on lattice L with zero and one, Define V(a|b) =
v(a A b)/v(b) for the first v in VA4 such that v(8) #0, or = |
if VA has no such element. In that case V has the properties:

V1.0< V(a|b)< V(alan b)=V(1|b) =1
V(0|b) = O unless V(- |b) = 1

V2. V(@A ble)=V(bAalc)

V3. V(@ ble) = V(alc) V(bla A ¢)

V4. V(avblc)+ V(ana blcy=V(alc)+ V(blc)

V5. V(@alb A -)=1iff V(5 —>al+)=1Iif Lis Boolean

V6. V(a—~> (b —~>c)le)=V(@n b)>cle)if L is a Heyting
algebra

V7. V(alc) + V(a* |c)= 1unless V(- |c) = 1,if L is Boolean.
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The obvious lacuna in the construction is that V5 need not hold if L is a
Heyting algebra. V6 holds there because in such an algebra,a = (b > ¢) =
(a A b) = ¢. V7 holds if L is Boolean because if v is the first element of VA4
such that v(c) is positive, then v(a* A ¢) + v(@a A ¢) = v((a* va) A ¢) +
v(a* A a A ¢) = v(c) +v(0). In addition, if L is Boolean, (b »>a) = (" va)
so to demonstrate V5 there it suffices that v(a A b A x) = v(b A x) if and
only if (5" v a) A x) = v(x). But v((3* va) Ax) = v((* Ax) v(a nx)) =
VB AX)+V(Bx)—v(d " Aanx)=[v(x)—v(BAXx)] +v(@nx)—
[v(a A x) —v(b A a A x) which does equal v(x) if and only if v(b A x) =
(b A a A x) as required.

There are now two approaches to the problem of constructing binary
valuations on a Heyting algebra with properties V1—V6. One produces the
trivial range {0, 1}, and can be used in a completeness proof; I shall leave
that to the next section. The functions produced by the other have arbi-
trarily large ranges inside [0, 1], but are ‘classical’ in a certain sense. These
can be produced by extending simple valuations on the Boolean algebra
R(L) of regular elements of L, that is, elements of L such that a = a**,
where a* is defined as (g = 0). These are exactly the elements a = 5* for
some b in L, because 5*** = b*. Here is a summary of relevant facts and a
lemma on classical valuations:

(44) If L is a Heyting algebra then
i @va**=1a*"*"*=a"
(ii) (a v b)** . (a** v b**)**
(i) (@A b)) =a**Ab**
@(iv) @-=>bp)*=a**nrb*

(v) ifa<bthenbd*<qg*anda** <p**

(4-5) If L is a Heyting algebra then the algebra R(L) of its regular
elements is a Boolean algebra with the zero, one, meet of L,
* as complement and (2 + ) = (a v b)** as join.

(4-6) Let v be a simple valuation on the Boolean algebra R(L) and
extend it to L by the equation v(a) = v(a**). Then v is also
a simple valuation on L.
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First v(0) = 0, (1) = 1; second if 4 < b then a** < »** s0 v(a) < v(d);
thirdly, v(@ v b)) =v((a v B)**)=v((a** v**)*")=v(@*" + b**) =
v@**) + v(b**)—v(@** A b**)=v(a) + v(b) —v(a A b). A valuation
produced in this manner will be called classical

47N If VA is a non-empty well-ordered class of classical valuations
on Heyting algebra L then V, as defined in (4-2), has pro-
perties V1-V6.

In view of (4-2) we need only demonstrate V5. Suppose that V(a|b A x) # 1
and let v be the first element in VA4 such that 0 # v(d A x). Then v(b A x) #
v(a A b A x). By lemma (4-8) below, v((6 = a)* A x)# 0. But v((6 > a) A
(b~ a)* Ax)=0,hence ¥(b—>al(d—>a)* A x)+# 1. Suppose secondly that
V(b —>alx)+# 1 and let v be the first element of VA4 such that 0 # v(x).
Then v(x) # v(x A (b — a)). So by lemma (4-8) again, v(x A b A a*)#0,
and V(alb A x A a*)# 1. In each case, given that some member v of ¥4 has
the property, there will be a first such member, and so we deduce that V5
holds. There remains the lemma.

(4-8) If v is a classical valuation on a Heyting algebra then
(i) vxAGB—2>a)*)=0impliesv(x Aana b)=v(x A b)
(i) vy A baa*)=0impliesv(y A (b —a)) = v(y)

To prove (i) assume its antecedent. Because v is classical, it will suffice to
show that v(x** A 5**) = v((x A a A b)**). For momentary convenience,
let

u=x*aAb*" an(->a’
w=x"Ab" A (b—>a)*"

In R(L),x** A b** is the join of u and w. But v(u) = v((x A b A (b > a)*)**)
Sv((xA(B-=a))*)=v(0)=0.Hence v(x** A b*)=v(W)=v((x A b A
@ > a)*™")=v((x A b A a)**) as required. For the second part, we know
that y** is the + join in R(L) of [y** A (> a)*] and [y** A (B > 0)**];
the former is y** A 5** A a*, to which v gives the same value as to
Y A b aa*. Soif that is zero, v(y**) = v(y** A (B > a)**) = v(y A (b > a)).
That there is indeed a significant variety of classical valuations in Heyting
algebras is clear from the fact that even in the free Heyting algebra with two
generators, R(L) is infinite.®
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5. STRONG COMPLETENESS OF CLASSICAL AND
INTUITIONISTIC PROPOSITIONAL CALCULUS

We can say that A,,...,A, implyBinPif (4, & ...&A},) implies Bin P.
As we shall see in Part Two, generalization to infinitely many premises is
not straightforward. However the correct definition must certainly entail
the necessary condition:

(G- if set X implies B in P, and P(4|C) =1 for all 4 in X, then
PBICO)=1.

This will suffice for our proofs of strong completeness.

For classical propositional calculus, this is exceedingly easy. If B cannot
be deduced from X in that logic, we know that there is a map of w of SY
into {0, 1}such that w(f) = 0, w(£) = 1, w(£ & C) = w(EYW(C), w(~ E) =
1 —w(FE) and assigns 1 to all members of X, 0 to B. The function P defined
by P(E|C) = w(E) if w(C) = 1, or 1 otherwise (reminiscent of construction
(4-2)) belongs then to the class CQ(I--VII) — recall that QIV—VI are redun-
dant here — and x does not imply B in P.

For the case of intuitionistic propositional logic I shall adapt the standard
strong completeness proof given by R. H. Thomason for an intuitionistic
quantification theory.” The general argument is this: let sentence B not be
deducible from set of sentences X by intuitionistic logic (briefly, X does
not entail B). Then there is some syntax SY to which X and B both belong,
and a function P in CQ(I-VI) defined on SY: such that P(4|-) =1 for all
A in X, but P(B|-) # 1. It will turn out, in fact that if X and 4 do not
jointly entail B, then there is a condition C such that P(B|4 & C) # 1. We
could call P a canonical probability function for X, since it does this job
for all sentences A and B.

Roughly following Thomason’s terminology, let the syntax with t, f, &,
v, D, and countable set of atomic sentences C be called the morphology M
generated by C. Let M(E) be the morphology generated by £ U C when C
generates M. A prime theory T in M is a set of sentences of M closed under
intuitionistic deduction and such that if (4 v B) is in T, so either 4 or B.
The following fact from proof theory is needed:

(54) Let M be a morphology and E a countable set of atomic
sentences foreign to M, X a set in M, B a sentence in M, and
Y a set of sentences in the morphology generated by £ alone.
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Then if X does not entail B, and Y does not entail f, there
exists a prime theory T in M(£) which contains X and Y
but not B.

This is really a combination of several facts which are also used or proved
in Thomason’s completeness proof, and several others: the finitary charac-
ter of intuitionistic deducibility and the Interpolation Lemma for intuition-
istic logic.?

Let X now be a specific consistent set in morphology M, E a countable
set of atomic sentences foreign to M, and let SY = M(E). Let Z be the class
of prime theories in SY which contain X. Where the members of £ are
ordered as 4, A,, . . . define Z(n) to be the subclass of Z which contains
as member the atomic sentence 4,,, but no atomic sentences after 4,,. Let
Z(0) be the remainder of Z; that is, Z(0) consists of those prime theories
that contain no members of E (they may of course contain complex senten-
ces made up from members of F).

We now order the countable set of pairs {4, B} of sentences 4, B in SY
such that X and 4 do not jointly entail B, as the pairs p,, p,, . . . For each
pair p; we choose a number g(i) as follows:

(a) if (4, B) = p; then A4 and B belong to the morphology
M({4y, ..., gy Y

(b) 2<g(N<g(G+ 1)

This can be done inductively, choosing M({4;, ..., A,}) where n is the
first number such that 4 and B belong to that morphology, and then
choosing g(i) to be the first number after n and after g(i — 1).

Let T(p;) be the set of prime theories in Z that contain 4 and A4, and
~ A, for all n > g(i), but not B — where (4, B) = p;. That set is a subset of
Z(g(i)). Also, it is not empty, because of fact (54), since X and *4 do not
entail B and {4z, ~ Aggyer, ~ Agysz s - - -His consistent.

We now well-order Z as follows. First we well-order Z(g(7)) so as to place
a member of T(p,) first. Since all the classes Z(n) are disjoint for distinct »,
this can be done for all of them at once. Next we well-order each class Z(n)
with n not in the range of g, in some way or other. Finally, we order Z by
saying that T in Z(m) precedes T' in Z(n) exactly if either m <norm = n
and T precedes T in the previously chosen well-ordering of Z(m). It will
now be clear that if (4, B) is the couple p;, then the first theory in Z which
contains both 4 and A, is the first in Z(g(7)), and does not contain B.
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(5-5) Define P on SY by the condition that for all sentences 4',
B' of SY, P(A4"|B')=1if A’ belongs to the first member of
Z which contains B', or if Z has no such member, and zero
otherwise.

This is of course similar to the construction in (4-2), and all but QV are
easily checked. It T contains 4 & B it contains 4, t, B & A; it does not
contain f if it is in Z at all; thus QI and QII hold. For QIII, if the first theory
T’ that contains C also contains 4 & B, then it is also the first to contain
A& C;s0P(A & B|C), P(A|C), P(BIA & C) are all 1. If T' does not contain
A & B, then it lacks at least one of 4 and B. If it lacks 4 then P(4 & B|C) =
P(A|C) = 0. If it contains A it lacks B, in which case T is also the first to
contain 4 & C, and we have P(4 & B|C) = P(B|A & C) = 0. Finally suppose
there is no member of Z which contains C; then neither can any contain
A & C, hence both sides of the equation are 1. For QIV, we note that if
there is a first theory in Z that contains C, then (being prime) it contains
A v B only if it contains at least one of A and B, and contains both 4 v B
and A & B exactly if it contains both 4 and B. For QVI we need only note
that 4 D (B D () and (4 & B) D Care deducible from each other.

This leaves QV, for which we go to so much trouble. Suppose P(4 |B & C)
# 1. Then the first theory to contain B & C does not contain 4,50 X, B & C
does not imply 4. Hence X and C do not imply B D A. Let (C, BD A)be
the pair p;; then the first theory in Z which contains C and Ag, does not
contain B D 4. Hence P(B D A |C & Ag,) # 1. Conversely, suppose that
P(B D A|E)# 1. Then X, E does not imply B D 4, s0 X, E & B does not
imply A. Let(E & B, A) be the pair p;; then the first theory which contains
E & B & Ay does not contain 4, and so P(4 |[E & B & Agjy) # 1.

Finally we need to check that P is a real binary valuation of SY. Suppose
that A4 is not deducible from X and B. Let (A4, B) be the pair p;; then
P(BIA & Agjy) # 1. But P(A 14 & Agyy) =1 by QI; hence P(4|-) # P(B|-).
Similarly of course if B is not deducible from X and 4. Hence if P(4|+) =
P(B]|-) then A and B are proof-theoretically equivalent relative to X, and
hence {/(4) belongs to a theory in Z if and only if Y/(B) does. 4 fortiori A
and B are mutually replaceable everywhere in P(—|-).

It will have been noted that, as in the standard strong completeness proof
for quantificational intuitionistic logic, I have used a syntax extension. The
above proof does not rule out — especially since I gave only a necessary
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condition for infinitary implication — that only weak completeness may be
provable for the ‘right’ definition of infinitary implication, for the class of
members of CG(I—VI) defined on a given syntax SY. In other words, the
condition QV may be what Leblanc calls “essentially substitutional”. A
similar problem will appear in classical quantification theory; and these
problems are bound up with the general problem of implication relfltion-
ships to be investigated below.

6. CLASSICAL QUANTIFICATION: FIRST ANALYSIS

There is in my opinion no reasonable treatment of quantification within
pre-objective probabilistic semantics. I shall describe some treatments that
work, in the sense that classical quantificational logic is sound and strongly
complete; and I shall opt for one of them. In the next section I shall discuss
how it might be made more reasonable in other aspects; this will at once
provide some concepts needed for the more abstract problems of Part Two.

Leblanc proposed the postulate (in effect):

(6-1) P((x)Fx|B) = limit P(Ft, & ...& Ft,|B) where ¢, t,, ...

n— oo

are all the individual constants of SY.

(Our syntax is now assumed to have individual constants and variables, pre-
dicators of various degrees, and the universal quantifier.®) But in order not
to lose strong completeness he redefined implication so that X implies B in
P defined on SY only if X implies B in P' for each P’ agreeing with P on SY,
but defined on a morphology generated by the primitive vocabulary of SY
plus a set of individual constants foreign to SY ( a “term extension of SY™).
Of course this is equivalent to the sort of procedure I adopted for intu-
itionistic logic; strong completeness is proved in the sense that if B is not
deducible from X, then there is some syntax SY' to which X and B both
belong, and a function P defined on SY' and obeying the postulates, and
some sentence C of SY' such that P(4|C) = 1 for all 4 in X but P(B|C)# 1.
Hartry Field had adopted a slightly different approach. He wishes impli-
cation to remain a relationship defined for P in terms of P and no other
probability function, and gets the same effect as Leblanc by defining:

(6-2) A reasonable probability function defined on SY is the
restriction to SY of any function defined on some term
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extension of SY, which obeys a certain set of postulates
(equivalent to QI—VII and (6-1)).

In that case the strong completeness result is that if B is not deducible from
X, then there is a reasonable probability function defined on the smallest
syntax (with &, v, D, ~, (x)) to which X and B belong, and a sentence C of
that syntax such that P(4|C) =1 for all 4 in X but P(B|C) # 1.

T'have spent some time outlining these two different, but for all ‘practical’
purposes equivalent approaches, to draw attention to the fact that strong
completeness is a problem here which apparently requires artful dodges —
ad hoc manoeuvres, epicycles. They are reminiscent of the “substitution
interpretation™ of the quantifiers, not merely in the explicit reference to
the language’s vocabulary, but in the mystery they leave us with: Why is
strong completeness so great a good that we go to such trouble for it?

Field answers that strong completeness is not itself the desideratum: it is
reasonable for a person to envisage additions to his language, and to take
this into account when he constitutes his subjective propbability function.
Presumably he may envisage an extension of his language in which he can
say: “There are entities not named by any terms in my language, distinct
circumstances not differentiable by means of my predicates, . . .” and so
on. But is that not simply to admit that probabilistic semantics must be a
non-self-sufficient fragment of a larger theory of language?

The postulates I shall propose will allow a strong completeness proof
without recourse to either limits of sequences, or term extensions. They will
still be unreasonable in another way, on a more basic level.

I use the notation (¢/x)4 to stand for the result of replacing all free
occurrences of x in 4 by occurrences of constant ¢,

QVIIL.  P((x)AIB) = P((t/x)A|B)P((x)A|B & (1/x)A)

QIX. P((x)4|B) = P(A|B) if x not free in A

QX. If P((t'/)A|B & -) = 1 for all constants ¢’ in the domain
SY of P, then P((x)(x/t)A |B) = 1, where x is any variable

such that r does not occur in the scope of (x) in 4 (briefly,
such that ¢ is free for x in 4).

It will be apparent that the Basic Lemma holds for CQ(I-X). To prove
the soundness of quantificational logic for a language with syntax SY and
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class of admissible valuations CQ(I-X) we should of course first settle on
some formulation of that logic. The following is convenient; it is the one
Leblanc used. Note that the sentences never contain free variables; but when
A occurs as a part of a formula it may have free variables in it. The axioms
are the sentences in set 04X defined inductively by:

1. if Cis a theorem of classical propositional logic, then C
isin QAX
2. if C has the form

(a) (x)BD(¢/x)B

(b) B D (x)B, where x not free in B

(c) x)(ADB)D-(x)AD(x)B
then Cis in Q4X

3. if Cisin QAX and ¢ is free for x in C, then (x)(x/r)C
isin QAX

The proviso, that 7 be free for x, in QX and clause 3 here has of course the same
reason: we do not wish to assert (x)(x/)((¥)(3x)(~ Rxy) D (Ix)(~ Rx?1)).

The only rule of this logical system is modus ponens; B is a consequence
of X exactly if there is a derivation of B from members of X U Q4X by
repeated applications of that rule.

It will suffice for soundness to prove that if 4 belongs to QAX and P to
CO(1-X), then P(4 |+) = 1. If 4 belongs to QAX and the member of quanti-
fiers in A is zero, then A4 is a theorem of classical propositional calculus,
and the considerations of section 3 suffice. Suppose then that the thesis
holds for all members of QA4 X having at most # quantifiers in them, and
that 4 has n + 1 quantifiers in it. If 4 has the form (x)B D (#/x)B then
P(A|-) = 1by QI, QV, and QVIII; it it has the form B D (x)B, and x is
not free in B, then P(4|+) = 1 by QV and QIX. (Recall here that if P is in
CO(I-VI) then A implies B in P iff P(4 D B|-)= 1)

For 2(c) suppose that C has form (x)(B D C) D [(x)B D (x)C]. For
brevity, call a sentence D a P-tautology ora priori in P exactly if P(D]-) = 1.
We note that

(x)A D (#/x)A and (x)(4 D B) D (t/x)(A D B), ie.
()(4 D B) D [(t/x)4  (1/x)B]
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are P-tautologies by preceding reasoning; relying on the soundness in the
present context of propositional logic we infer that

[(x)(4 > B) & (x)A] D (t/x)B
is a P-tautology too. By QV then,
P((t/x)BI(x)(ADB) & (x)4 & -)=1

and since this has been established for an arbitrary constant ¢, we can gen-
eralize to all constants ¢'; and since (¢'/£) (#/x) is (¢'/x), we apply QX to
derive

P()BI)(A DB) & ()4 & ) =1

whence by QV again, P([(x)(4 D B) & (x)A] D (x)B|-) = 1, and our con-
clusion follows by QVI. (We note that f must be chosen free for x in
(¢/x)B).

Finally, to validate clause 3, suppose that A is (x)(x/£)B and B, with ¢
free for x, is in QAX. In that case every sentence (¢'/f)B is also in QA X,
an easily attested fact of our proof theory. But (¢'/£)B has at most
quantifiers in it, so by our hypothesis of induction, P((z'/t)B|[+) =1 for all
constants ¢'. Hence by QX, P((x)(x/f)B|-)=1.

Turning now to completeness, we can again draw on a standard strong
completeness result. Suppose that B is not deducible from X in quantific-
ational logic; let SY be the minimal syntax with all the given connectors
and a universal quantifier, to which both X and B belong. Then we must
prove that there is a function P and a sentence £ of SY, such that P is
defined on SY, P is in CQ(I-X), P(A|E) =1 forall 4 in X and P(B|E) # 1.

A model for SY consists of a non-empty domain D and an interpretation
Junction I which assigns an n-ary relation /(P) on D to each n-ary predicate
P. A countable sequence s of members of D satisfies a sentence A in this
model exactly if certain familiar conditions obtain, of which I shall list two:

) s satisfies Pby. .. by, exactly if (s(b;), ..., s(b,)) is in I(P),
where s(b) is the n'™ member of s when b is then the n'®
individual constant of SY (in the given, “alphabetical”
ordering)

(ii) s satisfies (x)(x/b)B exactly if all sequences s’ which are like
s except perhaps in the n® place satisfy B (where b is the n®
individual constant)
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The standard result needed is that if B is not deducible from X in quantific-
ational logic then there exists such a model M,,, and a sequence s, in that
model which satisfies all members of X, but not B. Using this model and
sequence, we can construct a function P in CQ(I-X) of the sort required
for the probabilistic completeness proof.

Let J be the set of all sequences in M,,, well-ordered in such a way that
8o is placed first. Define, for all sentences E, Cin SY:

P(E|C) =1 if the first sequence s which satisfies ¥ satisfies
C also, or if there is no sequence that satisfies C; and =0
otherwise.

This is again exactly similar to (4-2) since satisfaction by s can be repre-
sented by a map into {0, 1}, with &, v, D, ~ treated in the Boolean way.
We also note that P(E'|f) = 1 iff 5, satisfies £, hence if we can only verify
that P obeys QVIII to QX, then our completeness proof will be finished.

For QVIII suppose that the first sequence in J which satisfies B also
satisfies (x)A4. Then it must satisfy (b/x)A4, so it is a fortiori the first which
satisfies B & (b/x)A. Both sides of QVIII then equal 1. Suppose secondly
that it does not satisfy (x)A; then either it does not satisfy (b/x)A, or else
the first one to satisfy B & (5/x)A4 does not satisfy (x)4; in either case,
both sides of the equation are zero. Finally suppose no sequence satisfies B.
Then also no sequence satisfies B & (b/x)A4; so both sides equal 1 again.

QIX needs no argument. For QX, suppose that P((x)(x/b)A|B) # 1.
Then some sequences satisfy B, and the first of these, s, does not satisfy
(*x)(x/b)A. Now b may appear in B, but we note that if »' is foreign to both
A and B, then (x/b)A = (x/b")(b'/b)A. In that case, if s' is like s except
perhaps at b', it will satisfy B; but one such fails to satisfy (b'/b)A because
s does not satisfy (x)(x/b")(b'/b)A. Let 5" be the first to satisfy B which
does not satisfy (b'/b)A; then it is the first to satisfy B & ~ (b'/b)4. In
view of this, P((b'/b)A|B & ~ (b'/b)A) = 0; thus QX holds.

7. SUBORDINATION: TOWARD MORE REASONABLE
VALUATION CLASSES

What more can we expect, besides soundness, strong completeness, and
non-triviality results? I gave one answer when I listed the Basic Lemma in
section 3 as a guide to the selection of postulates. It ruled out, for example,
such a replacement for QX as
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a-n If P(A|B & +) = 1 and b does not occur in B, then
P((x)(x/p)A|B) = 1,

which might look attractive for other reasons. For suppose that P(E|+) # 1;
then P could satisfy (7-1) (for all sentences A, B, terms ) while PZ does
not, because PE(E|+) = 1, while PE((x)(x/b)E|f) = P((x)(x/b)E|E) need
not be 1 at all.

But even with our present treatment, there is something odd. Let b,,

b, ,. .. be all the individual constants in our language, and suppose we
could conditionalize on all of Fy = (b,/b)E, F; = (b, /b)E, ... Presumably
the result would be a function P’ which is the limit of PF1 & ---& F noasn
goes to infinity, if this can be done at all. But it is easily seen that although,
if P obeys QX, then so does each new function PFs & ---& Fn_that limit P’
may not. For perhaps P(F, & ... F, |f) was greater than zero but less than
1 for each number n, while P((x)(x/b)E|t) was zero; in that case P'((x)
(x/B)E|?) is also zero.

In other words we have failures of an infinitary version of the Basic
Lemma. Those failures would come to haunt us if we extended SY to infini-
tary conjunction. And if they do not haunt us now, it is therefore only
because of the poverty of our syntax. Any virtue which depends on that
poverty, is no virtue at all.

To see how we can ameliorate this situation, let us see how we can
change the classes CQ(I-n) without upsetting logical soundness and strong
completeness results. Clearly if we merely enlarge such a class, no complete-
ness result is lost. And if we add new members P such that if 4 implies B
in all members of the original class, then also 4 implies B in P, it will follow
that no soundness results are lost, assuming that the logical sequence relation
is finitary and 4,,..., A, imply Bonly if (4, &...A,) does.

Finally we note a distinct difference between QV and QX on the one
hand, and on the others. The former may be called global postulates, the
latter local. The former are directly concerned with the a priori, and the
latter at most indirecly. The local postulates will not affect validity of
infinitary arguments. We arrive therefore at the following concepts:

72 If Pis a real binary valuation of SY, and Wa class of real binary
valuations, defined on syntaxes containing SY, we call P sub-
ordinate to W (briefly W 3 P) exactly if for all 4 and Bin SY
if A implies B in each member of W, then 4 implies B in P,

b
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(7-3) CQ*(1—n) is the set of real binary valuations P such that
X 3 P for some subset X of CQ(I—n) and such that P obeys
the local postulates among QI-Qn.

This idea has several consequences for our preceding results.

74) If Pis in CQ*(I-n), with n = VI, VII, X, and Y = (B,
B,, ...)and the function PY:
PY(A|C) = limit PA|C& B, & ...& B,)

exists, then it is also in CQ*(I-n).

To prove (7-4) we first note that the Basic Lemma holds in these cases, for
the simple reason that if W 3 P then W 3 P4; and we know from previous
considerations that P4 satisfies the local postulates if P does.

So, defining P" to be PB: & ---& Bn e see that any class W in CQ(I-n)
such that W3 P, is also such that W 3 P" for all n. But if 4 implies B in all
P* then P(A|C&B, & ...&B,)<P(B|C&B; & ...&B,) foralln,so
also the limit of the first sequence is no greater than that of the second:

A implies B in PY . Thus W 3 PY

We must finally check that PY obeys the local postulates which all
members of W obey. In some cases this is obvious: since 4 & B implies B &
A in PY, and vice versa, QII must hold. Similarly for QVI. Since P"(¢|4) =
P"(4|B & A)= 1 forall n,and 0 <P"(4|B) <1 for all n, P¥ obeys the
first part of QI. Suppose now that PY(-|C) # 1 so let PY (BIC) # 1, i.e.
limit P*(B|C) # 1. But P*(f|C) < P"(B|C) forall n; therefore PY (f|C) # 1.

n -+ oo

It follows that for every n there is a ¢ > n such that P2(f|C) # 1. But if it
is not 1 then it must be zero; hence for each » there is a ¢ > n such that
PA(f1C) = 0; thus PY (f|C) = 0.

For QIII and QVIII, we can appeal to the fact that limit (v - z) = limit
y « limit z; and for QIV to the fact that limit (v + 2) = limit y - limit z;
similarly for QVII. This ends the proof.

It may be as well to give a concrete example at this point of a function
in CQ*(I-X). To show that the fact that Fb,, Fb,, . ..are all g priori in P
does not guarantee that (x)Fx is, let us recall the construction in the com-
pleteness proof in section 6. In that construction, take X to be {Fb,,
Fb,, ...}, where by, b, . . .are all the constants, and B the sentence (x)Fx.
The first sequence s, in J satisfied all of X but not B; keep it there but
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well-order J in such a way that all the sequences which satisfy X come first.
The constructed function P is such that if X U {C} is satisfiable in the model
at all, then the first sequence which satisfies C, also satisfies X; and of
course we still have P((x)Fx|t) = 0. If we now let P" be P conditioned on
Fb, & . ..& Fb,, we see the tailend of J being lopped of bit by bit. Because
we know the “insides” of the construction of P, we have a very straight-
forward way of conditioning P on all of X: we delete all members of J
which do not satisfy X. Let the result be J', and let the function construc-
ted from J' in the way that P was constructed from J, be P’. Suppose now
that for given £ and C, E does not imply C in P'. Then the first sequence

in J' which satisfies £ exists and does not satisfy C; it must be inJ, and
must be the first in J to satisfy £, because J' is an initial segment of J. Thus
E does not imply Cin P. Hence P33 P'. So we see that P’ is in CQ*(1-X).
Yet Fb,, Fb,,...are all a priori in P', and P'((x)Fx 1) is zero.

We are able to claim a similar improvement in our relations with intuition-
istic logic. Let us go back to the construction in its completeness proof in
section 5, and suppose that B is a specific sentence of initial morphology
M which is not deducible from X; then there is already a prime theory T’
in the class Z(0) which does not contain B. Let that theory be placed first
in the well-ordering of Z(0). (Note that it may for instance include the
negations of all the “foreign” atomic sentences A,, A,,. ...) Thus the
constructed function P, and its restriction P’ to M are such that they assign
one to each member A4 of X conditional on ¢, and zero to B conditional
ont.

But P’ is in CQ*(I-VI). It is defined on M, and so cannot violate QI—
IV or QVI, since P obeys those (the local postulates). Finally it is clear that
if £ and C belong to M, and £ does not imply C in P’, then neither does it
in P;hence P P'.

.So we can state the stronger strong completeness result: if B is not
deducible from X in intuitionistic propositional logic, then there is a func-
tion P in CQ*(1-VI), defined on the minimal (&, v, D) syntax containing
X and B such that X does not imply B in P.

The subordination relationship, a generalization of that described in the
Basic Lemma, allows us therefore to define more reasonable classes of
probability functions than the postulates alone. But the Basic Lemma, and
closure under subordination for the classes of admissible valuations, should
be facts explained by the right semantics; not imposed on it. To that extent,
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the mystery remains. We will see in Part II that the problems we have just
discussed are in fact representative of a cluster of deep problems that
already exist in COQ(I1-III).

8. A FINAL WORD ON QUANTIFIERS

My postulate QX is still “substitutional”, in that it makes explicit reference
to the set of constants of the syntax. Stated informally it says in part that
if Ft' is a priori certain for each constant ¢’ then so is (x)Fx. The use of
constants and avoidance of assignments to open formulas is of course
inessential; we could have decreed instead that if Fy is a priori for each
variable y, then so is (x)Fx. The constants play the role here of ‘substitutive
variables’ (Curry) or ‘individual parameters’ (Thomason), not of names. It
is therefore natural to stipulate that there are infinitely many.

The substitutional character of QX means that from a model-theoretic
point of view it must eventually turn out to have a derivative status. Its
correctness must be something that is explicable on more fundamental
grounds; and it can in any case be correct only for a restricted class of
probability functions. Such restriction we have already found; QX charac-
terizes CQ(I-X), and not the more natural, reasonable class CQ*(I—X).

At this point we may not be too far removed from a genuine model-
theoretic point of view. For in the standard model theory of quantificational
logic we can also see a special place occupied by those valuations which are
the complete stock of valuations used by the substitution interpretation.
Given a domain D, an interpretation function 7, and a countable sequence
sin D, let us write s(b,,) for the n® member of s (where b,, is on n® con-
stant). The associated valuation v(s) assigns True to 4 if s satisfies A (in
model M = (D, D) and False otherwise. Let us call sequence s and its associ-
ated valuation v(s) proper exactly if for each variable x and sentence B, s
satisfies (x)(x/£)B if and only if it satisfies all the sentences (¢'/H)B, for
each constant ¢', We know very well that quantificational logic is not com-
pact if we restrict the class of admissible valuations to those associated
with proper sequences. But for each sequence s’ in the domain we can find
a function f of the set of constants into itself, and a proper sequence s such
that s'(b,,) = s(f(bn)) for each number . This observation is readily sugges-
ted by reflection on the use of term extensions in Henkin’s proof of strong
completeness. So all the sequences (and their associated valuations) can be
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regarded as ‘manufactured from’ proper sequences. Indeed, this fact is the
heart of Henkin’s proof.

So it is possible, if somewhat outré to think of standard semantics as
beginning with substitutional semantics (the class of valuations that can be
associated with proper sequences), and then liberalizing that by admitting
also valuations related in certain way to those in the original class. At that
point, only a Gestalt switch is needed to place us in the world of model
theory proper. But to make sense of this world we will need a direct charac-
terization of models, yielding a probabilistic analogue of the standard truth-
conditional semantics. This is the task of Part III of this three-part paper.

University of Toronto and
University of Sourthern California
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