The Effect of Social Media on Elections: Evidence from the United States∗

Thomas Fujiwara† Karsten Müller‡ Carlo Schwarz§

October 25, 2022

Abstract

We study how social media affects election outcomes in the United States. We use variation in the number of Twitter users across counties induced by early adopters at the 2007 South by Southwest (SXSW) festival, a key event in Twitter’s rise to popularity. We show that this variation is unrelated to observable county characteristics and electoral outcomes before the launch of Twitter. Our results indicate that Twitter lowered the Republican vote share in the 2016 and 2020 presidential elections, but had limited effects on Congressional elections and previous presidential elections. Evidence from survey data, primary elections, and a text analysis of millions of tweets suggests that Twitter’s relatively liberal content may have persuaded voters with moderate views to vote against Donald Trump.

∗We are grateful to Pablo Barbera, Levi Boxell, Matt Gentzkow, Ro’ee Levy, Alexey Makarin, Jesse Shapiro, James Snyder, Ekaterina Zhuravskaya, as well as seminar participants at Princeton University, Imperial College, Warwick University, Bocconi University, University of California San Diego, Insper, University of São Paulo, Inter-American Development Bank, IPEG/Pompeu Fabra, University of Zurich, OPESS, Università di Bergamo, the 2021 ASSA Conference, and the NBER Political Economy Spring 2021 Meeting for their helpful comments.

†Princeton University, Department of Economics and SPIA, and NBER, fujiwara@princeton.edu.
‡National University of Singapore, Business School, kmueller@nus.edu.sg.
§Universitá Bocconi, Department of Economics and IGIER, and PERICLES, carlo.schwarz@unibocconi.it.
1 Introduction

Does social media affect election outcomes? A popular narrative holds that Twitter played a decisive role in both recent American presidential elections and the United Kingdom’s “Brexit” referendum. Many see this as part of social media’s broader influence on political polarization and the re-emergence of populist politicians in many countries. The U.S. Federal Election Commissioner, for example, has argued that Facebook “has no idea how seriously it is hurting democracy” (NPR, 2020a). ¹

An alternative view suggests that social media platforms are biased against conservatives (e.g., NPR, 2020b; Wall Street Journal, 2020) and that its younger, relatively left-leaning user base is unlikely to tilt elections towards right-wing politicians (e.g., Boxell et al., 2017, 2018). However, there is limited evidence that can be used to evaluate these contrasting (causal) claims.

This paper focuses on the effects of Twitter, a platform used by almost a quarter of American adults. We estimate how a county’s number of Twitter users affects election results by exploiting a persistent network effect sparked by early Twitter adoption, building on Müller and Schwarz (2019). ² Although it was launched in March 2006, Twitter’s popularity increased rapidly after its advertising campaign at the South by Southwest festival (SXSW) in March 2007. The SXSW festival was also key for Twitter’s geographical diffusion: counties with more SXSW followers who joined during the 2007 festival saw disproportionately higher growth of Twitter adoption compared to counties with SXSW followers who already joined before the festival. Consistent with path dependence in technology adoption, this difference in Twitter use across counties persists.

Our identification strategy leverages the 2007 SXSW festival as a shock to early Twitter adoption that is uncorrelated with pre-existing election results. Conditional on geographic controls and previous interest in the SXSW Twitter account, a county’s number of SXSW followers who joined in March 2007 is essentially uncorrelated with a host of county characteristics. It is also unrelated to election outcomes before Twitter’s launch (going back as far as 1924) and during the period it had fewer users (between 2006 and 2012). However, the number of SXSW followers who joined in March 2007 is correlated with Twitter usage in 2016, and has predictive power for the 2016 and 2020 presidential election results.

We estimate that a 10% increase in a county’s number of Twitter users lowered the vote share of Republican presidential candidate Donald Trump by 0.2 percentage points (p.p.) in

¹See, for example, The New Yorker (2016); New York Times (2017); Allcott and Gentzkow (2017); The Guardian (2018); UK Parliament (2019).
²Enikolopov et al. (2020) use a similar empirical strategy based on spatial variation in early adopters of the social media network VK in Russia to study its effects on protests.
both the 2016 and 2020 presidential elections. The implied persuasion rates are 8.6\% and 9.4\%, respectively. These estimates are smaller than the estimated pro-Republican effect of Fox News (DellaVigna and Kaplan, 2007; Martin and Yurukoglu, 2017), the pro-Democrat effect of the Washington Post (Gerber et al., 2009), or the effect of get-out-the-vote canvassing on turnout (Gerber and Green, 2000), but larger than the effect of an independent anti-Putin Russian TV channel on vote shares (Enikolopov et al., 2011) or the effect TV rollout on turnout (Gentzkow, 2006).

For presidential elections before 2016, we find effects that are small and statistically indistinguishable from zero. The same holds true for House and Senate races, including the 2016 and 2020 elections. Twitter adoption thus lowered Trump’s vote share but did not do so for Republican candidates in congressional races in the same election. Together with other “placebo tests,” this pattern bolsters confidence that our estimates are capturing the effect of Twitter, which contains more content on presidential than congressional candidates.

An earlier draft of this paper, using only data up to the 2018 election, was posted online on October 2020. When updating it to include November 2020 election results, we made no revisions to the research design and regression specifications. In other words, the sample selection, choice of controls, and variable definitions in the regressions we report were all decided before the 2020 election results became available. Hence, our 2020 results can be interpreted as a “pre-registered” research design.\(^3\)

To shed light on the mechanisms behind these results, we estimate Twitter’s effect on vote choices reported in the Cooperative Congressional Election Survey (CCES), primary presidential candidates’ approval in the Gallup Daily Tracker, and county-level results in the 2016 and 2020 presidential primaries. Further, we explore data on the partisanship of political content on Twitter.

These exercises yield three findings. First, the CCES results indicate that Twitter’s effect is driven by independents and moderates switching their votes towards the Democratic candidate (Hillary Clinton). This is consistent with Bayesian updating, since moderates presumably have weaker priors and are thus more likely to be persuaded.

Second, we find that Twitter also lowered Trump’s vote share during the 2016 primaries, a finding we confirm using individual-level Gallup candidate approval ratings. We find that Twitter decreased Trump’s approval ratings and increased Clinton’s with only small effects on relatively more moderate Republican candidates.\(^4\)

\(^4\)We also estimate effects for the 2016 and 2020 Democratic primaries, detecting a (positive) effect for Bernie Sanders in 2020.
Third, we document that political content on Twitter has a pro-Democratic slant. We classify the slant of tweets based on two complementary approaches: one based on the network users follow and one using the text of tweets in a machine learning approach in the spirit of Gentzkow and Shapiro (2010). We apply these methods to the over 460 million tweets mentioning the presidential candidates in the 2012, 2016, and 2020 elections. We find that the number and attention (proxied by “likes”) of tweets mentioning Trump was substantially larger than that of those mentioning Clinton and Joe Biden. Moreover, tweets about Trump in 2016 and 2020 70% more likely to have Democratic rather than Republican slant. Overall, our results are consistent with Twitter and its relatively pro-Democratic content persuading voters with moderate views to not vote for Trump without inducing a more general negative effect on Republicans.5

Our work contributes to the literature on the impact of media on political outcomes. Expansions of traditional media such as newspapers, radio, broadcast television, and cable news have been associated with changes in voter turnout, polarization, and electoral outcomes.6 While a set of papers studies the effect of overall internet access, the effects of social media per se received less attention.7

A nascent literature studies the political effects of social media on protest participation (Howard et al., 2011; Enikolopov et al., 2020; Acemoglu et al., 2017, Fergusson and Molina, 2021), xenophobia (Müller and Schwarz, 2020; Müller and Schwarz, 2019; Bursztyn et al., 2019) and mental health (Braghieri et al., 2021).8 Additionally, a burgeoning field of experimental research focuses on social media. Bond et al. (2012) and Jones et al. (2017) provide evidence that online messages on social networks affect voter turnout. Alcott et al. (2020) and Mosquera et al. (2020) find that individuals who deactivate Facebook react along many dimensions, including some measures of political polarization. Levy (2021) studies the effect of randomly assigning Facebook users subscriptions to conservative or liberal media outlets. Bail et al. (2018) estimate the effect of paying Twitter users to follow a bot with messages of the opposing political ideology. Most related to our paper is recent unpublished work by Rotesi (2019), who finds social media negatively affected the Democratic vote share in the

5Note also that Trump’s platform and impact on social media content was likely distinct from previous prominent Republican candidates (Bursztyn et al., 2020).

6See, for example, Gentzkow (2006); Huber and Arceneaux (2007); DellaVigna and Kaplan (2007); Gerber et al. (2009-2011); Gentzkow et al. (2011); Enikolopov et al. (2011); Campante and Hojman (2013); DellaVigna et al. (2014); Larcinese and Miner (2017); Martin and Yurukoglu (2017); Spenkuch and Toniatti (2018); Chen and Yang (2019).

7There is evidence that broadband internet (Falck et al., 2014; Gavazza et al., 2019; Campante et al., 2017; Lelkes et al., 2017) and mobile internet (Manacorda and Tesei, 2016; Guriev et al., 2020) exert political effects.

8For reviews, see DellaVigna and Gentzkow (2010), Napoli (2014), Strömberg (2015), Enikolopov and Petrova (2015), and DellaVigna and Ferrara (2015) and in particular Zhuravskaya et al. (2020) for the case of social media.
2008-2016 presidential elections using variation in Twitter adoption resulting from transfers of NBA players with Twitter accounts.⁹

Existing research thus provides an incomplete picture. On one hand, social media has been painted as a key force behind political change and experimental studies indeed suggest that social media affects individuals’ self-reported political beliefs. On the other hand, it remains unclear whether social media can indeed persuade voters and affect elections results at a larger scale. Our paper sheds light on this question by focusing on how Twitter affects federal elections in the United States.

2 Background: Social Media and Politics

Most Americans use social media platforms or messaging applications. Data from the Pew Research Center suggest that the most popular services are YouTube (used by 73% of adults in the U.S.), followed by Facebook (69%), and Instagram (37%) (Pew Research Center, 2019c). 22% of adults in the U.S. use Twitter, a rate similar to that of Snapchat (24%) and WhatsApp (20%) users. On average, adult users spend more than an hour a day using social networks (eMarketer, 2019).¹⁰

One popular perspective is that online networks, and social media in particular, may give rise to so-called “filter bubbles” (Pariser, 2011) or “echo chambers” (Sunstein, 2017). The idea is that social media—unlike traditional mass media outlets—may facilitate the provision and consumption of one-sided information, either through the use of algorithms or by allowing individuals to self-select into preferred content. While there is considerable empirical evidence supporting this idea (e.g. Conover et al., 2011; Weber et al., 2013; Bessi et al., 2015; Del Vicario et al., 2016; Halberstam and Knight, 2016; Schmidt et al., 2017; Levy, 2021), other studies have found that individuals are exposed to a wide range of political opinions on social media (Barberá, 2014; Bakshy et al., 2015; Nelson and Webster, 2017; Beam et al., 2018), perhaps even more so than via traditional media outlets or personal interactions (Gentzkow and Shapiro, 2011). Some work also challenges the notion that increased polarization due to online channels is quantitatively important (Flaxman et al., 2016; Guess, 2018; Boxell et al., 2019).

⁹Our paper differs from Rotesi (2019) not only in its research design, but in that we estimate effects for a larger set of elections years (including 2020) as well as Congressional elections. Rotesi (2019) only reports estimates pooling the 2008-2016 presidential elections, differently from our paper. This does not allow to see if his instrument is uncorrelated with election results before Twitter’s launch and how its possible effects evolved over time.

¹⁰Pew bases its usage measures on the share of respondents who state they have ever used one of the online platforms. Twitter reported around 69 million monthly active users in 2019 (see Statista, 2019), which yields a slightly higher share of around a third of the 210 million adults in the U.S.
Much of the recent public discussion about the role of social media platforms has been shaped by controversies, including the consulting firm Cambridge Analytica’s involvement in multiple political campaigns (e.g., The Guardian, 2018); the Russian Internet Research Agency’s efforts to support Trump’s election campaign (e.g., New York Times, 2017); and the role of widely shared false information (“fake news”) in both the 2016 U.S. elections (e.g., Allcott and Gentzkow, 2017) and the Brexit referendum in the United Kingdom (e.g., UK Parliament, 2019). Both Hillary Clinton and Donald Trump have argued that these factors were instrumental in the 2016 election outcome, as has former president Barack Obama (The New Yorker, 2016). As Brad Parscale, Trump’s digital media director in 2016, put it: “Facebook and Twitter were the reason we won this thing. Twitter for Mr. Trump. And Facebook for fundraising” (Wired, 2016). In Appendix Figure A.3, we document that discussions of social media have become increasingly frequent in major American news outlets. Mentions of Twitter in particular spiked with the 2016 presidential election when compared to 2012 levels.

Despite its prominence in the political discourse, the empirical relevance of social media for electoral outcomes is largely unknown, and some have suggested that concerns about its effects may be overblown. As one example, in the 2016 presidential election, Trump received fewer votes from demographic groups with higher propensities to use social media or the internet more broadly (The Hill, 2016; Boxell et al., 2017, 2018). Indeed, Trump’s broadest support came from older white voters without college education in rural areas, who are among the least likely people to use social media actively (Hargittai, 2015; Pew Research Center, 2015, 2018). These patterns seem difficult to square with the idea that online channels were an important driver of the 2016 presidential election result, although such observations also do not rule this out.

Further, most social media users—particularly on Twitter—appear to be disproportionately left-leaning. This is not surprising given that most Twitter users are relatively younger, educated, and urban. While there appears to be a cluster of right-wing networks, Pew Research Center (2019d) estimates that, in 2018, 60% of Twitter users identified as Democrat and only 35% as Republican. Among Democrats, those on Twitter are considerably more liberal and focus less on finding common ground with Republicans (Pew Research Center, 2020). In 2019, 26% of American Twitter users followed Obama and 19% followed Trump (Pew Research Center, 2019a). Survey evidence suggests that 80% of Twitter content is produced by people who strongly disapprove of Trump (Pew Research Center, 2019b). “Liberals” are also more likely to get political news on Twitter or Facebook and follow more media and political accounts compared to “conservatives” (Pew Research Center, 2014; Eady et al., 2019). Twitter and Reddit, which are often said to be pro-Trump factors, were considerably more popular
among Clinton supporters before the 2016 election (Hargittai, 2015). Although social media allows users to partially select which content they see, Twitter content disproportionately leans toward the Democratic party.

We provide additional evidence for the composition of political content on Twitter by analyzing the Twitter reach of Democratic and Republican politicians. We collected data on the Twitter accounts of all Senators and House Representatives from the 110th to the 115th Congresses (2007-2019). In Figure 1, we plot the average number of tweets and followers that members of each party have on Twitter, as well as the average number of retweets and “likes” their tweets receive. The patterns here again clearly indicate that Democratic politicians are more active on Twitter and have larger follower bases than their Republican counterparts. Tweets by Democrats also receive, on average, three times the number of “likes.”

3 Data

The main analysis is based on a county-level dataset on election outcomes, political opinions, and Twitter use. It covers 3,065 counties in 48 states (we exclude Alaska and Hawaii) and the District of Columbia (except in congressional elections). County-level election results are from Dave Leip’s Atlas of U.S. Presidential Elections and the MIT Election Lab. We complement our analysis with individual-level survey data on approval ratings from the Gallup Daily Tracker and voting data from the Cooperative Congressional Election Study (CCES). Our measure of Twitter usage is derived from an archive of 475 million geo-located tweets compiled by Kinder-Kurlanda et al. (2017). We combine this with newly collected data on Twitter’s early adopters at the 2007 SXSW festival; data on the Twitter activity of U.S. Congress members; and a large corpus of tweets related to the 2012, 2016, and 2020 presidential elections. Additional county characteristics were obtained from the U.S. Census, the U.S. Religious Census, the American Community Survey (ACS), and the Bureau of Labor Statistics (BLS). We describe the individual data sources in more detail below. Appendix Table A.2 provides additional details and summary statistics.

Election Outcomes. We use county-level data on presidential election outcomes between 1924 and 2020 from Dave Leip’s Atlas of U.S. Presidential Elections. From the same source, we also obtained county-level voting data for the Republican and Democratic primaries in 2016 and 2020. We complement this with county-level results on Senate and House elections from the MIT Election Lab for the 1996-2020 period. In all cases, we focus on two-party

\[11\] In Appendix Figure A.2, we confirm that these patterns are not driven by a small group of Congress members by showing that they also hold when we compare the median Twitter reach of Democrats and Republicans.
vote shares. Figure 2 visualizes the Republican party’s vote share in the 2016 presidential elections.12

Individual-Level Voting Decisions. The Cooperative Congressional Election Study (CCES) is a nationwide survey that collects information on voter behavior in two waves (before and after the election). We focus on votes for Trump and Clinton in 2016 and 2020. The CCES contains a rich set of individual characteristics, including political affiliation, family income (in 12 bins), gender, race, education (in 6 bins), marital status, age, and interest in the news. Table A.3 provides summary statistics (weighted by sample weights). The CCES also uses administrative data on turnout records to verify its respondents have voted.

Presidential Candidate Approval. The Gallup Daily Tracker provides individual-level survey data for a sample of 1,000 individuals per day since 2009.13 During the 2016 presidential campaign, it fielded survey items regarding approval of Republican and Democratic presidential candidates. This allows us to investigate Trump’s pre-election approval relative to other candidates (e.g. Clinton or Ted Cruz). The data also include a rich set of individual characteristics, including political affiliation, county of residence, income (in 10 bins), gender, race, marital status, age, and education (in 6 bins). Table A.4 in the Appendix provides summary statistics.14

Twitter Usage. We construct a measure of county-level Twitter usage based on a sample of 475 million geo-coded tweets collected by Kinder-Kurlanda et al. (2017).15 The tweets were collected between 2014 and 2015 using the Twitter Streaming API by selecting a geographic bounding box around the mainland US. The Streaming API continuously returns all geo-located tweets within the bounding box as long as the sample does not exceed 1% of all tweets. Information on a tweet’s geo-location either come from the GPS coordinates of a mobile phone or from a WiFi/IP address in case a computer is used. Both types of information allow for a precise assignment to a US county. At the start of the data collection by Kinder-Kurlanda et al. (2017) in 2014, Twitter had not yet introduced the feature that allowed users to tag specific places in their tweets. This avoids collecting geo-located tweets based on arbitrary

12While senatorial and presidential elections are decided at the state level and House elections at the congressional district level, counties are usually smaller geographic units and far more numerous. Additionally, unlike congressional districts, county boundaries are fixed over our sample period, allowing us to observe changes across years.

13The Gallup Daily Tracker for the 2020 election is not available at the time of writing.

14For some auxiliary estimations in the Online Appendix, we also collapse responses about presidential approval of Trump on the county-level using weighted averages based on the number of survey respondents in each county.

15These data are available in the Gesis Datorium at https://datorium.gesis.org/xmlui/handle/10.7802/1166.
decisions by users (e.g. tagging their holiday location) and prevents users from tagging wrong locations (either intentionally or by accident).

The individual tweets from this dataset are already assigned to counties. Additionally, we collected the underlying user profiles for each tweet in the database. This allows us to construct a user-based measure by assigning users to the county from which they tweet most frequently. The resulting measure, which we use throughout the paper, is a proxy for the number of Twitter users per county, based on 3.7 million individual users (around 7% of the Twitter population in 2015). Figure 3a plots the number of Twitter users per capita across counties. Each user profile further provides us with a short biography and the date that each user joined Twitter. We use the join dates to construct a time-varying proxy of Twitter usage based on how many of the Twitter users had opened an account at each point in time.

The great advantage of this dataset is that it allows us to provide individual-level evidence for the adoption of Twitter in a county following the SXSW festival and further compare user profiles in different counties. The drawback of using geo-located Twitter data is that only a sub-sample of tweets is geo-located. To overcome concerns of measurement error in our Twitter measure, we validate the data in two ways. First, Appendix Figure A.1a shows that our Twitter usage measure’s evolution closely tracks the number of daily Twitter users from Statista (2019), which were directly obtained from the platform. Secondly, our measure of county-level Twitter usage also strongly correlates with the number of Twitter users in a county based on the GfK Media Survey (see Figure A.1b). Lastly, note that measurement error is less of a concern in our setting because we largely rely on 2SLS estimation throughout the paper. We return to the discussion of measurement error in Section 5.

Twitter Data for the South by Southwest Festival. We collected data for our instrument for Twitter usage, based on early adoption during the SXSW festival, through the Twitter API. More specifically, we scraped the account data for 658,240 users who followed the Twitter account of SXSW Conference & Festivals (@SXSW) at the time of collection (January 2019). We assign these users to counties based on the location people report in their user profile.

A user profile contains the month and year that they joined Twitter, which allows us to determine the number of SXSW followers in each county that joined Twitter in a particular month. The two key variables in our analysis are: i) the number of SXSW followers that joined Twitter in the month of March 2007 and ii) the number of SXSW followers that joined Twitter during 2006 (the year the platform was launched). We refer to (ii) as the number of SXSW followers who joined before the March 2007 festival. We also scraped the follower lists

16Of the 44,625 SXSW followers who joined between 2006 and 2008, we are able to geo-code 25,830 (58%).
of SXSW followers who joined in March 2007, which allows us to investigate the connections of Twitter users to the SXSW festival. Further, we additionally collected tweets mentioning the festival, based on the term “SXSW,” as well as a proxy for overall Twitter activity based on the 100 common English words. We use these measures to document the SXSW festival’s impact on local Twitter adoption.

Data on Political Twitter Activity. We scraped the tweets and user profiles and followers of the 901 Senators and House Representatives from the 110th to 115th (2007-2019) Congress who have Twitter accounts. This includes 424 Democrats and 465 Republicans. In total, the data contain 4,300,579 tweets, which we use to analyze the Twitter reach of Democratic and Republican Congress members. Appendix Table A.1 lists the 20 Congress members with the most Twitter followers.

We complement this dataset with election-related tweets to shed light on the overall partisan slant of Twitter activity during the 2012, 2016, and 2020 elections. For each election, we obtained the universe of tweets mentioning the last name of a Democrat and Republican presidential candidates.

To determine the likely political affiliation of Twitter users, we create two measures of political slant. The first measure is based on the political accounts a user is following. In particular, we check whether a user follows more Democrat or Republican Congress members on Twitter. If they follow more Republican than Democrats, all their tweets would be classified as Republican. In case a user either does not follow any Congress members or an equal number of Congress members from either party, their tweets are classified as neutral.

The second measure of political slant is based on the similarity of the text of tweets to those sent by Republican or Democratic Congress members. We train a L2 regularized logistic regression model separately for each election based on 901 Congress members’ Twitter accounts to classify whether a tweet contains language frequently used by either Republican or

17 We report the full list of words in Table A.7.
18 Data on SXSW 2007 attendants (e.g., their county of residence) is not available, despite our efforts to obtain it from the SXSW organizers on multiple occasions.
19 The remaining 12 politicians are either Independents or switched their party affiliation.
20 For the 2012 election, we use data collected by Diaz et al. (2016), comprising 24 million tweets containing either “Obama” or “Romney” for the period from July 1, 2012 through November 7, 2012. For 2016, we use the archive from Littman et al. (2016), which contains 280 million tweets, collected between July 13, 2016, and November 10, 2016. The 2020 election tweets are based on the archive from Chen et al. (2020), which covers the period from March 2020 to November 2020. To make these datasets comparable, we restrict the 2016 election sample to tweets mentioning either “Clinton” or “Trump” (112 million tweets). Similarly, we restrict the 2020 data set to the time period from July 1, 2020 through November 3, 2020 and tweets mentioning either “Biden” or “Trump” (339 million tweets).
21 The idea of using the Twitter network to determine a user’s ideology is inspired by Barberá (2015).
Democratic politicians. We then use this classifier to predict a partisan score between 0 and 1 for each of our election-related tweets. These scores can be interpreted as the probability of a tweet with the same content being sent by a Republican. As such, our approach is similar to how Gentzkow and Shapiro (2010) measure newspaper slant. Both approaches lead to similar overall slant classifications for the elections tweets in our data.

Additional County Characteristics We collect county-level demographic control variables from the U.S. Census and the ACS. In particular, we use information on population, population share by age group and ethnicity, poverty rates, and education levels. We also obtained industry-level employment shares and unemployment rates from the BLS. Additional controls on county media usage patterns are from Simply Analytics. We also construct geographical controls such as the distance from Austin, TX, where SXSW takes place every year; population density; and county size (in square miles). For one set of results we also use donation data from OpenSecrets. Appendix Table A.6 provides a description of the variables.

4 The 2007 South by Southwest Festival and Early Twitter Adoption

The empirical strategy behind our main results exploits a shock to early-stage Twitter adoption connected to the 2007 SXSW festival, as in Müller and Schwarz (2019). This section discusses the key role of the festival in boosting the platform’s popularity and documents how it created a persistent effect on its spatial diffusion. Founded in March 2006, Twitter was largely unknown before SXSW 2007. Twitter’s popularity increased dramatically after the festival, where Twitter strategically placed screens in the conference hallways and allowed users to sign-up by simply sending a text message to a predefined number. As a result, speakers and bloggers in attendance broadcasted the platform to the outside world, and Twitter went on to win the South by Southwest Interactive Web Award Prize.

The importance of SXSW 2007 has also been stressed by the platform’s founders. As co-founder Evan Williams explained in a post on Quora (Quora, 2011):

22We clean the text of the tweets by removing common words (stopwords) and by reducing the words in each tweets to their morphological roots (lemmatizing). The input is based on unigrams, bigrams, and trigrams from these tweets. We choose the optimal normalization strength using 10-fold cross-validation. The resulting classifier achieves high out-of-sample F1-scores, e.g. 0.904 for the tweets during the 2020 presidential election. We provide additional details regarding the machine learning classifier in Online Appendix A.1., which also visualizes the most predictive terms identified by the classifiers.

23SXSW is an annual conglomeration of parallel film, interactive media, and music festivals and conferences organized jointly that take place in March in Austin, TX.
“We didn’t actually launch Twitter at SXSW – SXSW just chose to blow it up. We launched it nine months before – to a whimper. By the time SXSW 2007 rolled around, we were starting to grow finally and it seemed like all of our users (which were probably in the thousands) were going to Austin that year ... I don’t know what was the most important factor, but networks are all about critical mass, so doubling down on the momentum seemed like a good idea. And something clicked.”

SXSW’s immediate impact on Twitter’s popularity in early 2007 can be seen in Figure 4a, which plots our proxy for the daily number of tweets as well as the number of tweets explicitly mentioning SXSW. The figure shows that Twitter’s growth rate accelerated during the festival, visible as the spike in SXSW-related tweets. The month-to-month growth rate of Twitter quadrupled with the start of the SXSW festival. After SXSW 2007, Twitter experienced further rapid growth (Venture Beat, 2008). The platform went from an average of 5,000 tweets a day in 2007 to 300,000 in 2008, and 2.5 million in 2009 (Twitter, 2010). In 2019, users sent roughly 500 million tweets a day.

We exploit that the SXSW festival had persistent effects on Twitter’s spatial diffusion. This is likely the result of network effects that are key to the social media experience, as a larger number of users makes it more interesting for potential new users to join. Such a mechanism also applies at the local level. For example, a boost in the number of neighbors, personal connections, local businesses and/or people who play a prominent role in an area should also boost the value of joining the platform for those living there. As Evan Williams’ quote above notes, “networks are all about critical mass,” and initial differences in adoption can lead to persistent differences in network adoption. Enikolopov et al. (2020) document a similar mechanism for spatial dispersion in adoption of the Russian VK social network: the home towns of the first university students invited to be users in 2006 exhibit substantially higher number of users in 2011.

We provide further support for this hypothesis by investigating whether the inflow of early-stage adopters put these counties on a differential growth path of Twitter usage. Figure 4b plots the estimates of β_τ from the following panel event study regression at the county (c) and week (t) level:

$$
tweets_{ct} = \sum_\tau \beta_\tau SXSW_c^{March2007} \times 1(t = \tau) + \sum_\tau \delta_\tau SXSW_c^{Pre} \times 1(t = \tau) + \theta_c + \gamma_t + \varepsilon_{ct}.
$$

24 Appendix Figure B.1 provides Williams’ full post describing the role of SXSW 2007.
25 Our proxy for Twitter usage is created by scraping tweets that contain any of the 100 most common English words listed in Table A.7. Our data contain any tweet that contains at least one of these words. We should therefore obtain a large fraction of the English speaking tweets at that point in time.
where \(\text{tweets}_{ct} \) is the log of (one plus) the number of tweets in county \(c \) on week \(t \), \(\text{SXSW}_{c}^{March2007} \) is the logarithm of (one plus) the number of SXSW followers in county \(c \) that joined Twitter on March 2007 and \(\text{SXSW}_{c}^{Pre} \) is a similarly defined variable for followers that joined Twitter before March 2007. \(\beta_t \) thus illustrates, conditional on county and week fixed effects, the difference in the number of tweets sent from counties with relatively larger numbers of SXSW followers that joined on March 2007. The variables are standardized to have a mean of zero and standard deviation of one. The whiskers represent 95% confidence intervals based on standard errors clustered at the state level. The sample includes the period between the third and fourteenth week of 2007.

Figure 4b illustrates that home counties of SXSW followers who joined during the festival in March 2007 saw a rapid, disproportionate increase in Twitter usage around the time of SXSW. Importantly, however, this increase came only after the SXSW festival, and we find no evidence for pre-existing trends. In Appendix Figure B.2 we show further that, in line with our expectations, March 2007 is also a clear outlier when it comes to the number of people who started following the SXSW festival. This is consistent with the idea that SXSW was a catalyst for the spread of Twitter in the United States.

Appendix Figure B.3a presents additional evidence on the long-term adoption effect of the 2007 SXSW festival. It plots estimates from a similar regression as the one in Figure 4b but in a county-quarter panel covering the period from Twitter’s launch in 2006 to 2016. The dependent variable is substituted by the number of Twitter users per capita in a county based on our baseline measure. The resulting S-shaped pattern in the figure is consistent with models of technology adoption in the presence of network effects. More importantly, we find that the amount of early adopters in a county still matters for the amount of Twitter usage today.\(^{26}\)

5 Empirical Framework

Our identification strategy leverages the 2007 SXSW festival as a shock to early Twitter adoption. We show that, conditional on a set of controls (described in further detail below), a county’s number of SXSW followers that joined Twitter in March 2007 is uncorrelated with levels and trends in election outcomes before Twitter’s launch and during its early years. It is

\(^{26}\)Additionally, Figure B.3b shows just how dominant Twitter users connected to the SXSW festival were among early adopters. In 2007, we estimate that around 60% of Twitter users either followed the SXSW festival or followed someone who followed SXSW and joined in March 2007. As the number of Twitter users increased over time, the importance of SXSW followers in the platform declined. But as Figure B.3a shows, the festival created persistent differences at the county level. The next section outlines how we use the SXSW festival in our 2SLS estimates.
also uncorrelated with a host of observable county characteristics. This feature of the data can be interpreted as idiosyncratic factors (e.g., who attended the 2007 SXSW, who decided to join Twitter at the time), giving us a “natural experiment” or “exogenous shock” in Twitter adoption that allows to estimate its effect on election outcomes. This interpretation is, of course, not self-evident, and we provide several pieces of evidence to support it.

An important concern is that counties whose population are more interested in the SXSW festival (and its Twitter account) may be systematically different from other counties. To address this issue, our empirical strategy exploits variation in the exact timing of when Twitter users interested in SXSW joined the platform across counties. In particular, our regressions control for the number of SXSW followers who joined in the months before the festival. Intuitively, our empirical strategy compares a “treatment” group of counties with SXSW followers that joined in March 2007 (during the festival) against a “control” group of counties with followers that joined before. While both groups of followers were interested in SXSW, we show that only the number of followers that joined on March 2007 are predictive of later Twitter adoption, consistent with the evidence that users that joined during the festival were key in the platform’s diffusion. In contrast, counties with more users that joined before the festival do not have more additional Twitter users in subsequent years.27

The “treatment” and “control” counties are similar along several characteristics. Table A.5 compares the average characteristics of three types of counties relevant for our identification strategy: 1) the 47 counties with SXSW followers that joined Twitter both in March 2007 and the “pre-period”; 2) the 108 counties with SXSW followers that joined in March 2007 (but none in the “pre-period”); and 3) the 20 counties with SXSW that joined in the “pre-period” (but none in March 2007). Differences in vote shares in the 1996 presidential election, demographics (e.g., race, age, education), and media consumption (e.g., share that watches Fox News) are quantitatively small or zero. This is particularly true for groups (2) and (3) — which are key to the identification — with t-tests indicating that differences between the two groups are not statistically different from zero.28 The geographical variation in the three groups of counties is shown in Figure 3b. As the results in Table A.5 suggest, the counties do not differ systematically in size and how distant they are from major American cities.

Moreover, observable individual characteristics of SXSW followers who joined Twitter in March 2007 and the “pre-period” are also similar. We validate this using data on Twitter

27 An alternative approach is to compare the counties of users who signed up for Twitter during SXSW 2007 with those of users who signed up during other festivals in the same year. We discuss the results from such an exercise in the robustness section below.

28 Given the large number of county characteristics, we report Šidák-corrected t-statistics, which are smaller than those generated by applying the Bonferroni correction.
user profiles we obtained from the platform. Table B.1 shows that followers who joined in March 2007 have similar first names and profile descriptions compared to those that joined before: users in both groups tend to have common names (e.g., “Michael” or “Chris”) and use words such as “founder” or “tech” to describe themselves in their profiles. The correlations of the frequency of first names and terms used in their bios between the two groups are 0.63 and 0.89, respectively. We also investigate differences in the political leanings of the two groups using the network-based methods we outline in Section 3. In particular, we test whether the users in March 2007 follow more Democrats or Republicans than the users in the “pre-period”. We find that the political leanings of the two groups are nearly identical. A t-test rejects differences in the average political slant with a p-value of 0.93.

Specification. Motivated by the evidence above, our main results are based on estimating the following two equations:

\[
\text{Twitter users}_c = \alpha + \beta \cdot \text{SXSW}_{c}^{\text{March2007}} + \gamma \cdot \text{SXSW}_{c}^{\text{Pre}} + X_c \delta + \xi_c \tag{1}
\]

\[
\text{y}_c = \alpha' + \beta' \cdot \text{SXSW}_{c}^{\text{March2007}} + \gamma' \cdot \text{SXSW}_{c}^{\text{Pre}} + X_c \delta' + \zeta_c, \tag{2}
\]

where \(c\) indexes counties, \(\text{SXSW}_{c}^{\text{March2007}}\) is the logarithm of (one plus) the number of SXSW followers in county \(c\) that joined Twitter on March 2007, and \(\text{SXSW}_{c}^{\text{Pre}}\) is a similarly defined variable for followers who joined Twitter before March 2007. \(X_c\) is a vector of control variables that hold constant geographical factors (e.g., population density, distance from Austin, TX), demographic factors (e.g., the share of the population in different age and ethnic groups), socioeconomic factors (e.g., the share of adults with a high school degree or employed in IT), factors related to the “China shock” (e.g., exposure to Chinese import competition), and previous election results. Note that the right-hand side of both equations is similar. \(\text{Twitter users}_c\) is the logarithm of the number of Twitter users in the county (during 2014-2015). \(y_c\) are election outcomes (e.g., vote shares), which we estimate in both levels and changes (e.g., \(y_c\) can be the vote share in 2016 or the change in vote shares between 2000 and 2016).

In a 2SLS framework, equations (1) and (2) are the first-stage and reduced form, while the second stage is

\[
y_c = \phi + \theta \cdot \text{Twitter users}_c + \pi \cdot \text{SXSW}_{c}^{\text{Pre}} + X_c \rho + \varepsilon_c, \tag{3}
\]
where $Twitter\ users_{c}$ is predicted from the first stage regression in equation (1). We weigh observations by turnout (total number of votes cast) in the 2000 presidential election.29 We cluster standard errors at the state level.30

Identification. Formally, the identification condition for the effect of Twitter users (θ) is that $E(SXSW_{c}^{March2007} \cdot \varepsilon_{c}) = 0$ holds. Intuitively, this states that, conditional on the $SXSW_{c}^{Pre}$ and other controls (X_{c}), the number of SXSW followers who joined in March 2007 is uncorrelated with other determinants of political outcomes y_{c}, implying that it only affects political outcomes via Twitter usage (the “exclusion restriction”).

We provide six pieces of evidence in support of this condition. First, as discussed above, including the $SXSW_{c}^{Pre}$ control implies that the identifying variation comes from comparing counties with similar observable characteristics.

Second, the coefficient of $SXSW_{c}^{Pre}$ is small and statistically insignificant in our first stage regressions. This provides us with a “placebo” test based on checking if it is also unrelated to political outcomes in the reduced form and 2SLS regressions. Intuitively, we have two variables that are correlated with interest in the SXSW festival among early Twitter adopters, but only one predicts Twitter users in later years, allowing us to disentangle interest in the festival from its effect via more Twitter users.

Third, we provide additional placebo tests for other festivals in 2007 and show that none of these other festivals is either correlated with higher Twitter adoption or changes in the Republican vote share today. This allows us to rule out that our effects are simply driven by the selection of users into attending festivals that are highly similar to SXSW.

Fourth, estimating equations (2) and (3) for different time periods shows that $SXSW_{c}^{March2007}$ does not correlate with both levels and trends in election outcomes before Twitter’s launch in 2006 and in its early years, when the platform had few users and was unlikely to affect election outcomes. Intuitively, outcomes in “treatment” and “control” counties behaved similarly before Twitter could plausibly affect elections.

Fifth, we find an effect of $SXSW_{c}^{March2007}$ on Trump’s vote share in 2016 and 2020 but not on House and Senate elections (neither in 2016 nor 2020 or other periods between 2000 and 2018). This pattern is consistent with an effect of Twitter, since there is more content on presidential candidates than on congressional elections in the platform.

29We weigh observations to make our sample representative of national election results. For example, due to many less populated counties tilting Republican, the unweighted average Republican vote share across counties in the 2016 elections is 64%. Weighing makes our sample mean match the national average of 46%. Moreover, we obtain similar results without using weights or using election-year turnout as weights (Appendix Table C.3), suggesting that effect heterogeneity along dimensions correlated with weights do not play an important role in our context (Solon et al., 2015).

30We consider spatial standard errors using the methods described in Colella et al. (2019) for robustness.
Sixth, results based on survey data suggest the effects are concentrated among moderate or independent voters, which is also the expected pattern from Twitter having a causal effect due to voter persuasion.

Stated differently, a violation of the identification condition would require an omitted variable that correlates with $SXSW_{e}^{March2007}$, Twitter users$_{c}$, and y_{c} but is uncorrelated with: i) $SXSW_{e}^{Pre}$ as well as followers of other festivals, ii) levels and trends in election results before Twitter’s launch and rise to popularity, iii) the observable variables presented in Table A.5, and iv) election results in congressional elections both during the Trump elections and before, while also v) being correlated with vote choices of moderate voters. Our argument is that the existence of such an omitted variable is implausible to an extent that allows us to interpret θ as the effect of Twitter users on election outcomes.

Measurement error in county-level Twitter usage and $SXSW_{e}^{March2007}$ is also unlikely to explain an effect in 2016 and 2020 presidential elections, but no effect in previous presidential elections or congressional elections. Moreover, $SXSW_{e}^{Pre}$ and the measures for other festivals are constructed similarly as $SXSW_{e}^{March2007}$ and should thus have similar measurement error. However, $SXSW_{e}^{Pre}$ and the other festivals are uncorrelated with Twitter usage and election outcomes.

Lastly, another possible concern is that the SXSW adoption shock led to differences in the composition of Twitter users when compared to other U.S. counties. In particular, one might be concerned that the SXSW festival lead to a more liberal Twitter population in the treated counties. While this would not influence the causal interpretation of our findings, it could make the local average treatment effect harder to interpret. Three pieces of evidence suggest that this appears to be an unlikely concern. First, as we show in Appendix Figure B.3b, Twitter’s user base became less connected to the SXSW festival over time and, in this process, likely reached people from more diverse backgrounds. Second, the findings of Müller and Schwarz (2019) indicate that the SXSW adoption shock was associated with an increase in hate crime with Trump’s presidential run. This suggests that the shock eventually reached even the right-wing fringes of the political spectrum. Third, we can directly address this concern by comparing the profiles of Twitter users in SXSW home counties with those in the rest of the country. The results are presented in Appendix Table B.2. We find that the user profiles in SXSW counties are highly similar to the general Twitter population. If the Twitter population in SXSW counties was significantly more liberal, their Twitter and names and biographies should also be different, as Oliver et al. (2016) document that names predict political ideology. We find similar results when we look at which politicians users in the different counties follow. If anything, Twitter users in the “pre-period” counties appear to have a slightly more liberal Twitter network.
To be transparent we want to stress what our findings do not imply. First, they cannot speak about social media platforms other than Twitter, such as Facebook. Our empirical strategy exploits a “shock” specific to early Twitter adoption and we do not have a credible research design to estimate the effects of other platforms. While many other platforms share similarities with Twitter, such as being popular among younger and more educated people in urban areas (Pew Research Center, 2019c), other platforms may have different effects on political outcomes. Second, our research design cannot separate the effect of particular types of social media content on Twitter (e.g., foreign governments or misinformation), but rather speaks to the overall effect of Twitter exposure. Third, like other papers in media economics, we estimate a “partial equilibrium” effect. In our case, we estimate the effect of adding Twitter users to a county while keeping other counties’ Twitter use constant. We thus cannot address whether Twitter had a national-level effect on the election (e.g., Trump’s tweets driving traditional media content).

6 Results

6.1 Main results

First-stage. Table 1 reports results from estimating equation (1) with different sets of control variables (described in Appendix Table A.6). The results indicate that counties with more SXSW followers who joined Twitter in March 2007 have higher numbers of Twitter users during 2014-2015. Since the variables are in logs, the coefficients can be interpreted as elasticities. A 10% increase in SXSW followers in March 2007 is associated with 5.2% more Twitter users. The results do not seem to be sensitive to the set of included covariates. For example, the distance from Austin, Texas (the location of SXSW) has no significant explanatory power. Importantly, the coefficients on SXSW followers before the 2007 festival are statistically insignificant and small in size: Twitter usage in 2014-2015 is not higher in areas with more SXSW followers who joined Twitter before March 2007.

Figure 5 presents the graphical representation of the estimates in column (5) of Table 1. Specifically, we show a binned scatter plot of Twitter users$_c$ against SXSW$_c^{March2007}$ after both variables are “residualized” by partialling out the control variables. The figure is constructed by dividing the x-axis variable into 40 equal-sized bins and plotting the average values of both variables in each bin.\footnote{The fitted line is based on the unbinned data. Observations are weighted by turnout in the 2000 presidential election. This procedure guarantees the slope of the fitted line matches the estimate on column (5) of Table 1.}
Reduced Form and 2SLS Estimates. Table 2 shows the reduced form estimates from equation (2) and both OLS and 2SLS estimates of equation (3), focusing on the Republican vote share in the 2016 and 2020 presidential elections. The specifications across columns match those in Table 1. Panel B indicates that the number of SXSW followers who joined Twitter in March 2007 is associated with a lower Republican vote share. Panel C presents the 2SLS effects of Twitter usage on vote shares. The 2SLS estimate in column (5) indicates that a 10% increase in the number of Twitter users in a county lowers Trump’s vote share by 0.21 p.p. (e.g., a reduction from a 46.1% vote share to 45.8%).\(^{32}\) We discuss potential differences between LATE and ATE as well as heterogeneous treatment effects at the end of this section. The results for the 2020 presidential election shown in Table 2 column (6)-(10) are nearly identical.

Figure 6 plots the reduced form and OLS estimates from Table 2 graphically, specifically the models in columns (5) and (10). These figures are constructed similarly to Figure 5 but show the Republican vote share on the y-axis. The estimated slopes are negative.

A first draft of this paper, using only data up to the 2016 election, was posted online on October 2020. When updating it to include the November 2020 election results, we made no revisions to the research design and regression specifications (e.g., sample selection, choice of controls, and variable definitions). In the case of Table 2, columns (1)-(5) are exactly the same in this version and in the October 2020 version. Since columns (6)-(10) replicate the same specifications (“right hand sides”) using 2020 election outcomes, this can be interpreted as a “pre-registered” research design. We followed the same approach throughout this draft: every figure or table presenting results for the 2020 election exactly replicates the specifications used for previous elections in our October 2020 draft.\(^{33}\)

Although the estimated effects are always negative and significant at the 1% level, comparing columns shows that the effect sizes vary somewhat with the inclusion of controls, especially demographic and socioeconomic ones. This sensitivity to controls is perhaps expected given their explanatory power over vote shares. The results in other papers that explore effects on vote shares in similar frameworks, such as DellaVigna and Kaplan (2007), Martin and Yurukoglu (2017), and Autor et al. (2020), show a similar sensitivity to controls.

To further probe the sensitivity of our results to different controls, we provide three separate pieces of evidence. First, we apply the Oster (2019) approach of using coefficient stability to gauge the potential importance of unobservable variables in driving the results. We compare our reduced form (Panel B) specifications with all controls (columns 5 and 10) to

\(^{32}\)The F-statistic of our estimated first-stage range from 70 to 120. This suggests that estimation and inference concerns related to weak instruments are unlikely to apply in our case.

those with the fewest controls (columns 1 and 6) and obtain an “Oster-δ” of approximately 7 for both 2016 and 2020. This suggests, in order for the true effect to be zero, unobservable variables would have to be seven times as “important” as the (numerous) controls added in columns (5) and (10) in driving selection into “treatment.”

Second, Appendix Table C.1 provides further evidence for the robustness of our findings to the inclusion of different controls. It allows for more flexible interactions between observable characteristics by using partialling-out LASSO variable selection (Chernozhukov et al., 2015a,b). More specifically, we estimate regressions in which we allow for state fixed effects and all possible interactions of the control variables (i.e., up to 654 controls). The LASSO then selects controls that either predict the vote shares, SXSW participation, or Twitter usage. All estimates are statistically significant and of similar magnitude as our baseline estimates.

Third, Figure D.3 plots the estimated θ of our 2SLS equation (3) while flexibly allowing the included control variables to vary. The resulting “specification curves” suggest that our results (for both the 2016 and 2020 elections) are robust to how our regressions are specified. The estimated coefficients are always negative, almost always statistically significant at the 5% level, and in the overwhelming number of specifications considerably more negative than our “baseline estimates,” which is marked by the vertical line.

Magnitudes and Persuasion Rates

To interpret the magnitudes of our estimates, we calculate a persuasion rate following DellaVigna and Gentzkow (2010). It can be approximated as $\theta \cdot \frac{t}{e(1-y)}$, where θ is the 2SLS estimate, y is average Republican vote share, e is the average exposure of American adults to Twitter, and t is the share of adults that turn out to vote. Using the estimate for θ from columns (5) and (10) of Table 2, the persuasion rate is 8.6% and 9.4% for 2016 and 2020, respectively. It implies that, in 2016, one out of every twelve active Twitter users that voted for Clinton would not have done so if they had not been exposed to the platform.

34The R^2 of regressions with the fewest controls (columns 1 and 6) is approximately 0.6, while it is 0.94 for the regressions with the most controls (columns 5 and 10). Intuitively, the observable controls explain a large part of the variation (the R2 of 0.94) in vote shares but only generating a relatively modest change in coefficient sizes. This is what generates a large “Oster-δ.”

35Note that, unlike most other regressions reported in the paper, these regressions are unweighted.

36The persuasion rate re-scales effect sizes by how many individuals are exposed to the platform and how many are not already persuaded. For marginal changes in exposure, the formula is $f = \frac{dy}{de} \cdot \frac{t}{e(1-y)}$ (DellaVigna and Gentzkow, 2010). Since our estimate θ is the semi-elasticity $\frac{dy}{de} \cdot e$, we obtain $f = \theta \cdot \frac{t}{e(1-y)}$. In 2016, $y = 0.40$, $t = 0.59$, while $y = 0.47$ and $t = 0.62$ in 2020. We assume $e = 0.25$ for both periods, based on roughly a quarter of American adults being active Twitter users (Pew Research Center, 2019c). This implicitly assumes that Twitter usage among voters is the same as the overall population. If voters are over-represented among Twitter users, the persuasion rate would be smaller. On one hand, Twitter users are younger (which is associated with lower turnout) but more educated (which is associated with higher turnout) than the general...
This rate is smaller than the estimated pro-Republican persuasion rate of Fox News, which Martin and Yurukoglu (2017) estimate to range between 27% and 58% (depending on the year).37 It is also smaller than the 19.5% pro-Democrat persuasion rate that Gerber et al. (2009) estimate for the Washington Post. As a further comparison, Gentzkow et al. (2011) estimate a persuasion rate of 12.9% for the effect of reading a local newspaper in the 1869-1928 period on voter turnout. DellaVigna and Gentzkow (2010) report that randomized get-out-the-vote canvassing experiments have estimated persuasion rates in the 10-15% range.

Placebo Test: Interest in SXSW Before March 2007. The coefficients on $SXSW_{Pre}^C$ in Table 2 are statistically insignificant and substantially smaller than those on $SXSW_{March2007}^c$. As discussed in Section 5, this provides support for our identification condition (exclusion restriction). Suppose that our instrument merely captured that counties with an interest in SXSW’s Twitter account during the platform’s early years also differ in (unobservable) characteristics that predict the 2016 election outcome. If this was the case, the coefficients on $SXSW_{Pre}^C$ should be similar in size to those on $SXSW_{March2007}^c$. Intuitively, we have two variables that are correlated with interest in the SXSW festival, but only one predicts Twitter users in later years, allowing us to disentangle interest in the festival (and its correlates) from its effect via more Twitter users.

Placebo Test: Other Festivals in 2007. We also provide an additional placebo check by investigating five other festivals that are similar in nature to SXSW (Burning Man, Coachella, Pitchfork, Austin City Limits, and the Electric Daisy Carnival).38 One of these placebo festivals, Austin City Limits, takes place in the same city as SXSW. For this exercise, we construct analogous measures to our instrument for other festivals using the same exact procedure: the Twitter followers of the respective festival that joined in the month the festival took place in 2007. In Appendix Table C.2, we then show that none of these festival variables, including that for Austin City Limits, has predictive power for future Twitter usage. More importantly, the variables are also essentially uncorrelated with 2016 and 2020 presidential vote shares. These results provide further support for our identifying assumption and suggest that a spurious relationship between counties’ Twitter users interest in festivals during 2007 and future election outcomes cannot explain our findings.

37DellaVigna and Kaplan (2007) estimate a smaller persuasion rate of 11.6% for Fox News.

38These festivals take place in the Black Rock Desert (NV), Indio (CA), Chicago (IL), Austin (TX), and Las Vegas (NV), respectively.
Further Robustness and Additional Tests. The Online Appendix presents a number of additional sensitivity checks. In Table C.3, we consider changes to the baseline regression specification. In particular, we allow for unweighted regressions; weighting by the relevant election-year turnout (2016 or 2020); alternative functional forms of the pre-SXSW user variable; restrict the sample to the sub-sample of counties where we observe either SXSW followers who joined in March 2007 or the pre-period; allow for flexible spatial correlation in the standard errors; and per capita measures of Twitter usage. Further, Table C.5 replaces our baseline time-invariant measure of Twitter usage (making use of all available user data) with a time-varying measure based on how many users were using the platform in a given year. None of these adjustments make a substantial difference in the magnitudes or statistical significance of the estimates.

Online Appendix Table D.1 reports results for additional outcome variables, all of which support the idea that Twitter exerts a pro-Democrat effect. In column (1), we use a probit IV model to investigate the likelihood of a county switching from Obama in 2008 to Trump in 2016. The coefficient suggests that a one standard deviation increase in Twitter usage is associated with a -24% lower probability of a county electing Obama in 2008 and Trump in 2016. Columns 2 and 3 look at changes in campaign donations to Democrats and Republicans between 2000 and 2016. We find a positive and statistically significant effect for donations to Democrats, and no effect for Republicans. Lastly, columns 4 and 5 look at approval ratings for President Trump in 2017 based on data from the Gallup Daily Poll. We find that exposure to social media is associated with a decrease in Trump’s popularity, and more so among Republicans.

The 2007 SXSW Shock and Previous Election Outcomes Table 3 repeats the analysis from column (5) of Table 2 using Republican vote share in the previous presidential elections of 2000, 2004, 2008, and 2012 as the dependent variable.\footnote{Note that the right-hand side of the regressions remain the same as in the previously reported regressions. That is, the instrument is the same and the “endogenous variable” in the 2SLS is Twitter users measured in 2014-2015. We explore the role of time-varying Twitter user measures on Appendix Table C.5.} All estimates for those years are substantially smaller than the ones for 2016 and 2020 and statistically insignificant. For 2000, 2004 and 2008, this can be interpreted as a placebo or pre-trends test: conditional on the covariates, our instrument is uncorrelated with outcomes before Twitter’s launch (2000 and 2004) and when the platform had few users (2008). In 2012, Twitter already had a substantial user base, so our estimates can be interpreted as a genuine “zero effect”; we return to a comparison of the 2020, 2016, and 2012 results in Section 6.3. The estimates for 2000, 2004, 2008, and 2012 are also jointly statistically insignificant (p-value=0.329). The average effect
in 2016 and 2020 is statistically different from the average effect in 2000, 2004, 2008, and 2012 (p-value=0.002).

In Appendix Figure C.1, we further show the reduced form estimates for presidential election going back as far as 1924. We find that our instrument is also uncorrelated with any of the earlier presidential election results. As discussed in Section 5, this result lends additional support for our exclusion restriction. If our instrument merely captured uncontrolled differences across counties, these should also correlate with vote shares in previous elections.

While these findings make it unlikely that our instrument is correlated with pro-Democratic attitudes at the county level, a possible concern could be that we are picking up “anti-populist” attitudes, which could have harmed Trump’s electoral results. To address this concern, we turn to the historical case study of Ross Perot’s political campaign in 1992 and 1996. Perot, a billionaire businessman, also ran as a “third-party candidate” on a populist platform. However, when we replace the dependent variable with the third party vote share in the 1992 and 1996 presidential election (see Appendix Table C.6), we find no evidence that our instrument is associated with lower vote shares for Ross Perot. This makes it unlikely we are capturing differences in “demand for populism” across counties.40

Effects on Vote Share Changes. We also consider specifications of equations (2) and (3) using vote share changes instead of levels as the dependent variable. All our estimates based on changes take differences relative to the base year 2000 (akin to the approach in Autor et al. (2020)) and use the full set of controls (as in columns 5 and 10 of Table 2). Figure 7a plots the reduced form estimates for changes in the Republican vote share in presidential elections.

The results corroborate the previously presented evidence based on specifications in levels. Our instrument is essentially uncorrelated not only with levels but also with changes (or trends) in election outcomes during the 2000-2012 period. Given our arguments above, this also lends support for our identification strategy. Again the estimates for 2000, 2004, 2008, and 2012 are also jointly indistinguishable from 0 (p-value=0.398). The reduced form effects for 2016 and 2020 are similar to the one estimated using levels. For example, the estimated effect (θ) for 2016 using changes is -0.017, similar to the one estimated in levels (-0.021).41 Unsurprisingly, the average effect in 2016 and 2020 is statistically different from the average effect in 2000, 2004, 2008, and 2012 (p-value=0.001).

40 In Appendix Table C.7, we also investigate the vote shares in the 2020 democratic primaries. Here we find a positive association between Twitter exposure and the vote share of Bernie Sanders, often described as a left-wing populist. This further speaks against the hypothesis of “anti-populist” sentiment.

41 Appendix Table C.4 present the OLS and 2SLS estimates.
Effects on Turnout and Congressional Elections. Figure 7b, Figure 8a, and Figure 8b replicate the exercise in Figure 7a using voter turnout and vote shares in House and Senate elections as the outcomes. We do not find a statistically significant association between our instrument and election turnout except for 2020. Before 2020, the estimated point effects are usually small. For example, the upper bound on the 95% confidence interval of the 2SLS estimate for the effect of turnover in the 2016 election implies that a 10% increase in Twitter users raises turnout by 0.036 p.p. (Appendix Table D.2).

In the 2020 election, which saw the highest turnout rate in more than a century (NPR, 2020c), we find that Twitter is associated with a larger fraction of the voting age population casting their ballot. Why did Twitter have an effect on 2020 turnout but not in the previous election? One possible explanation could be that calls to turn out and vote were widespread on the platform, partially because of an initiative by Twitter itself that was not present in 2016 (Twitter, 2020). Further, the 2020 election was unique in its prevalence of mail and early voting because of the Covid-19 pandemic. Another possibility is that Twitter served as platform to convey information on how to vote by mail or before election day.

The coefficients for House and Senate races are more noisily estimated, particularly for the smaller sample of Senate races (where only a third of seats is renewed every two years). Overall, there is little evidence suggesting an effect of Twitter on congressional elections, including in 2016, the 2018 midterm election, and 2020. Finding an effect on presidential vote shares but not in these “down-ballot” races is perhaps expected since content on presidential candidates (and in particular on Trump in 2016 and 2020) is more common on Twitter than content on congressional races.42

Discussion of Identification Condition. As discussed in more detail in Section 5, there are five pieces of evidence supporting our identification condition: i) our empirical strategy compares relatively similar counties (Section 5); ii) the placebo test based on the coefficient on SXSWPrec and other festivals; iii) the instrument being uncorrelated with election outcomes in the 1924-2012 period; and iv) evidence suggesting Twitter has not affected House and Senate races; while at the same time v) the instrument being correlated with vote choices of moderate voters in particular.

Given this, a violation of the identification condition would require an omitted variable that correlates with the instrument, Twitter usage, and Trump’s vote share in 2016 and 2020 but is uncorrelated with: i) SXSWPrec and other festivals, ii) levels and trends in election results before Twitter’s launch and rise to popularity, iii) the observable variables presented in

42 Appendix Table D.3 presents the 2SLS estimates for House and Senate races. To accommodate the Senate’s six-year terms, we take changes relative to 2000, 1998, and 1996, instead of always using 2000 (as we do for other outcomes).
Table A.5, and iv) election results in congressional elections. At the same time, such omitted variable would also v) be more strongly correlated with the vote choices of moderates and independents than “partisans.” Our argument that is the existence of such omitted variable is unlikely.

Towards an Average Treatment Effect As with any instrument, our 2SLS results identify a local average treatment effect (LATE). In our setting, the “compliers” are counties with higher Twitter usage as a result of the inflow of SXSW attendees. While the negative treatment effect of Twitter usage for these counties is in itself an interesting finding, the ATE for the US overall—and therefore the overall impact of Twitter on elections—may differ. However, two pieces of evidence suggest that our estimates, despite this concern, allow us to infer information about the ATE.

A first indication comes from comparing the OLS and 2SLS results in Table 2. Both estimates are always negative and relatively similar in magnitude. Second, we build on the approach suggested by Andrews and Oster (2019) and more formally investigate the external validity bias of our estimates. For experimental settings, Andrews and Oster (2019) suggest using the observable heterogeneity in estimated treatment effects within the experimental sample to learn about the ATE in the overall population. Similarly, we can use the heterogeneity of treatment effects within counties that provide the variation that identify our results to approximate the ATE for the United States as a whole. Using all included control variables from our main specification for the prediction of heterogeneity of the treatment effect, the Andrews and Oster (2019) approach suggests that the ATE should, if anything, be larger than the LATE we estimate in our baseline results. This seems plausible as the more urban counties for which we have variation in our instrument tend to be Democratic strongholds, and thus likely have fewer independents, for which we find the largest persuasion effects (in survey data). We provide additional details on our approach in Appendix E.

6.2 Effects Are Concentrated Among Moderate Voters

If social media indeed matters for election outcomes, we would expect there to be heterogeneous effects across groups of voters. In particular, Bayesian updating suggest that voters who do not hold strong priors about a particular party should be more likely to be persuaded. We test this prediction using individuals’ voting decision from the 2016 and 2020 CCES. In

43As our setting differs from the one discussed in Andrews and Oster (2019), some adjustments to our baseline estimation were required. We estimate the treatment effect exclusively in the subset of counties for which either \(SXSW_{March}^{2007} \) or \(SXSW_{Pre} \) are not equal to zero. Then, we define a treatment indicator variable equal to 1 for counties with SXSW followers who joined in March 2007.
particular, we estimate the following instrumental variable Probit regression:

\[y_{ic} = \phi + \theta \cdot \text{Twitter usage}_c + \pi \cdot S X S W_{Pre}^c + X_{ic} \rho + \varepsilon_{ic}, \]

(4)

where \(y_{ic} \) is an indicator variable equal to 1 if an individual \(i \) living in county \(c \) voted for Trump in the 2016 or 2020 election and 0 for Clinton.\(^{44}\) The definition of the county-level variables Twitter usage\(_c\) and S X S W\(_c^{Pre}\) remains unchanged. \(X_{ic} \) is now a vector of individual-level control variables including age, gender, race, family income, and education. We again instrument for county-level Twitter usage based on the SXSW followers who joined in March 2007.

Table 4 presents results from estimating equation (4). In Panel A and B, Column (1) suggests county-level Twitter usage has a statistically significant negative effect on the likelihood to vote for Trump. The marginal effect implies that a 10% increase in the number of Twitter users in a county would lower Trump’s vote share by 0.49 p.p. in the 2016 and 0.46 p.p. in the 2020 presidential election.\(^{45}\)

Columns (2)-(6) report results estimated separately by voters’ reported party affiliation. The effect is strongest for voters who identify as independents, and thus likely to not hold strong priors. The results suggest weaker or zero effects for those with stronger political views, whether Republican or Democrat.

These results on party affiliation further vary with age in a way that may be suggestive of a role for social media. In the Online Appendix, Table D.4 repeats the 2016 exercise of splitting CCES respondents by their party affiliation, but further divide voters into those below and above 50. Since Twitter users tend to be younger than the general population (Section 2), one may expect larger effects among voters below 50.

Indeed, we find larger marginal effects for \(\log(\text{Twitter users}) \) among younger voters. For independents, the estimate for young voters is 5% larger than for older voters (−0.079 compared to −0.071). Among moderate Republicans and Democrats, the estimated coefficients are close to zero for voters aged 50+ but sizeable (at least twice as large) for younger voters (although they are not statistically significant at conventional levels). Because young voters are less likely to vote for Trump, this implies larger elasticities of vote outcomes with respect to Twitter for those below 50 relative to the baseline probabilities.

\(^{44}\)Note that we use data on all CCES respondents, not only those in the 2016 wave (i.e., respondents from the 2018 and 2020 waves were asked how they voted in 2016). The results are similar if we only use the 2016 wave. In unreported regressions, we do not find an effect on votes for Jill Stein.

\(^{45}\)This effect size is within the range of the county-level estimates presented in Table 2. Appendix Table C.8 shows this baseline result is robust to using only individuals with validated turnout and/or who stated that they originally intended to vote for Trump in the pre-election wave of the CCES.
A potential concern with this exercise is that party affiliation may itself be affected by Twitter usage. We thus present further support for Twitter having persuasion effects on moderates using county-level data that is not subject to such concerns. In particular, we estimate our county-level specification (equation 3) for the 2016 elections, but split counties based on how consistently they voted for either the Republican or the Democratic party. Specifically, we define “swing counties” as counties that were not consistently won by one party in the presidential elections from 2000 to 2012. Because we find no effect of Twitter on vote shares before 2016 (see Table 3), splitting the sample by swing counties is not subject to potential concerns that this variable might itself be affected by social media.

Appendix Table D.5 shows the results. For the 2016 presidential elections, we find that Twitter usage only negatively impacts the Republican vote share in “swing” counties. We find no evidence for Republican or Democratic strongholds, where people likely have the strongest priors. The patterns are similar in 2020. But here, we also find a small effect on counties that usually vote Republican, which could suggest that the effect on moderate Republicans we find in the CCES also apply to the county level.

6.3 Potential Mechanisms

The findings above suggest that Twitter had an effect in 2016 and 2020, but not during previous presidential elections. We address three potential explanations for this pattern: lack of familiarity with social media (a learning channel), changes in social media’s “slant” (a content channel), and Trump’s role as an outsider candidate (a political shock channel).

The first factor could be the reach of and familiarity with social media content. In 2008, social media was a relatively new type of technology. Only a quarter of American adults used any social media platform and only 10% of internet users posted political commentary on social media (Pew Research Center, 2009, 2011). Figure A.1a shows that Twitter, which was founded in 2006, only had around one million users during the 2008 elections, compared to 40 million in 2012, 67 million in 2016, and 69 million in 2020 (Statista, 2019, 2020). Twitter’s limited reach and novelty might have initially restricted its impact on voters.

The second possible explanation is that social media’s content changed between 2008 and 2016. It is conceivable that, in line with changes in the slant of cable news (e.g., Martin and Yurukoglu, 2017), the typical content to which Twitter users are exposed has become more left-leaning over time.

A third reason is that Trump’s political rise constituted a considerable shock to the U.S. political system. In this view, Twitter may not have partisan effects per se. Instead, the platform may have served as a conduit for spreading sentiments or information about Trump.
Two pieces of evidence presented above are consistent with the political shock channel. First, if Twitter had little effect before 2016 because it was not widely used, its effect on vote shares should systematically increase over time. We do not find evidence supporting this idea in effects for presidential, House, and Senate elections (Figures 7 and 8). Instead, we find a discontinuous negative effect in the 2016 presidential election that persists in 2020. Second, we do not find substantial effects for the 2016, 2018, and 2020 House and Senate elections. This implies that Twitter usage lowered Trump’s vote share without substantially affecting other Republican candidates on the same election day.

Results from the 2016 Republican Primaries. We provide additional evidence for a Trump-specific effect of Twitter exposure by investigating the 2016 county-level Republican primaries results. The primaries allow us to focus on the favorability of different candidates among Republican voters. The results from this exercise are presented in Table 5. We find that Twitter usage is associated with a lower vote share for Trump. We also find a positive effect on the vote share of John Kasich, the most moderate of the major Republican candidates.\footnote{In Appendix Table C.7, we also investigate the voting behavior in the 2016 and 2020 Democratic primaries. Twitter usage appears to be associated with a higher support for Bernie Sanders in 2020.}

Results from Gallup Approval Ratings. A similar pattern emerges when we use data from the Gallup Daily Tracker, which contains approval ratings for three other Republican presidential candidates who ran alongside Trump during the primaries (Ted Cruz, Marco Rubio, and Kasich). Table 6 shows the results of running individual-level IV probit regressions as in equation (4), where the dependent variable is an indicator variable equal to one if the respondent approved of a specific candidate. As in Table 4, we differentiate between respondents’ political affiliation.\footnote{We pool people who identify as leaning Republicans or Democrats with independents, because—in contrast to the CCES data—only a few individuals in the survey are classified as “leaners.”}

Table 6 confirms our main county-level result from general elections and primaries: Twitter usage is associated lower approval of Trump, especially among independents (who are presumably more likely to be persuaded by social media content). We also find lower approval of Cruz, who is substantially more right-wing than other presidential primary candidates in recent years (FiveThirtyEight, 2015). We find no link between Twitter use and approval of the more moderate Republican candidates, Rubio and Kasich. For the Democrat candidates, we find an effect for Clinton’s but not Sanders’ approval.\footnote{Note that Appendix Table C.7 reports a significant positive effect for Sanders county-level primary vote share in 2020, but not in 2016. As mentioned earlier, Gallup Daily Tracker data is not available for 2020 at the time of writing. Note also that Gallup collects data on candidate approval (as opposed to vote choice) for the entire population (as opposed to Democratic primaries votes), which may explain some differences between these results and the ones based on county-level primaries results.}
Taken together, these results are consistent with Twitter turning voters against voting for Trump in particular and not against the Republican party more generally. Our results may also explain the absence of an effect in the 2008 and 2012 elections: Obama’s opponents John McCain and Mitt Romney were widely considered to be moderate Republicans (e.g., more similar to Kasich than Trump or Cruz).49

Slant of Election-Related Tweets. We provide further support for the hypothesis that Trump’s 2016 campaign and presidency triggered opposition on Twitter by analyzing the content of more than 460 million tweets mentioning the last name of presidential candidates during the 2012, 2016, and 2020 presidential campaigns.

First, we classify the tweets’ slant as Republican, Democrat, or neutral using two approaches described in Section 3. In the first case, we classify the political affiliation of Twitter users by counting the number of Democrat and Republican Congress members they follow. If a user follows more Democrats than Republicans, they are classified as Democrat, and vice-versa. Tweets sent by a user classified as Democrat are classified as Democrat, and so forth.50 In the second case, we classify individual tweets (not users) following an approach in the spirit of Gentzkow and Shapiro (2010) and train a L2 regularized logistic regression classifier to predict whether a tweet is more likely to have a Democrat or Republican slant, depending on its content’s similarity to tweets sent by Congress members. If a tweet’s content has higher similarity with those of Democratic Congress members, it is classified as Democratic, and as Republican otherwise.51

Figure 9 plots the amount of Twitter attention directed at the Republican and Democratic presidential candidates in the 2012, 2016, and 2020 elections, as well as the tweets’ estimated slant based on users’ following of Congress members. To account for the attention and popularity of tweets, we base the graphs on the number of “likes” the tweets mentioning the last name of candidates received. In Appendix Figure D.1, we confirm that the results are similar using the number of tweets and when we base the slant classification on the text of the tweets (Figure D.2).52

49As previously discussed, the number of Twitter users in 2008 was relatively small, but by 2012, it was relatively close to its 2016 level (Figure A.1a).

50Users who follow an equal number of Democrats and Republican or no Congress members are classified as neutral. This approach is similar in spirit to Barberá (2015), who uses the network of Twitter users to create a measure of ideology. Because we are only interested in a binary measure of partisan slant and not the ideological distance of users, we do not estimate the full Bayesian ideal point mode. The advantage of our simplified approach is that it is faster to compute and the resulting measure is easier to interpret.

51See Section 3 and Appendix A.1. in the Appendix for more details. In unreported robustness checks, we confirm that these findings are robust using different slant cutoffs for classifying Republican and Democratic tweets, such as only classifying tweets for which the class probabilities are above 75% or 90%.

52Twitter users can choose to “like” each tweet they see in their “timeline.” A user can only “like” a particular tweet once. “Likes” thus provide an useful metric since they capture the popularity and attention.
Panel A shows the number of “likes” for tweets mentioning the Republican presidential candidate (Romney and Trump), while Panel B provides similar evidence for the Democrats (Obama, Clinton, and Biden). There are three noteworthy facts presented in the figure. First, there was a sizable growth in the overall volume of Twitter content mentioning presidential candidates. Second, the number of “likes” for tweets mentioning Trump is larger than those mentioning his opponents (the difference is fourfold in 2016 and almost threefold in 2020). Note that a “like” for a tweet mentioning a candidate can occur for tweets that are positive or negative about the candidate, so the overall size of the bars are not informative about slant or sentiments of Twitter content.

Third, Figure 9 also breaks down the share of tweets mentioning the candidates by slant. The content sent by users classified as Democrats are more sizable than that from those classified as Republicans. In particular, the amount of attention (proxied via “likes”) on Twitter content mentioning Trump posted by Democrats is almost twice as large as the amount posted from Republicans (for both 2016 and 2020). On the other hand, content on Biden was more likely to have a Democrat slant and content on Clinton was almost equally likely to have a Democrat or Republican slant.

Overall, a potential interpretation of these results is as follows. Twitter users, and users of other social media platforms, are more likely to be young, well-educated, live in dense urban areas, and support the Democratic party (see discussion in Section 2). Perhaps as a result, Democratic politicians are more popular on Twitter than Republicans (Figure 1). In 2016 and 2020, Twitter became a vehicle for spreading opinions, particularly from Democratic-slanted users, on Trump. This may, in turn, have persuaded voters with weaker priors—independents and perhaps more moderate Republicans—to vote against Trump in the presidential election.53

7 Conclusion

Election officials around the globe are concerned about social media’s increasing influence on voting decisions (e.g. NPR, 2020a). At the time of writing, there is a heated debate about whether platform providers should “moderate” election-related content in the U.S. (e.g. Politico, 2020). Exploiting variation based on a shock to Twitter’s initial rise to popularity,

53Note that the 2012 election differed from 2016 and 2020 both in terms of having less twitter content referring to it (as Figure D.2 indicates) and also for having a more moderate Republican candidate (Romney) that may not have attracted as much Democrat-slanted content.
our paper provides some of the first empirical evidence that social media can affect election outcomes.

We find that Twitter lowered the Republican party’s vote share in the 2016 and 2020 presidential elections. While this finding runs counter to a popular narrative that places social media at the heart of Trump’s election win, it is consistent with a growing body of evidence showing that social media users were less, not more likely to vote for Trump in 2016 or hold polarized views (Boxell et al., 2017, 2018).

We also provide support for the idea that the demographics of Twitter users may account for the platform’s partisan effects. People who use Twitter are 25 percentage points more likely to identify as Democrats rather than Republican, and Democratic politicians are more popular on Twitter than Republican ones. Our work suggests that this environment not only reflects selection of like-minded individuals, but also affects voting decisions, particularly for people with more moderate views.
References

Barberá, P. (2014). How Social Media Reduces Mass Political Polarization. Evidence from Germany, Spain, and the US.

Fergusson, L. and C. Molina (2021, April). Facebook Causes Protests. Documentos CEDE 018002, Universidad de los Andes - CEDE.

FiveThirtyEight (2015). Let’s Be Serious About Ted Cruz From The Start: He’s Too Extreme And Too Disliked To Win.

NPR (2020b). Facebook Keeps Data Secret, Letting Conservative Bias Claims Persist.

NPR (2020c). President-Elect Joe Biden Hits 80 Million Votes In Year Of Record Turnout.

Pew Research Center (2020). Democrats On Twitter More Liberal, Less Focused On Compro-
Quora (2011). What is the process involved in launching a start-up at SXSW?
Statista (2020). Leading countries based on number of Twitter users as of October 2020.

The Hill (2016). Stop Blaming Facebook for Trump’s Election Win, By Keith N. Hampton and Eszter Hargittai.

Wired (2016). Here’s How Facebook Actually Won Trump the Presidency, By Issie Lapowsky.

Figure 1: Twitter Reach by Party

Notes: This figure plots data on the Twitter reach of Congress members. The sample includes all 901 senators and House representatives who were in office between 2007 and 2019 for whom we could identify a Twitter account. For each account, we plot the average number of tweets and followers, and the average number of “likes” and retweets of their tweets. Appendix Figure A.2 replicates the figure using medians instead of averages. The data were collected from Twitter in November 2019.
Figure 2: Republican Vote Share in the 2016 Presidential Election

Notes: This map plots the geographical distribution of the Republican two-party vote share in the 2016 presidential election.
Figure 3: Twitter Usage and Identifying Variation

(a) Twitter Usage per Capita

(b) Identifying Variation

Notes: This map plots the proxy for social media usage based on data from Twitter and the identifying variation of our instrument. Panel (a) plots quintiles of the number of Twitter users per capita. Panel (b) plots the three types of counties relevant for our identification strategy: 1) the 47 counties with SXSW followers that joined Twitter both in March 2007 and the “pre-period” (light red); 2) the 108 counties with SXSW followers that joined in March 2007, but none in the “pre-period” (dark red); and 3) the 20 counties with SXSW followers that joined in the “pre-period,” but none in March 2007 (blue).
Figure 4: South by Southwest (SXSW) 2007 and the Spread of Twitter

(a) Twitter Activity Around SXSW 2007

![Graph showing Twitter activity around SXSW 2007](image)

- **SXSW tweets (left axis)**
- **All tweets (right axis)**

(b) SXSW and Local Twitter Adoption

![Graph showing change in Twitter activity](image)

Notes: Panel (a) plots the total number of tweets and the number of tweets containing the term “SXSW” over time, smoothed using a 7-day moving average. Panel (b) plots the estimates of β_τ from the panel event study regression $tweets_{ct} = \sum_\tau \beta_\tau \times SXSW_{c,March}^{2007} \times 1(t = \tau) + \sum_\tau \delta_\tau \times SXSW_{c,Pre} \times 1(t = \tau) + \theta_c + \gamma_t + \varepsilon_{ct}$ where $tweets_{ct}$ is the log of (one plus) the number of tweets in county c on week t, $SXSW_{c,March}^{2007}$ is the logarithm of (one plus) the number of SXSW followers in county c that joined Twitter on March 2007 and $SXSW_{c,Pre}$ is a similarly defined variable for followers that joined Twitter before March 2007. We standardize the variables to have a mean of zero and standard deviation of one. The whiskers represent 95% confidence intervals based on standard errors clustered by state.
Figure 5: First Stage – South by Southwest (SXSW) and Twitter Usage

Notes: This figure presents a binned scatter plot of the relationship between Twitter users in 2014-2015 and the number of SXSW followers who joined Twitter in March 2007. Variables are residualized by partialing out SXSW followers who joined before March 2007, population deciles, Census region fixed effects, as well as geographical, demographic, socioeconomic, China shock, and 1996 election control variables (see Online Appendix for control variable definitions). The figure is constructed by dividing the x-axis variable into 40 equal-sized bins and plotting the average values of both variables in each bin. The fitted line is estimated using the unbinned data.
Figure 6: South by Southwest, Twitter, and the Republican Vote Share

2016 Election

(a) Reduced Form

(b) OLS

2020 Election

(c) Reduced Form

(d) OLS

Notes: Panel (a) presents a binned scatter plot of the relationship between the Republican vote share in the 2016 presidential election and the number of SXSW followers who joined Twitter in March 2007. Variables are residualized with respect to SXSW followers who joined before March 2007, population deciles, Census region fixed effects, as well as geographical, demographic, socioeconomic, China shock, and 1996 election control variables. The figure is constructed by dividing the x-axis variable into 40 equal-sized bins and plotting the average values of both variables in each bin. The fitted line is estimated using the unbinned data. Panels (b) and (d) replicate the exercise using Twitter users in 2014-2015 as the x-axis variable. Panel (c) and (d) show results for the 2020 election.
Figure 7: Twitter and Presidential Elections – Reduced Form

(a) Changes in Republican Vote Share

(b) Change in Voter Turnout

Notes: These figures plot reduced form estimates $\hat{\beta}'$ from county-level regressions as in equation (2). They measure the effect of $\log(1 + \text{SXSW followers, March 2007})$, while controlling for $\log(1 + \text{SXSW followers, Pre})$, on changes in the Republican vote share in presidential elections relative to the year 2000 in Panel (a), and changes in the ratio of voter turnout to voting-age population relative to 2000 in Panel (b). All regressions control for population deciles and Census region fixed effects, and the full set of controls (as in columns 5 and 10 of Table 2). On Panel (a), the estimates for 2004, 2008, and 2012 are jointly statistically insignificant (p-value=0.398). Further, the average effect in 2016 and 2020 is statistically distinct from the average effect for 2004, 2008, and 2012 (p-value=0.001). Regressions are weighted by turnout in the 2000 presidential election. Whiskers represent 95% confidence intervals based on standard errors clustered by state.
Figure 8: Twitter and Congressional Election Results – Reduced Form

(a) House Elections

(b) Senate Elections

Notes: These figures plot reduced form estimates $\hat{\beta}'$ from county-level regressions as in equation (2). They measure the reduced form effect of $\log(1 + SXSW\ followers, March\ 2007)$, while controlling for $\log(1 + SXSW\ followers, Pre)$, on the Republican vote share in House and Senate elections since 2000. For House elections in Panel (a), the dependent variable is the change in the Republican vote share since 2000. For Senate elections in Panel (b), the dependent variable is the change in the Republican vote share from six, twelve, or eighteen years ago (to accommodate senators’ 6-year terms). All regressions control for population deciles and Census region fixed effects and the full set of controls (as in columns 5 and 10 of Table 2). Regressions are weighted by turnout in the 2000 presidential election. The whiskers represent 95% confidence intervals based on standard errors clustered by state.
Figure 9: Twitter’s Partisan Slant Across Presidential Elections

(a) Tweets about Republican Presidential Candidates

(b) Tweets about Democratic Presidential Candidates

Notes: These figures present the number of “likes” received by tweets that contain the last name of the candidates in the 2012, 2016 and 2020 presidential elections, depending on whether the tweet was classified as having a Republican, Democratic, or neutral slant. We classify the slant of a tweet based on the Twitter network of the user who sent the tweet. If the user follows more Democratic than Republican Congress members, they will be classified as a Democrat, and vice versa. Users who follow an equal number of Democrats and Republican or no Congress members are classified as neutral.
Table 1: South by Southwest 2007 and Twitter Usage

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log(SXSW followers, March 2007)</td>
<td>0.726***</td>
<td>0.683***</td>
<td>0.563***</td>
<td>0.524***</td>
<td>0.523***</td>
</tr>
<tr>
<td></td>
<td>(0.087)</td>
<td>(0.079)</td>
<td>(0.055)</td>
<td>(0.048)</td>
<td>(0.048)</td>
</tr>
<tr>
<td>Log(SXSW followers, Pre)</td>
<td>0.104</td>
<td>0.110</td>
<td>0.059</td>
<td>0.059</td>
<td>0.058</td>
</tr>
<tr>
<td></td>
<td>(0.101)</td>
<td>(0.076)</td>
<td>(0.098)</td>
<td>(0.082)</td>
<td>(0.082)</td>
</tr>
<tr>
<td>Population deciles</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Census region FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Geographical controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Demographic controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Socioeconomic controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>China shock controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>1996 election control</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>3,065</td>
<td>3,065</td>
<td>3,064</td>
<td>3,064</td>
<td>3,064</td>
</tr>
<tr>
<td>R^2</td>
<td>0.92</td>
<td>0.93</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>Mean of DV</td>
<td>8.22</td>
<td>8.22</td>
<td>8.22</td>
<td>8.22</td>
<td>8.22</td>
</tr>
<tr>
<td>p-value: March 2007 = Pre</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Notes: This table presents county-level regressions where the dependent variable is the number of Twitter users (in natural logarithm). Log(SXSW followers, March 2007) is the number of Twitter users (in logs, with 1 added inside) who joined in March 2007 and follow South by Southwest (SXSW). SXSW followers, Pre is the number of SXSW followers who registered at some point in 2006, defined similarly. The bottom row reports p-values from F-tests for the equality of these coefficients. Regressions include the indicated control variables (see the Online Appendix for their descriptions). Observations are weighted by turnout in the 2000 presidential election. Standard errors in parentheses are clustered by state. *** p < 0.01, ** p < 0.05, * p < 0.1.
Table 2: Twitter and the 2016/2020 Republican Vote Share

<table>
<thead>
<tr>
<th></th>
<th>Dep. var.: Republican vote share in 2016</th>
<th>Dep. var.: Republican vote share in 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) (2) (3) (4) (5)</td>
<td>(6) (7) (8) (9) (10)</td>
</tr>
<tr>
<td>Panel A: OLS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log(Twitter users)</td>
<td>-0.065*** (0.009)</td>
<td>-0.067*** (0.008)</td>
</tr>
<tr>
<td></td>
<td>-0.013*** (0.004)</td>
<td>-0.011*** (0.003)</td>
</tr>
<tr>
<td></td>
<td>-0.007** (0.003)</td>
<td>-0.008*** (0.009)</td>
</tr>
<tr>
<td>Panel B: Reduced form</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log(SXSW followers, March 2007)</td>
<td>-0.053*** (0.011)</td>
<td>-0.056*** (0.012)</td>
</tr>
<tr>
<td></td>
<td>-0.019*** (0.005)</td>
<td>-0.014*** (0.004)</td>
</tr>
<tr>
<td></td>
<td>-0.011*** (0.004)</td>
<td>-0.013*** (0.004)</td>
</tr>
<tr>
<td>Log(SXSW followers, Pre)</td>
<td>-0.021 (0.016)</td>
<td>-0.003 (0.013)</td>
</tr>
<tr>
<td></td>
<td>-0.000 (0.006)</td>
<td>0.001 (0.004)</td>
</tr>
<tr>
<td>Panel C: 2SLS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log(Twitter users)</td>
<td>-0.072*** (0.016)</td>
<td>-0.085*** (0.018)</td>
</tr>
<tr>
<td></td>
<td>-0.034*** (0.010)</td>
<td>-0.027*** (0.008)</td>
</tr>
<tr>
<td></td>
<td>-0.021*** (0.008)</td>
<td>-0.020*** (0.008)</td>
</tr>
<tr>
<td>Log(SXSW followers, Pre)</td>
<td>-0.014 (0.020)</td>
<td>0.007 (0.016)</td>
</tr>
<tr>
<td></td>
<td>0.002 (0.007)</td>
<td>0.000 (0.006)</td>
</tr>
<tr>
<td>Population deciles</td>
<td>Yes Yes Yes Yes Yes</td>
<td>Yes Yes Yes Yes Yes</td>
</tr>
<tr>
<td>Census region FE</td>
<td>Yes Yes Yes Yes Yes</td>
<td>Yes Yes Yes Yes Yes</td>
</tr>
<tr>
<td>Geographical controls</td>
<td>Yes Yes Yes Yes Yes</td>
<td>Yes Yes Yes Yes Yes</td>
</tr>
<tr>
<td>Demographic controls</td>
<td>Yes Yes Yes Yes Yes</td>
<td>Yes Yes Yes Yes Yes</td>
</tr>
<tr>
<td>Socioeconomic controls</td>
<td>Yes Yes Yes Yes Yes</td>
<td>Yes Yes Yes Yes Yes</td>
</tr>
<tr>
<td>China shock controls</td>
<td>Yes Yes Yes Yes</td>
<td>Yes Yes Yes Yes</td>
</tr>
<tr>
<td>1996 election control</td>
<td>Yes Yes Yes</td>
<td>Yes Yes Yes</td>
</tr>
<tr>
<td>Mean of DV</td>
<td>0.46 0.46 0.46 0.46 0.46</td>
<td>0.47 0.47 0.47 0.47 0.47</td>
</tr>
<tr>
<td>Robust F-stat.</td>
<td>69.57 74.65 106.08 118.21 121.18</td>
<td>69.57 74.65 106.08 118.21 121.18</td>
</tr>
</tbody>
</table>

Notes: This table presents county-level regressions where the dependent variable is the Republican vote share in the 2016 or 2020 presidential election. Log(SXSW followers, March 2007) is the number of Twitter users (in logs, with 1 added inside) who joined in March 2007 and follow South by Southwest (SXSW). SXSW followers, Pre is the number of SXSW followers who registered at some point in 2006, defined similarly. Twitter users are the number of users in 2014-2015. Regressions include the indicated control variables (see the Online Appendix for their descriptions). The first-stage regressions for 2SLS results (Panel B) are presented in Table 1, with the F-stat for the excluded instrument in the bottom row. The “Oster-δ” for gauging the possible role of unobservables in driving coefficient stability is 6.93 (comparing column 5 to 1) and 7.02 (comparing column 10 to 6); see text for further details. Observations are weighted by turnout in the 2000 presidential election. Standard errors in parentheses are clustered by state. *** p < 0.01, ** p < 0.05, * p < 0.1.
Table 3: Twitter and the Republican Vote Share, 2000-2020

<table>
<thead>
<tr>
<th>Dep. var.: Republican vote share in...</th>
<th>2000</th>
<th>2004</th>
<th>2008</th>
<th>2012</th>
<th>2016</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>Panel A: Reduced form</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log(SXSW followers, March 2007)</td>
<td>-0.003</td>
<td>-0.005</td>
<td>-0.006</td>
<td>-0.003</td>
<td>-0.011***</td>
<td>-0.011**</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.003)</td>
<td>(0.004)</td>
<td>(0.004)</td>
<td>(0.004)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>Log(SXSW followers, Pre)</td>
<td>0.001</td>
<td>0.001</td>
<td>-0.000</td>
<td>-0.002</td>
<td>0.001</td>
<td>-0.001</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.003)</td>
<td>(0.006)</td>
<td>(0.005)</td>
<td>(0.004)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>Panel B: 2SLS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log(Twitter users)</td>
<td>-0.005</td>
<td>-0.009</td>
<td>-0.011</td>
<td>-0.007</td>
<td>-0.021***</td>
<td>-0.020**</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.006)</td>
<td>(0.009)</td>
<td>(0.008)</td>
<td>(0.008)</td>
<td>(0.009)</td>
</tr>
<tr>
<td>Log(SXSW followers, Pre)</td>
<td>0.001</td>
<td>0.001</td>
<td>0.000</td>
<td>-0.001</td>
<td>0.002</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.004)</td>
<td>(0.006)</td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>Observations</td>
<td>3.064</td>
<td>3.064</td>
<td>3.064</td>
<td>3.064</td>
<td>3.064</td>
<td>3.064</td>
</tr>
<tr>
<td>Mean of DV</td>
<td>0.48</td>
<td>0.51</td>
<td>0.46</td>
<td>0.47</td>
<td>0.46</td>
<td>0.47</td>
</tr>
<tr>
<td>Robust F-stat.</td>
<td>121.18</td>
<td>121.18</td>
<td>121.18</td>
<td>121.18</td>
<td>121.18</td>
<td>121.18</td>
</tr>
</tbody>
</table>

Notes: This table presents county-level regressions where the dependent variable is the Republican vote share in presidential elections. Log(SXSW followers, March 2007) is the number of Twitter users (in logs, with 1 added inside) who joined in March 2007 and follow South by Southwest (SXSW). SXSW followers, Pre is the number of SXSW followers who registered at some point in 2006, defined similarly. Twitter users are the number of users in 2014-2015. All regressions control for population deciles, Census region fixed effects, and the full set of controls (as in columns 5 and 10 of Table 2). The first-stage regression for 2SLS results (Panel B) are presented in column (5) of Table 1, with the F-stat for the excluded instrument in the bottom row. On Panel (a), the coefficients on Log(SXSW followers, March 2007) for 2000, 2004, 2008, and 2012 are jointly statistically insignificant (p-value=0.329). Further, the average effect in 2016 and 2020 is statistically distinct from the average effect in 2000, 2004, 2008, and 2012 (p-value=0.002). Observations are weighted by turnout in the 2000 presidential election. Standard errors in parentheses are clustered by state. *** p < 0.01, ** p < 0.05, * p < 0.1.
Table 4: Twitter and Individuals’ Vote Decisions in 2016/2020

<table>
<thead>
<tr>
<th></th>
<th>Dep. var.: Voted for Trump in ...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Log(Twitter users)</td>
<td>-0.135***</td>
</tr>
<tr>
<td></td>
<td>(0.045)</td>
</tr>
<tr>
<td>Marginal effect</td>
<td>[-0.049]</td>
</tr>
<tr>
<td>Observations</td>
<td>146,579</td>
</tr>
<tr>
<td>Mean of DV</td>
<td>0.492</td>
</tr>
</tbody>
</table>

Panel A: 2016 Election

<table>
<thead>
<tr>
<th></th>
<th>Dep. var.: Voted for Trump in ...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Log(Twitter users)</td>
<td>-0.130***</td>
</tr>
<tr>
<td></td>
<td>(0.042)</td>
</tr>
<tr>
<td>Marginal effect</td>
<td>[-0.046]</td>
</tr>
<tr>
<td>Observations</td>
<td>43,617</td>
</tr>
<tr>
<td>Mean of DV</td>
<td>0.475</td>
</tr>
</tbody>
</table>

Notes: This table presents results estimated using IV probit models, as in equation (4). The dependent variable is a dummy for individuals in the CCES who voted for Trump in 2016 or 2020. Log(Twitter users) is instrumented using the (log) number of SXSW followers that joined Twitter in March 2007. All regressions control for the (log) number of SXSW followers that joined Twitter at some point in 2006, family income, gender, education levels, marital status, news interest, and age, as well as county-level population deciles and Census region fixed effects. Regressions are weighted by survey weights. Standard errors in parentheses are clustered by state. *** $p < 0.01$, ** $p < 0.05$, * $p < 0.10$.

51
Table 5: Twitter and Vote Shares in the 2016 Republican Primaries

<table>
<thead>
<tr>
<th></th>
<th>Trump (1)</th>
<th>Cruz (2)</th>
<th>Rubio (3)</th>
<th>Bush (4)</th>
<th>Kasich (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dep. var.: Vote share in Republican Primary of...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log(SXSW followers, March 2007)</td>
<td>-0.030**</td>
<td>0.004</td>
<td>0.016</td>
<td>-0.002</td>
<td>0.017**</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.009)</td>
<td>(0.010)</td>
<td>(0.001)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>Panel B: 2SLS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log(Twitter users)</td>
<td>-0.044**</td>
<td>0.005</td>
<td>0.024</td>
<td>-0.003</td>
<td>0.025**</td>
</tr>
<tr>
<td></td>
<td>(0.017)</td>
<td>(0.013)</td>
<td>(0.015)</td>
<td>(0.002)</td>
<td>(0.011)</td>
</tr>
<tr>
<td>Observations</td>
<td>2,831</td>
<td>2,831</td>
<td>2,831</td>
<td>2,831</td>
<td>2,831</td>
</tr>
<tr>
<td>Mean of DV</td>
<td>0.48</td>
<td>0.23</td>
<td>0.09</td>
<td>0.01</td>
<td>0.15</td>
</tr>
<tr>
<td>Robust F-stat.</td>
<td>69.54</td>
<td>69.54</td>
<td>69.54</td>
<td>69.54</td>
<td>69.54</td>
</tr>
</tbody>
</table>

Notes: This table presents county-level regressions where the dependent variable is the vote share of the indicated candidate in the Republican party primaries in 2016. *Log(SXSW followers, March 2007)* is the number of Twitter users (in logs, with 1 added inside) who joined in March 2007 and follow South by Southwest (SXSW). *SXSW followers, Pre* is the number of SXSW followers who registered at some point in 2006, defined similarly. *Twitter users* are the number of users in 2014-2015. All regressions control for population deciles, Census region fixed effects, and the full set of controls (as in columns 5 and 10 of Table 2). The first-stage regressions for 2SLS results (Panel B) are analogous to the one presented in Table 1, except for the different sample of counties for which primary results are available. The F-stat for the excluded instrument is provided in the bottom row. Observations are weighted by turnout in the 2000 presidential election. Standard errors in parentheses are clustered by state. *** p < 0.01, ** p < 0.05, * p < 0.1.
Table 6: Twitter and Candidate Approval during the 2016 Primaries

<table>
<thead>
<tr>
<th>Panel A: Republicans</th>
<th>Panel B: Independents and Leaners</th>
<th>Panel C: Democrats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dep. var.: Approved of candidate during primaries</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trump</td>
<td>Cruz</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Log(Twitter users)</td>
<td>-0.108***</td>
<td>-0.086**</td>
</tr>
<tr>
<td>(0.030)</td>
<td>(0.035)</td>
<td>(0.060)</td>
</tr>
<tr>
<td>Marginal effect</td>
<td>[-0.038]</td>
<td>[-0.029]</td>
</tr>
<tr>
<td>Observations</td>
<td>19,974</td>
<td>11,959</td>
</tr>
<tr>
<td>Mean of DV</td>
<td>0.647</td>
<td>0.698</td>
</tr>
<tr>
<td>Log(Twitter users)</td>
<td>-0.065**</td>
<td>-0.006</td>
</tr>
<tr>
<td>(0.028)</td>
<td>(0.035)</td>
<td>(0.043)</td>
</tr>
<tr>
<td>Marginal effect</td>
<td>[-0.021]</td>
<td>[-0.002]</td>
</tr>
<tr>
<td>Observations</td>
<td>22,852</td>
<td>12,135</td>
</tr>
<tr>
<td>Mean of DV</td>
<td>0.329</td>
<td>0.392</td>
</tr>
<tr>
<td>Log(Twitter users)</td>
<td>-0.052</td>
<td>-0.116**</td>
</tr>
<tr>
<td>(0.051)</td>
<td>(0.054)</td>
<td>(0.056)</td>
</tr>
<tr>
<td>Marginal effect</td>
<td>[-0.009]</td>
<td>[-0.030]</td>
</tr>
<tr>
<td>Observations</td>
<td>20,866</td>
<td>11,098</td>
</tr>
<tr>
<td>Mean of DV</td>
<td>0.107</td>
<td>0.195</td>
</tr>
</tbody>
</table>

This table presents results estimated using IV probit models, as in equation (4). The dependent variable is a dummy for individuals who approved the respective presidential candidate during the presidential primaries in 2015 and 2016. We restrict the sample to the period before Trump became the presumptive nominee in June 2016. Log(Twitter users) is instrumented using the number of SXSW followers that joined Twitter in March 2007. All regressions control for the (log) number of SXSW followers that joined Twitter at some point in 2006, income, gender, education, and marital status, as well as county-level population deciles and Census region fixed effects. Regressions are weighted by survey weights. Standard errors in parentheses are clustered by state. *** $p < 0.01$, ** $p < 0.05$, * $p < 0.10$.

53
Online Appendix

This appendix presents further details on data construction, the SXSW festival, additional robustness exercises, further results, and the LATE extrapolation:

- Appendix A provides additional details on the data.
- Appendix B discusses the SXSW instrument.
- Appendix C shows additional robustness checks.
- Appendix D provides further results.
- Appendix E discusses extrapolation for the average treatment effect.

A Additional Details on Data

<table>
<thead>
<tr>
<th>Rank</th>
<th>Name</th>
<th>Twitter Handle</th>
<th>Party</th>
<th>Tweets</th>
<th>Followers</th>
<th>Likes</th>
<th>Retweets</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Barack Obama</td>
<td>barackobama</td>
<td>D</td>
<td>15,754</td>
<td>114,369,395</td>
<td>38,496</td>
<td>8,475</td>
</tr>
<tr>
<td>2</td>
<td>Hillary Rodham Clinton</td>
<td>hillaryclinton</td>
<td>D</td>
<td>11,491</td>
<td>27,026,749</td>
<td>22,413</td>
<td>6,780</td>
</tr>
<tr>
<td>3</td>
<td>Bernard Sanders</td>
<td>BernieSanders</td>
<td>D</td>
<td>17,667</td>
<td>11,436,732</td>
<td>19,324</td>
<td>3,625</td>
</tr>
<tr>
<td>4</td>
<td>Alexandria Ocasio-Cortez</td>
<td>AOC</td>
<td>D</td>
<td>10,087</td>
<td>6,596,922</td>
<td>30,668</td>
<td>8,634</td>
</tr>
<tr>
<td>5</td>
<td>Elizabeth Warren</td>
<td>SenWarren</td>
<td>D</td>
<td>5,345</td>
<td>5,743,064</td>
<td>5,845</td>
<td>1,863</td>
</tr>
<tr>
<td>6</td>
<td>Joseph R. Biden Jr.</td>
<td>joebiden</td>
<td>D</td>
<td>4,228</td>
<td>4,507,744</td>
<td>11,789</td>
<td>2,472</td>
</tr>
<tr>
<td>7</td>
<td>Cory A. Booker</td>
<td>CoryBooker</td>
<td>D</td>
<td>65,242</td>
<td>4,468,595</td>
<td>2,802</td>
<td>798</td>
</tr>
<tr>
<td>8</td>
<td>Mike Pence</td>
<td>mike_pence</td>
<td>R</td>
<td>8,069</td>
<td>4,397,219</td>
<td>2,768</td>
<td>4,176</td>
</tr>
<tr>
<td>9</td>
<td>Nancy Pelosi</td>
<td>SpeakerPelosi</td>
<td>D</td>
<td>10,154</td>
<td>4,149,922</td>
<td>9,022</td>
<td>2,693</td>
</tr>
<tr>
<td>10</td>
<td>Marco Rubio</td>
<td>MarcoRubio</td>
<td>R</td>
<td>12,789</td>
<td>4,098,788</td>
<td>2,642</td>
<td>1,608</td>
</tr>
<tr>
<td>11</td>
<td>Paul D. Ryan</td>
<td>SpeakerRyan</td>
<td>R</td>
<td>14,755</td>
<td>3,646,397</td>
<td>781</td>
<td>260</td>
</tr>
<tr>
<td>12</td>
<td>Kamala D. Harris</td>
<td>KamalaHarris</td>
<td>D</td>
<td>13,119</td>
<td>3,476,952</td>
<td>10,366</td>
<td>2,229</td>
</tr>
<tr>
<td>13</td>
<td>John F. Kerry</td>
<td>johnkerry</td>
<td>D</td>
<td>2,668</td>
<td>3,360,092</td>
<td>773</td>
<td>328</td>
</tr>
<tr>
<td>14</td>
<td>John McCain</td>
<td>SenJohnMcCain</td>
<td>R</td>
<td>14,409</td>
<td>3,075,281</td>
<td>2,551</td>
<td>721</td>
</tr>
<tr>
<td>15</td>
<td>Rand Paul</td>
<td>randpaul</td>
<td>R</td>
<td>13,642</td>
<td>2,700,813</td>
<td>3,926</td>
<td>1,491</td>
</tr>
<tr>
<td>16</td>
<td>Charles E. Schumer</td>
<td>SenSchumer</td>
<td>D</td>
<td>17,004</td>
<td>2,145,147</td>
<td>6,457</td>
<td>2,171</td>
</tr>
<tr>
<td>17</td>
<td>Adam B. Schiff</td>
<td>RepAdamSchiff</td>
<td>D</td>
<td>5,623</td>
<td>2,087,003</td>
<td>19,009</td>
<td>6,849</td>
</tr>
<tr>
<td>18</td>
<td>Ilhan Omar</td>
<td>IlhanMN</td>
<td>D</td>
<td>14,678</td>
<td>1,947,411</td>
<td>6,644</td>
<td>2,649</td>
</tr>
<tr>
<td>19</td>
<td>Lindsey Graham</td>
<td>LindseyGrahamSC</td>
<td>R</td>
<td>10,872</td>
<td>1,535,623</td>
<td>5,698</td>
<td>1,616</td>
</tr>
<tr>
<td>20</td>
<td>Mike Pompeo</td>
<td>SecPompeo</td>
<td>R</td>
<td>2,148</td>
<td>1,503,151</td>
<td>4,936</td>
<td>1,711</td>
</tr>
</tbody>
</table>

Notes: This table lists the 20 Congress members who were in office between 2007 and 2019 with the most Twitter followers at the time of data collection. Likes and retweets refer to the average number of interactions the Congress members receive for their average tweet. The data were collected from Twitter in November 2019.
Figure A.1: Validation of Twitter usage measure

(a) Twitter Usage over Time

(b) Twitter Usage by County (Gesis vs GfK)

Notes: This graph shows two validation exercises for the Twitter usage measure in the Gesis data (Kinder-Kurland et al., 2017). Panel (a) plots the number of Twitter users in the Gesis data and the number of active monthly users reported by Statista based on Twitter’s own reporting. Panel (b) plots the percentiles of the number of Twitter users in the Gesis data at the county-level against the number of users based on the GfK Media Survey.
Figure A.2: Twitter Reach by Party (Median)

Notes: This figure plots data on the Twitter reach of Congress members. The sample includes all 901 senators and House representatives who were in office between 2007 and 2019 for whom we could identify a Twitter account. For each account, we plot the median number of tweets and followers, and the median number of “likes” and retweets of their tweets. The data were collected from Twitter in November 2019.
Figure A.3: News Reports About Social Media

Notes: This graph plots the number of times the terms “Twitter” and “Facebook” are mentioned in USA Today, The Washington Post, The New York Post, and The New York Times based on data from Nexis.
Table A.2: Summary Statistics (County-Level)

<table>
<thead>
<tr>
<th>Vote outcomes and Twitter data</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min.</th>
<th>Median</th>
<th>Max.</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vote share</td>
<td>0.46</td>
<td>0.17</td>
<td>0.08</td>
<td>0.45</td>
<td>0.95</td>
<td>3,065</td>
</tr>
<tr>
<td>Change in Republican two-party vote share, 2000-2016</td>
<td>-0.02</td>
<td>0.10</td>
<td>-0.33</td>
<td>-0.03</td>
<td>0.45</td>
<td>3,065</td>
</tr>
<tr>
<td>Republican two-party vote share (2020)</td>
<td>0.47</td>
<td>0.17</td>
<td>0.09</td>
<td>0.45</td>
<td>0.96</td>
<td>3,065</td>
</tr>
<tr>
<td>Change in Republican two-party vote share, 2000-2020</td>
<td>-0.01</td>
<td>0.10</td>
<td>-0.34</td>
<td>-0.02</td>
<td>0.48</td>
<td>3,065</td>
</tr>
<tr>
<td>Log(Twitter users)</td>
<td>8.22</td>
<td>1.99</td>
<td>0.00</td>
<td>8.45</td>
<td>12.35</td>
<td>3,065</td>
</tr>
<tr>
<td>Log(SXSW followers, March 2007)</td>
<td>0.69</td>
<td>1.13</td>
<td>0.00</td>
<td>0.00</td>
<td>4.98</td>
<td>3,065</td>
</tr>
<tr>
<td>Log(SXSW followers, Pre)</td>
<td>0.33</td>
<td>0.73</td>
<td>0.00</td>
<td>0.00</td>
<td>3.61</td>
<td>3,065</td>
</tr>
</tbody>
</table>

Geographical controls

Population density	1925.15	6342.94	0.10	508.30	69468.40	3,065
Log(County area)	6.72	0.92	3.26	6.64	9.91	3,065
Distance from Austin, TX (in miles)	1731.21	653.61	5.04	1750.86	3098.88	3,065
Distance from Chicago (in miles)	1246.18	813.51	7.16	1103.75	3040.38	3,065
Distance from NYC (in miles)	1600.47	1255.14	6.48	1285.98	4191.67	3,065
Distance from San Francisco (in miles)	2841.16	1231.98	41.11	3157.16	4565.01	3,065
Distance from Washington, DC (in miles)	1448.51	1175.55	7.88	1047.13	3983.08	3,065

Demographic controls

% aged 20-24	0.07	0.02	0.01	0.06	0.27	3,065
% aged 25-29	0.07	0.01	0.03	0.07	0.15	3,065
% aged 30-34	0.07	0.01	0.03	0.06	0.12	3,065
% aged 35-39	0.06	0.01	0.03	0.06	0.10	3,065
% aged 40-44	0.06	0.01	0.02	0.06	0.10	3,065
% aged 45-49	0.06	0.01	0.02	0.06	0.09	3,065
% aged 50+	0.36	0.06	0.11	0.35	0.75	3,065
Population growth, 2000-2016	0.14	0.19	-0.43	0.10	1.32	3,065
% white	0.65	0.21	0.03	0.08	0.98	3,065
% black	0.12	0.12	0.00	0.08	0.85	3,065
% native American	0.01	0.03	0.00	0.00	0.90	3,065
% Asian	0.05	0.06	0.00	0.03	0.37	3,065
% Hispanic	0.15	0.15	0.01	0.09	0.96	3,065
% unemployed	5.31	1.42	1.80	5.10	24.10	3,065

Socioeconomic controls

% below poverty level	15.11	5.34	1.40	15.10	53.30	3,065
% employed in IT	0.02	0.02	0.00	0.00	0.21	3,065
% employed in construction/real estate	0.07	0.03	0.00	0.07	1.00	3,065
% employed in manufacturing	0.11	0.08	0.00	0.08	0.72	3,065
% adults with high school degree	28.13	7.41	8.30	27.50	54.80	3,065
% adults with college degree	20.98	3.66	8.70	20.90	35.60	3,065
% watching Fox News	0.26	0.01	0.23	0.26	0.30	3,064
% watching prime time TV	0.43	0.01	0.40	0.43	0.47	3,064

China shock controls

Exposure to Chinese import competition	2.63	2.02	-0.63	2.10	43.08	3,065
Share of routine occupations	31.87	2.36	22.23	32.14	36.66	3,065
Average offshorability index	-0.02	0.50	-1.64	0.09	1.24	3,065

Average election control

| Republican two-party vote share (1996) | 0.41 | 0.11 | 0.10 | 0.41 | 0.79 | 3,065 |

Notes: This table presents descriptive statistics for the main estimation sample, weighted by the turnout in the 2000 presidential elections.
Table A.3: Summary Statistics (2016 CCES Individual-Level)

<table>
<thead>
<tr>
<th>Vote outcome</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min.</th>
<th>Median</th>
<th>Max.</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voted for Trump</td>
<td>0.49</td>
<td>0.50</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>146,579</td>
</tr>
</tbody>
</table>

Twitter data

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min.</th>
<th>Median</th>
<th>Max.</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log(Twitter users)</td>
<td>8.29</td>
<td>1.91</td>
<td>0.69</td>
<td>8.44</td>
<td>12.34</td>
<td>146,579</td>
</tr>
<tr>
<td>Log(SXSW followers, March 2007)</td>
<td>0.69</td>
<td>1.12</td>
<td>0.00</td>
<td>0.00</td>
<td>4.98</td>
<td>146,579</td>
</tr>
<tr>
<td>Log(SXSW followers, Pre)</td>
<td>0.32</td>
<td>0.71</td>
<td>0.00</td>
<td>0.00</td>
<td>3.61</td>
<td>146,579</td>
</tr>
</tbody>
</table>

Individual control variables

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min.</th>
<th>Median</th>
<th>Max.</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log(Age)</td>
<td>3.89</td>
<td>0.37</td>
<td>2.89</td>
<td>3.99</td>
<td>4.61</td>
<td>146,579</td>
</tr>
<tr>
<td>Family income dummies</td>
<td>7.12</td>
<td>3.65</td>
<td>1.00</td>
<td>7.00</td>
<td>13.00</td>
<td>146,579</td>
</tr>
<tr>
<td>Female dummy</td>
<td>1.52</td>
<td>0.50</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>146,579</td>
</tr>
<tr>
<td>Education dummies</td>
<td>3.54</td>
<td>1.54</td>
<td>1.00</td>
<td>3.00</td>
<td>6.00</td>
<td>146,579</td>
</tr>
<tr>
<td>Marital status dummies</td>
<td>2.36</td>
<td>1.71</td>
<td>1.00</td>
<td>1.00</td>
<td>5.00</td>
<td>146,579</td>
</tr>
<tr>
<td>Interest in news dummies</td>
<td>1.61</td>
<td>0.98</td>
<td>1.00</td>
<td>1.00</td>
<td>7.00</td>
<td>146,579</td>
</tr>
</tbody>
</table>

Notes: This table presents descriptive statistics for the CCES estimation sample, weighted by survey weights.

Table A.4: Summary Statistics (Gallup Individual-Level)

<table>
<thead>
<tr>
<th>Candidate approval outcomes</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min.</th>
<th>Median</th>
<th>Max.</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approve of Trump?</td>
<td>0.34</td>
<td>0.48</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>64,764</td>
</tr>
<tr>
<td>Approve of Kasich?</td>
<td>0.60</td>
<td>0.49</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>8,735</td>
</tr>
<tr>
<td>Approve of Rubio?</td>
<td>0.50</td>
<td>0.50</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>6,201</td>
</tr>
<tr>
<td>Approve of Cruz?</td>
<td>0.41</td>
<td>0.49</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>11,504</td>
</tr>
<tr>
<td>Approve of Sanders?</td>
<td>0.57</td>
<td>0.50</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>27,137</td>
</tr>
<tr>
<td>Approve of Clinton?</td>
<td>0.43</td>
<td>0.50</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>36,367</td>
</tr>
</tbody>
</table>

Twitter data

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min.</th>
<th>Median</th>
<th>Max.</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log(Twitter users)</td>
<td>8.29</td>
<td>1.97</td>
<td>0.00</td>
<td>8.48</td>
<td>12.35</td>
<td>64,764</td>
</tr>
<tr>
<td>Log(SXSW followers, March 2007)</td>
<td>0.72</td>
<td>1.15</td>
<td>0.00</td>
<td>0.00</td>
<td>4.98</td>
<td>64,764</td>
</tr>
<tr>
<td>Log(SXSW followers, Pre)</td>
<td>0.34</td>
<td>0.73</td>
<td>0.00</td>
<td>0.00</td>
<td>3.61</td>
<td>64,764</td>
</tr>
</tbody>
</table>

Individual control variables

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min.</th>
<th>Median</th>
<th>Max.</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income dummies</td>
<td>6.99</td>
<td>2.38</td>
<td>1.00</td>
<td>7.00</td>
<td>10.00</td>
<td>64,764</td>
</tr>
<tr>
<td>Female dummy</td>
<td>1.50</td>
<td>0.50</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>64,764</td>
</tr>
<tr>
<td>Education dummies</td>
<td>3.58</td>
<td>1.60</td>
<td>1.00</td>
<td>4.00</td>
<td>6.00</td>
<td>64,764</td>
</tr>
<tr>
<td>Marital status dummies</td>
<td>1.98</td>
<td>0.94</td>
<td>1.00</td>
<td>2.00</td>
<td>5.00</td>
<td>64,764</td>
</tr>
<tr>
<td>Age deciles</td>
<td>4.45</td>
<td>2.68</td>
<td>1.00</td>
<td>4.00</td>
<td>10.00</td>
<td>64,764</td>
</tr>
</tbody>
</table>

Notes: This table presents descriptive statistics for the Gallup estimation sample, weighted by survey weights.
Table A.5: Instrument Balancedness

<table>
<thead>
<tr>
<th></th>
<th>March 2007 only (1)</th>
<th>March 2007 only (2)</th>
<th>Pre only (3)</th>
<th>Difference in means (2) - (3)</th>
<th>p-value</th>
<th>Šidák p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population density</td>
<td>5192.27</td>
<td>1021.39</td>
<td>1998.35</td>
<td>-976.96</td>
<td>0.07**</td>
<td>0.91</td>
</tr>
<tr>
<td>Log(County area)</td>
<td>6.30</td>
<td>6.63</td>
<td>6.54</td>
<td>0.09</td>
<td>0.73</td>
<td>1.00</td>
</tr>
<tr>
<td>Distance from Austin, TX (in miles)</td>
<td>1775.99</td>
<td>1749.38</td>
<td>1626.64</td>
<td>122.74</td>
<td>0.48</td>
<td>1.00</td>
</tr>
<tr>
<td>Distance from Chicago (in miles)</td>
<td>1439.45</td>
<td>1329.47</td>
<td>1214.42</td>
<td>115.05</td>
<td>0.53</td>
<td>1.00</td>
</tr>
<tr>
<td>Distance from NYC (in miles)</td>
<td>1685.31</td>
<td>1594.99</td>
<td>1510.05</td>
<td>84.94</td>
<td>0.78</td>
<td>1.00</td>
</tr>
<tr>
<td>Distance from San Francisco (in miles)</td>
<td>2751.83</td>
<td>2900.11</td>
<td>2833.01</td>
<td>67.10</td>
<td>0.83</td>
<td>1.00</td>
</tr>
<tr>
<td>Distance from Washington, DC (in miles)</td>
<td>1558.55</td>
<td>1450.23</td>
<td>1397.05</td>
<td>53.18</td>
<td>0.85</td>
<td>1.00</td>
</tr>
<tr>
<td>% aged 20-24</td>
<td>0.07</td>
<td>0.08</td>
<td>0.08</td>
<td>0.00</td>
<td>0.92</td>
<td>1.00</td>
</tr>
<tr>
<td>% aged 25-29</td>
<td>0.09</td>
<td>0.07</td>
<td>0.07</td>
<td>-0.00</td>
<td>0.51</td>
<td>1.00</td>
</tr>
<tr>
<td>% aged 30-34</td>
<td>0.08</td>
<td>0.07</td>
<td>0.07</td>
<td>-0.00</td>
<td>0.58</td>
<td>1.00</td>
</tr>
<tr>
<td>% aged 35-39</td>
<td>0.07</td>
<td>0.06</td>
<td>0.06</td>
<td>-0.00</td>
<td>0.82</td>
<td>1.00</td>
</tr>
<tr>
<td>% aged 40-44</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.00</td>
<td>0.82</td>
<td>1.00</td>
</tr>
<tr>
<td>% aged 45-49</td>
<td>0.07</td>
<td>0.06</td>
<td>0.06</td>
<td>0.00</td>
<td>0.89</td>
<td>1.00</td>
</tr>
<tr>
<td>% aged 50+</td>
<td>0.32</td>
<td>0.35</td>
<td>0.35</td>
<td>-0.00</td>
<td>0.97</td>
<td>1.00</td>
</tr>
<tr>
<td>Population growth, 2000-2016</td>
<td>0.18</td>
<td>0.18</td>
<td>0.15</td>
<td>0.03</td>
<td>0.56</td>
<td>1.00</td>
</tr>
<tr>
<td>% white</td>
<td>0.50</td>
<td>0.65</td>
<td>0.67</td>
<td>-0.02</td>
<td>0.62</td>
<td>1.00</td>
</tr>
<tr>
<td>% black</td>
<td>0.18</td>
<td>0.12</td>
<td>0.08</td>
<td>0.04</td>
<td>0.20</td>
<td>1.00</td>
</tr>
<tr>
<td>% native American</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>-0.02</td>
<td>0.02**</td>
<td>0.45</td>
</tr>
<tr>
<td>% Asian</td>
<td>0.10</td>
<td>0.05</td>
<td>0.05</td>
<td>-0.01</td>
<td>0.55</td>
<td>1.00</td>
</tr>
<tr>
<td>% Hispanic</td>
<td>0.20</td>
<td>0.16</td>
<td>0.15</td>
<td>0.01</td>
<td>0.80</td>
<td>1.00</td>
</tr>
<tr>
<td>% unemployed</td>
<td>4.86</td>
<td>5.05</td>
<td>4.51</td>
<td>0.54</td>
<td>0.07*</td>
<td>0.91</td>
</tr>
<tr>
<td>% below poverty level</td>
<td>15.71</td>
<td>15.82</td>
<td>13.69</td>
<td>2.14</td>
<td>0.17</td>
<td>1.00</td>
</tr>
<tr>
<td>% employed in IT</td>
<td>0.04</td>
<td>0.02</td>
<td>0.02</td>
<td>-0.00</td>
<td>0.98</td>
<td>1.00</td>
</tr>
<tr>
<td>% employed in construction/real estate</td>
<td>0.06</td>
<td>0.07</td>
<td>0.07</td>
<td>0.01</td>
<td>0.39</td>
<td>1.00</td>
</tr>
<tr>
<td>% employed in manufacturing</td>
<td>0.07</td>
<td>0.09</td>
<td>0.07</td>
<td>0.02</td>
<td>0.16</td>
<td>0.99</td>
</tr>
<tr>
<td>% adults with high school degree</td>
<td>21.76</td>
<td>25.99</td>
<td>25.77</td>
<td>0.22</td>
<td>0.88</td>
<td>1.00</td>
</tr>
<tr>
<td>% adults with college degree</td>
<td>18.89</td>
<td>21.16</td>
<td>21.20</td>
<td>-0.04</td>
<td>0.97</td>
<td>1.00</td>
</tr>
<tr>
<td>% watching Fox News</td>
<td>0.25</td>
<td>0.26</td>
<td>0.26</td>
<td>-0.00</td>
<td>0.91</td>
<td>1.00</td>
</tr>
<tr>
<td>% watching prime time TV</td>
<td>0.42</td>
<td>0.43</td>
<td>0.43</td>
<td>0.00</td>
<td>0.91</td>
<td>1.00</td>
</tr>
<tr>
<td>Exposure to Chinese import competition</td>
<td>2.55</td>
<td>2.46</td>
<td>2.79</td>
<td>-0.32</td>
<td>0.54</td>
<td>1.00</td>
</tr>
<tr>
<td>Share of routine occupations</td>
<td>32.47</td>
<td>31.38</td>
<td>31.25</td>
<td>0.13</td>
<td>0.82</td>
<td>1.00</td>
</tr>
<tr>
<td>Average offshorability index</td>
<td>0.37</td>
<td>-0.07</td>
<td>-0.05</td>
<td>-0.02</td>
<td>0.84</td>
<td>1.00</td>
</tr>
<tr>
<td>Republican two-party vote share (1996)</td>
<td>0.36</td>
<td>0.42</td>
<td>0.42</td>
<td>-0.00</td>
<td>0.90</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Notes: This table presents the averages for the main control variables separately for the three types of counties relevant for our identification strategy: 1) the 47 counties with SXSW followers that joined Twitter both in March 2007 and the “pre-period”; 2) the 108 counties with SXSW followers that joined in March 2007 (but none in the “pre-period”); and 3) the 20 counties with SXSW that joined in the “pre-period” (but none in March 2007). The demographic and socioeconomic controls are measured in 2016. We report p-values from a two-sided t-test for the equality of means between the counties with the key identifying variation, as well as Šidák-corrected values to account for multiple hypothesis testing. *** p < 0.01, ** p < 0.05, * p < 0.1.
Table A.6: Description of Main Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vote outcomes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>∆Republican vote share, 2000-2016/2020</td>
<td>Change in the vote share of the Republican party between the 2000 and 2016 (or 2020) presidential elections.</td>
<td>Dave Leip Election Atlas</td>
</tr>
<tr>
<td>Twitter data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Twitter users</td>
<td>The number of Twitter users per county (in natural logarithm), based on tweets collected using the Twitter streaming API in a 12 month period from June to November 2014 and June to November 2015.</td>
<td>Gesis Datorium</td>
</tr>
<tr>
<td>SXSW followers, March 2007</td>
<td>The number of Twitter users following the @SXSW account in each county that joined Twitter in March 2007.</td>
<td>Twitter Search API</td>
</tr>
<tr>
<td>SXSW followers, Pre</td>
<td>The total number of Twitter users following the @SXSW account in each county that joined Twitter at any point in 2006.</td>
<td>Twitter Search API</td>
</tr>
<tr>
<td>County-level control variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geographical controls</td>
<td>Include the distance (in miles) from the country centroid from Austin (TX), Chicago, NYC, San Francisco, and Washington, DC, population density, and the logarithm of the land area for each county.</td>
<td>U.S. Census Tigerline File</td>
</tr>
<tr>
<td>Demographic controls</td>
<td>Include the share of people in the age buckets 20-24, 25-29, 30-34, 40-44, 45-49 and 50+, as well as the percentage change in county population between 2000 and 2016.</td>
<td>U.S. Census/BLS/SimplyAnalytics</td>
</tr>
<tr>
<td>Socioeconomic controls</td>
<td>Include a county’s poverty rate; unemployment rate; the share of the population employed in construction/real estate, manufacturing, and information technology; the share of adults over 25 with at least a high school degree or some college education; as well as prime time TV viewership and the share of Fox News viewership.</td>
<td>U.S. Census/BLS/SimplyAnalytics</td>
</tr>
<tr>
<td>China shock controls</td>
<td>Include the measure of import competition from China, routine tasks, and offshorability from Autor et al. 2013.</td>
<td>U.S. Census/BLS/SimplyAnalytics</td>
</tr>
<tr>
<td>Election control</td>
<td>Contains the vote share of the Republican party in the 1996 presidential election.</td>
<td>Dave Leip Election Atlas</td>
</tr>
</tbody>
</table>
Table A.7: Search Terms Used to Create a Proxy for Total Tweets

<table>
<thead>
<tr>
<th></th>
<th>but</th>
<th>his</th>
<th>one</th>
<th>these</th>
<th>would</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>by</td>
<td>how</td>
<td>only</td>
<td>they</td>
<td>year</td>
</tr>
<tr>
<td>2</td>
<td>can</td>
<td>if</td>
<td>or</td>
<td>think</td>
<td>you</td>
</tr>
<tr>
<td>3</td>
<td>come</td>
<td>in</td>
<td>other</td>
<td>this</td>
<td>your</td>
</tr>
<tr>
<td>4</td>
<td>could</td>
<td>into</td>
<td>our</td>
<td>time</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>day</td>
<td>it</td>
<td>out</td>
<td>two</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>do</td>
<td>its</td>
<td>over</td>
<td>up</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>even</td>
<td>just</td>
<td>people</td>
<td>us</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>first</td>
<td>know</td>
<td>say</td>
<td>use</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>for</td>
<td>like</td>
<td>see</td>
<td>want</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>from</td>
<td>look</td>
<td>she</td>
<td>way</td>
<td></td>
</tr>
<tr>
<td></td>
<td>about</td>
<td>get</td>
<td>make</td>
<td>so</td>
<td>we</td>
</tr>
<tr>
<td></td>
<td>after</td>
<td>give</td>
<td>me</td>
<td>some</td>
<td>well</td>
</tr>
<tr>
<td></td>
<td>all</td>
<td>go</td>
<td>most</td>
<td>take</td>
<td>what</td>
</tr>
<tr>
<td></td>
<td>also</td>
<td>good</td>
<td>my</td>
<td>than</td>
<td>when</td>
</tr>
<tr>
<td></td>
<td>any</td>
<td>have</td>
<td>new</td>
<td>that</td>
<td>which</td>
</tr>
<tr>
<td></td>
<td>as</td>
<td>he</td>
<td>no</td>
<td>their</td>
<td>who</td>
</tr>
<tr>
<td></td>
<td>at</td>
<td>he</td>
<td>not</td>
<td>them</td>
<td>with</td>
</tr>
<tr>
<td></td>
<td>back</td>
<td>her</td>
<td>now</td>
<td>then</td>
<td>with</td>
</tr>
<tr>
<td></td>
<td>because</td>
<td>him</td>
<td>on</td>
<td>there</td>
<td>work</td>
</tr>
</tbody>
</table>

Notes: This table lists the 100 most common English words that were used as search terms to generate a proxy of “total tweets” used in Figure 4b.
A.1. Additional Details on the Logistic Regression Classifier

We train a separate machine learning classifier for each of the three election years in our data using the Python sci-kit package (Pedregosa et al., 2011). These classifiers help us to determine whether tweets are more likely to be sent by Democratic-leaning or Republican-leaning users. The classification process starts with the preparation of the underlying Twitter data. The inputs are the text of each of the 4,300,579 tweets from U.S. Congress members. To focus on election-related tweets, we restrict the sample to tweets that were sent either in the election year or in the year leading up to the election (e.g. 2011 and 2012 for the 2012 election) and mention at least one of the presidential candidates.

The target variable \(y \) for the classifier is an indicator variable equal to one for tweets sent by Republicans and zero otherwise. The feature matrix \(X \) for the classifier are created by count-vectorizing the texts of the tweets. In other words, we transform the text of the tweets into \(n \times v \) matrix, where \(n \) is the number of tweets and \(v \) is the number of unique 1,2-grams that occur in the tweets. In preparation for this step, we removed common words (stopwords), links, and special characters from the tweets. Additionally, we reduced the words in the tweets to their morphological roots using a lemmatizer, which improves the performance of the classifier. As an example, the lemmatizer changes words like “walking” and “walked” to “walk”. Lastly, we reweight the n-grams \(v \) of tweet \(i \) using term frequency–inverse document frequency (tf-idf):

\[
tfidf(f_{i,v}) = (1 + \ln(f_{i,v}) \cdot \ln(1 + \frac{T}{d_v}) + 1)
\] (A.1)

where \(d_v \) is the number of tweets n-gram \(v \) appears in. This reweighting reduces the importance of words that appear frequently in many tweets, which help little to discriminate between tweets. The tf-idf vectorizer also normalizes the feature matrix by its L2-norm.

The vector \(y \) and the matrix \(X \) then serve as the input for a \(L_2 \) regularized logistic regression classifier. The optimization of the classifier involves the minimization of the following cost function\(^{54}\):

\[
\min_{w,c} C \sum_{i=1}^{n} \log(\exp(-y_i(X_i^T w + c)) + 1) + \frac{1}{2} w^T w
\] (A.2)

where \(w \) are the weights (coefficients) of the logistic regression, \(c \) is a constant (intercept), and \(C \) is the inverse of the regularization strength. Larger values of \(C \) imply weaker regularization. For \(C \rightarrow \infty \), the classifier converges towards a normal logistic regression. As is standard in most machine learning applications, we choose the optimal regularization strength \(C \) using

\(^{54}\)Note that this formulation of the cost function assumes that \(y_i \) takes values \(-1; 1\). We use this formulation in line with the sci-kit documentation.
10-fold cross-validation. This involves randomly splitting the training data into ten equal slices. Nine of the ten slices are then used to train the classifier, while the out-of-sample performance is evaluated against the remaining slice using F1-scores.

The final classifiers achieves an out-of-sample F1-score of 0.916 in 2012, of 0.843 in 2016 and of 0.904 in 2020. The classifiers, therefore, accurately predict the party affiliation of Congress members. We then take these classifiers and apply it to the universe of tweets sent during the 2012, 2016 and 2020 presidential election. For each tweet in the election data, the classifiers provides us with a predicted class (either Democrat or Republican) and a probability for this class label. To avoid that our results are driven by tweets for which the classifier is “uncertain,” we code tweets with a predicted class probability below 60% as neutral. This adjustment has no bearing on our findings. In spirit, this approach is similar to the work of Gentzkow and Shapiro (2010). While they identify expressions that are more frequently used by Democrats and Republicans by hand, we use a machine learning classifier to identify n-grams in the tweets of Congress members that help us to differentiate between the two parties.

We visualize the most predictive n-grams identified by the classifiers for each election cycle in Figure A.4. Overall, the classifiers identifies words, hashtags, and Twitter handles that are intuitively associated with a Republican slant for each election year. Among the most predictive term are the hashtags “tcot” (Top Conservatives on Twitter) and “maga” (Make America great again) and particularly in 2020 many references to Donald Trump’s Twitter account (“realdonaldtrump”).
Figure A.4: Most Predictive Terms Of “Republican” Tweets by Election

(a) 2012 Election

(b) 2016 Election

(c) 2020 Election

Notes: This word cloud plots the n-grams most predictive of tweets sounding like those of Republican Congress members, as identified by the logistic regression classifier for each election cycle. The size of the word represents the magnitude of the coefficients.
B Additional Details on the SXSW Festival

Figure B.1: Screenshot Quote from Twitter Founder

Quora

Evan Williams, Co-Founder, Twitter, Pyra Labs, Odeo, Medium; Founder, Obvious
Answered 10 years ago · Featured on TechCrunch · Upvoted by Brian Chesky, CEO, co-founder of Airbnb and Eid Gil, Co-founder and CEO of Mixr Labs

Originally Answered: What is the process involved in launching a startup at SXSW?
I got a request to answer this question, though contrary to common belief, we didn’t actually launch Twitter at SXSW -- SXSW just chose to blow it up.

We launched it nine months before -- to a whimper. By the time SXSW 2007 rolled around, we were starting to grow finally and it seemed like all of our users (which were probably in the thousands) were going to Austin that year. So, we did two things to take advantage of the emerging critical mass:

1) We created a Twitter visualizer and negotiated with the festival to put flat panel screens in the hallways. This is something they’d never done before, but we didn’t want a booth on the trade show floor, because we knew hallways is where the action was. We paid $11K for this and set up the TVs ourselves. (This was about the only money Twitter’s ever spent on marketing.)

2) We created an event-specific feature, where, you could text 'join sxsw' to 40404. Then you would show up on the screens. And, if you weren’t already a Twitter user, you’d automatically be following a half-dozen or so “ambassadors,” who were Twitter users also at SXSW. We advertised this on the screens in the hallways. (I don’t know how many people signed up this way -- my recollection is not a lot.)

I don’t know what was the most important factor, but networks are all about critical mass, so doubling down on the momentum seemed like a good idea. And something clicked.

Notes: This screenshot shows the full post of Twitter co-founder Evan Williams posted on Quora on January 4, 2011 describing the role of the SXSW festival in the platform’s rise to popularity (Quora, 2011).
Figure B.2: Number of SXSW Follower Joining each Month

Notes: The figures shows the number of SXSW Follower joining in each month.

Table B.1: Balancedness of SXSW Counties’ User Characteristics

<table>
<thead>
<tr>
<th>First names (Corr. = 0.63)</th>
<th>Terms used in bio (Corr. = 0.89)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-period</td>
<td>March 2007</td>
</tr>
<tr>
<td>michael</td>
<td>michael</td>
</tr>
<tr>
<td>paul</td>
<td>john</td>
</tr>
<tr>
<td>mike</td>
<td>chris</td>
</tr>
<tr>
<td>chris</td>
<td>jeff</td>
</tr>
<tr>
<td>eric</td>
<td>matt</td>
</tr>
<tr>
<td>justin</td>
<td>brian</td>
</tr>
<tr>
<td>ryan</td>
<td>david</td>
</tr>
<tr>
<td>kevin</td>
<td>alex</td>
</tr>
<tr>
<td>jeff</td>
<td>jason</td>
</tr>
<tr>
<td>david</td>
<td>kevin</td>
</tr>
</tbody>
</table>

Notes: This table presents the ranking of the most common first names and terms used in a Twitter user’s “bio” among users who follow “South by Southwest” on Twitter, depending on whether they joined during March 2007 or in the pre-period.
Figure B.3: Additional Evidence for the Impact of the SXSW Festival

(a) Long-term Effects of the 2007 SXSW on Twitter Adoption

(b) Connections to the SXSW festival

Notes: The figures provide evidence on the long-term impact of the SXSW festival on Twitter usage across the United States. Panel (a) plots the β_{τ} from the panel event study regression:

$$users_{ct} = \sum_{\tau} \beta_{\tau} SXSW_{March2007}^{c} \times 1(t = \tau) + \sum_{\tau} \delta_{\tau} SXSW_{Pre}^{c} \times 1(t = \tau) + \theta_{c} + \gamma_{t} + \varepsilon_{ct}$$

where $users_{ct}$ is the number of Twitter users per capita in county c on quarter t, $SXSW_{March2007}^{c}$ is the logarithm of (one plus) the number of SXSW followers in county c who joined Twitter in March 2007 and $SXSW_{Pre}^{c}$ is a similarly defined variable for followers who joined Twitter before March 2007. We standardize the variables to have a mean of zero and standard deviation of one. The whiskers represent 95% confidence intervals based on standard errors clustered by state, where 2006q4 serves as excluded period. While the confidence intervals for 2006q2 and 2006q3 cannot be seen, they include zero. Panel (b) plots the share of Twitter who either follow SXSW or follow an user that follows SXSW.
Table B.2: Are Twitter Users in Counties With SXSW Followers Different?

<table>
<thead>
<tr>
<th>User first names (Corr. = 0.97)</th>
<th>Terms used in user bio (Corr. = 0.94)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other counties</td>
<td>SXSW counties</td>
</tr>
<tr>
<td>michael</td>
<td>michael</td>
</tr>
<tr>
<td>chris</td>
<td>david</td>
</tr>
<tr>
<td>john</td>
<td>chris</td>
</tr>
<tr>
<td>david</td>
<td>john</td>
</tr>
<tr>
<td>sarah</td>
<td>alex</td>
</tr>
<tr>
<td>mike</td>
<td>mike</td>
</tr>
<tr>
<td>emily</td>
<td>matt</td>
</tr>
<tr>
<td>ryan</td>
<td>sarah</td>
</tr>
<tr>
<td>matt</td>
<td>ryan</td>
</tr>
<tr>
<td>alex</td>
<td>andrew</td>
</tr>
</tbody>
</table>

Notes: This table compares the individual characteristics of Twitter users from counties with “South by Southwest” followers who joined in March 2007 (“SXSW counties”) to Twitter users from all other U.S. counties (“Other counties”). We plot the ranking of the most common first names and terms used in a Twitter user’s “bio”.

Table C.1: LASSO Variable Selection for 2016/2020 Election

<table>
<thead>
<tr>
<th></th>
<th>Dep. var.: Republican vote share in...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Census Region FE</td>
</tr>
<tr>
<td>Controls</td>
<td>(1)</td>
</tr>
<tr>
<td>Controls</td>
<td>(3)</td>
</tr>
</tbody>
</table>

Panel A: 2SLS 2016 Election

<table>
<thead>
<tr>
<th></th>
<th>Observations</th>
<th>Nr. Controls</th>
<th>Nr. selected controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log(Twitter users)</td>
<td>3,064</td>
<td>48</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.012)</td>
<td>(0.012)</td>
</tr>
</tbody>
</table>

Panel B: 2SLS 2020 Election

<table>
<thead>
<tr>
<th></th>
<th>Observations</th>
<th>Nr. Controls</th>
<th>Nr. selected controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log(Twitter users)</td>
<td>3,064</td>
<td>48</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.012)</td>
<td>(0.012)</td>
</tr>
</tbody>
</table>

Notes: This table presents county-level regressions where the dependent variable is the Republican vote share in the 2016 or 2020 presidential election. Log(Twitter users) is instrumented using the number of users who started following SXSW in March 2007 (in logs with 1 added inside). Columns 1 includes census region fixed effects and allows all potential control variables discussed in the text (48 controls) to be selected by the LASSO procedure. Columns 2 includes census region fixed effects and allows for interactions of all control variables with each other (609 potential controls). Column 3 includes state fixed effects and allows all control variables to be selected (93 potential controls). Column 4 includes state fixed effects and allows all interactions of control variables with each other to be selected (654 potential controls). In all regressions the included controls are selected using the partialing-out LASSO procedure from Chernozhukov et al. (2015a,b). Standard errors in parentheses are clustered at the state level. *** $p < 0.01$, ** $p < 0.05$, * $p < 0.1$.

C Additional Robustness Checks
Figure C.1: Twitter and the Republican Vote Share, 1924-1996 (Reduced Form)

Notes: This figure plots reduced form estimates $\hat{\beta}'$ from county-level regressions as in equation (2). These estimates reflect the correlation of Log(1 + SXSW followers, March 2007) with the Republican vote share in presidential elections while controlling for Log(1 + SXSW followers, Pre). All regressions control for population deciles and Census region fixed effects, and the full set of controls except 1996 Election controls (same as columns 4 and 9 of Table 2). Regressions are weighted by turnout in the 2000 presidential election. Whiskers represent 95% confidence intervals based on standard errors clustered by state.
Table C.2: Placebo Tests for Other Festivals

<table>
<thead>
<tr>
<th>Twitter Followers of Festival joining in Festival Month</th>
<th>SXSW</th>
<th>Burning Man</th>
<th>Coachella</th>
<th>Pitchfork</th>
<th>EDC</th>
<th>ACL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: First Stage (Dep. Var.: Twitter Usage)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Followers Festival Month</td>
<td>0.167***</td>
<td>-0.005</td>
<td>0.011</td>
<td>-0.006</td>
<td>0.010</td>
<td>-0.009</td>
</tr>
<tr>
<td></td>
<td>(0.015)</td>
<td>(0.012)</td>
<td>(0.012)</td>
<td>(0.006)</td>
<td>(0.008)</td>
<td>(0.018)</td>
</tr>
<tr>
<td>Panel B: Reduced form (Dep. Var.: Rep. Vote Share 2016)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Followers Festival Month</td>
<td>-0.004***</td>
<td>0.001</td>
<td>-0.000</td>
<td>-0.000</td>
<td>0.000</td>
<td>-0.000</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.000)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Panel C: Reduced form (Dep. Var.: Rep. Vote Share 2020)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Followers Festival Month</td>
<td>-0.003**</td>
<td>0.000</td>
<td>-0.001</td>
<td>-0.000</td>
<td>0.000</td>
<td>-0.000</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.000)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Census region FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Population controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Geographical controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Demographic controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Socioeconomic controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>China shock controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>1996 election control</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>3,064</td>
<td>3,064</td>
<td>3,064</td>
<td>3,064</td>
<td>3,064</td>
<td>3,064</td>
</tr>
</tbody>
</table>

Notes: This table presents the first stage and reduced from estimates using equation (3). The dependent variable is either Twitter usage (Panel A) or the vote share of the Republican party in the 2016 and 2020 presidential elections (Panels B and C). The independent variables are number of followers of different festivals that joined in the respective festival month (in logs with 1 added inside). To make the coefficients comparable, we standardized these variables to have mean zero and standard deviation one; this means the results for SXSW are not directly comparable in magnitude to those in the main text. Similarly to our baseline specification, all regressions control for the number of festival followers that joined Twitter before the festival. As the festivals take place after the SXSW festival, we additionally control for the number of SXSW followers from March 2007. All regressions are weighted by turnout in the 2000 presidential election. All regressions include the controls from columns 5 and 10 in Table 2. EDC is the Electric Daisy Carnival and ACL is Austin City Limits. Standard errors in parentheses are clustered by state. *** $p < 0.01$, ** $p < 0.05$, * $p < 0.1$.

Table C.3: Twitter and the Republican Vote Share – Robustness

<table>
<thead>
<tr>
<th>No regression weights</th>
<th>Election year weights</th>
<th>Pre-period control polynomial</th>
<th>Pre-period control deciles</th>
<th>No zero SXSW user counties</th>
<th>Spatial standard errors</th>
<th>Per Capita Twitter Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Republican vote share in 2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log(Twitter users)</td>
<td>-0.037***</td>
<td>-0.021**</td>
<td>-0.019***</td>
<td>-0.020***</td>
<td>-0.030**</td>
<td>-0.037***</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.008)</td>
<td>(0.007)</td>
<td>(0.007)</td>
<td>(0.012)</td>
<td>(0.011)</td>
</tr>
<tr>
<td>Log(Twitter users p.c.)</td>
<td>-0.091**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.044)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>3,064</td>
<td>3,064</td>
<td>3,064</td>
<td>3,064</td>
<td>165</td>
<td>3,064</td>
</tr>
<tr>
<td>Mean of DV</td>
<td>0.64</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>0.34</td>
<td>0.64</td>
</tr>
<tr>
<td>Robust F-stat.</td>
<td>72.94</td>
<td>94.50</td>
<td>125.40</td>
<td>114.91</td>
<td>23.46</td>
<td>54.13</td>
</tr>
</tbody>
</table>

Panel B: Republican vote share in 2020

Log(Twitter users)	-0.036**	-0.020**	-0.018**	-0.019**	-0.033**	-0.036***
	(0.014)	(0.010)	(0.008)	(0.009)	(0.016)	(0.012)
Log(Twitter users p.c.)	-0.086*					
	(0.047)					
Observations	3,064	3,064	3,064	3,064	165	3,064
Mean of DV	0.65	0.47	0.47	0.47	0.35	0.65
Robust F-stat.	72.94	88.47	125.40	114.91	23.46	54.13

Notes: This table presents 2SLS results estimated using equation (3'). The dependent variable is the vote share of the Republican party in the 2016 and 2020 presidential elections in panel A and B, respectively. Log(Twitter users) is instrumented using the number of users who started following SXSW in March 2007 (in logs with 1 added inside). All regressions except columns 1, 2, and 6 are weighted by turnout in the 2000 presidential election. Column 1 omits regression weights. Column 2 weights by the turnout in the election year (2016 or 2020) instead of 2000. Columns 3 and 4 control for a fifth-order polynomial and deciles of SXSW followers who joined Twitter before the SXSW 2007 event, respectively. Column 5 drops all counties that had no SXSW followers joining Twitter in March 2007 or in the period before. Column 6 uses spatial standard errors based on the method proposed in Colella et al. (2019), implemented in Stata as acreg, using a 200 miles cutoff. Column 7 uses the number of Twitter users per capita (in logs with 1 added inside). All regressions include the controls from columns 5 and 10 in Table 2. In columns 1 to 5, 7, and 8, standard errors in parentheses are clustered by state. *** p < 0.01, ** p < 0.05, * p < 0.1.
Table C.4: Twitter and Changes in Republican Vote Share, 2004-2020

<table>
<thead>
<tr>
<th></th>
<th>Dep. var.: ΔRepublican vote share between...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Panel A: Reduced form</td>
<td></td>
</tr>
<tr>
<td>Log(SXSW followers, March 2007)</td>
<td>-0.002</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
</tr>
<tr>
<td>Log(SXSW followers, Pre)</td>
<td>-0.000</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
</tr>
<tr>
<td>Panel B: 2SLS</td>
<td></td>
</tr>
<tr>
<td>Log(Twitter users)</td>
<td>-0.004</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
</tr>
<tr>
<td>Log(SXSW followers, Pre)</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
</tr>
<tr>
<td>Observations</td>
<td>3,064</td>
</tr>
<tr>
<td>Mean of DV</td>
<td>0.03</td>
</tr>
<tr>
<td>Robust F-stat.</td>
<td>121.18</td>
</tr>
</tbody>
</table>

Notes: This table presents county-level regressions where the dependent variable is the change in the vote share of the Republican party between 2000 and the indicated year. Log(SXSW followers, March 2007) is the number of Twitter users (in logs, with 1 added inside) who joined in March 2007 and follow South by Southwest (SXSW). SXSW followers, Pre is the number of SXSW followers who registered at some point in 2006, defined similarly. Twitter users are the number of users in 2014-2015. All regressions control for population deciles, Census region fixed effects, and the full set of controls (as in columns 5 and 10 of Table 2). The first-stage regressions for 2SLS results (Panel B) are presented in Table 1, with the F-stat for the excluded instrument in the bottom row. On Panel (a), the coefficient on Log(SXSW followers, March 2007) for 2004, 2008, and 2012 are jointly statistically insignificant (p-value=0.398). Further, the average effect in 2016 and 2020 is statistically distinct from the average effect in 2004, 2008, and 2012 (p-value=0.001). Observations are weighted by turnout in the 2000 presidential election. Standard errors in parentheses are clustered by state. *** p < 0.01, ** p < 0.05, * p < 0.1.
Table C.5: Time-Varying Twitter Usage and Changes in Vote Shares

<table>
<thead>
<tr>
<th></th>
<th>Dep. var.: ΔRepublican vote share between...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) (2) (3) (4) (5)</td>
</tr>
<tr>
<td>Panel A: First stage</td>
<td></td>
</tr>
<tr>
<td>Log(SXSW followers, March 2007)</td>
<td>0.644*** 0.644*** 0.546*** 0.523*** 0.523***</td>
</tr>
<tr>
<td></td>
<td>(0.055) (0.055) (0.047) (0.048) (0.048)</td>
</tr>
<tr>
<td>Panel B: Reduced form</td>
<td></td>
</tr>
<tr>
<td>Log(SXSW followers, March 2007)</td>
<td>-0.002 -0.003 -0.001 -0.009** -0.008**</td>
</tr>
<tr>
<td></td>
<td>(0.002) (0.003) (0.003) (0.004) (0.004)</td>
</tr>
<tr>
<td>Log(SXSW followers, Pre)</td>
<td>-0.000 -0.001 -0.002 0.000 -0.002</td>
</tr>
<tr>
<td></td>
<td>(0.003) (0.005) (0.003) (0.004) (0.005)</td>
</tr>
<tr>
<td>Panel C: 2SLS</td>
<td></td>
</tr>
<tr>
<td>Log(Twitter users)</td>
<td>-0.003 -0.005 -0.002 -0.017** -0.015**</td>
</tr>
<tr>
<td></td>
<td>(0.003) (0.005) (0.005) (0.007) (0.007)</td>
</tr>
<tr>
<td>Log(SXSW followers, Pre)</td>
<td>0.000 -0.001 -0.002 0.001 -0.001</td>
</tr>
<tr>
<td></td>
<td>(0.003) (0.005) (0.003) (0.005) (0.005)</td>
</tr>
<tr>
<td>Observations</td>
<td>3064 3064 3064 3064 3064</td>
</tr>
<tr>
<td>Mean of DV</td>
<td>0.026 -0.024 -0.008 -0.018 -0.009</td>
</tr>
<tr>
<td>Robust F-stat.</td>
<td>135.88 135.88 134.88 121.18 121.18</td>
</tr>
</tbody>
</table>

Notes: This table presents county-level regressions where the dependent variable is the change in the vote share of the Republican party between 2000 and the indicated year (except for Panel B, where the dependent variable is Twitter users. Log(SXSW followers, March 2007) is the number of Twitter users (in logs, with 1 added inside) who joined in March 2007 and follow South by Southwest (SXSW). SXSW followers, Pre is the number of SXSW followers who registered at some point in 2006, defined similarly. Differently from other tables, Twitter users varies over time, as opposed to being fixed to 2014-2015. All regressions control for population deciles, Census region fixed effects, and the full set of controls (as in columns 5 and 10 of Table 2). Observations are weighted by turnout in the 2000 presidential election. Standard errors in parentheses are clustered by state. *** p < 0.01, ** p < 0.05, * p < 0.1.
Table C.6: Twitter and the Ross Perot Vote

<table>
<thead>
<tr>
<th></th>
<th>Dep. var.: Vote share Ross Perot in...</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1992</td>
<td>1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3)</td>
<td>(4)</td>
</tr>
</tbody>
</table>

Panel A: Reduced form

<table>
<thead>
<tr>
<th></th>
<th>1992</th>
<th>1996</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log(SXSW followers, March 2007)</td>
<td>0.000</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>0.003</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>0.003</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Panel B: 2SLS

<table>
<thead>
<tr>
<th></th>
<th>1992</th>
<th>1996</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log(Twitter users)</td>
<td>0.000</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>0.000</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>0.006</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>0.006</td>
<td>0.006</td>
</tr>
<tr>
<td>Population deciles</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Census region FE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Geographical controls</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Demographic controls</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Socioeconomic controls</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>China shock controls</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>1996 election control</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>3,064</td>
<td>3,064</td>
</tr>
<tr>
<td></td>
<td>3,064</td>
<td>3,064</td>
</tr>
<tr>
<td>Mean of DV</td>
<td>0.10</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>0.20</td>
</tr>
<tr>
<td>Robust F-stat.</td>
<td>118.21</td>
<td>121.18</td>
</tr>
<tr>
<td></td>
<td>118.21</td>
<td>121.18</td>
</tr>
</tbody>
</table>

Notes: This table presents county-level regressions where the dependent variable is the third party vote share in the 1992 or 1996 presidential election. Log(SXSW followers, March 2007) is the number of Twitter users (in logs, with 1 added inside) who joined in March 2007 and follow South by Southwest (SXSW). SXSW followers, Pre is the number of SXSW followers who registered at some point in 2006, defined similarly. Twitter users are the number of users in 2014-2015. The first-stage regressions for 2SLS results (Panel B) are presented in Table 1, with the F-stat for the excluded instrument in the bottom row. Observations are weighted by turnout in the 2000 presidential election. Standard errors in parentheses are clustered by state. *** p < 0.01, ** p < 0.05, * p < 0.1.
Table C.7: Twitter and Vote Shares in Democratic Primaries

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7)</td>
<td>(8)</td>
</tr>
<tr>
<td>Log(SXSW followers, March 2007)</td>
<td>0.005***</td>
<td>-0.004***</td>
<td>0.002***</td>
<td>-0.009***</td>
<td>0.017***</td>
<td>-0.003***</td>
<td>0.001***</td>
<td>-0.003***</td>
</tr>
<tr>
<td></td>
<td>(0.010)</td>
<td>(0.010)</td>
<td>(0.006)</td>
<td>(0.014)</td>
<td>(0.006)</td>
<td>(0.002)</td>
<td>(0.004)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Panel B: 2SLS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log(Twitter users)</td>
<td>0.008</td>
<td>-0.006</td>
<td>0.003</td>
<td>-0.014</td>
<td>0.025**</td>
<td>-0.004</td>
<td>0.001</td>
<td>-0.004</td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
<td>(0.014)</td>
<td>(0.009)</td>
<td>(0.021)</td>
<td>(0.010)</td>
<td>(0.003)</td>
<td>(0.006)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Observations</td>
<td>2,656</td>
<td>2,656</td>
<td>2,769</td>
<td>2,769</td>
<td>2,769</td>
<td>2,769</td>
<td>2,769</td>
<td>2,769</td>
</tr>
<tr>
<td>Mean of DV</td>
<td>0.55</td>
<td>0.43</td>
<td>0.06</td>
<td>0.56</td>
<td>0.24</td>
<td>0.02</td>
<td>0.06</td>
<td>0.01</td>
</tr>
<tr>
<td>Robust F-stat.</td>
<td>67.94</td>
<td>67.94</td>
<td>73.68</td>
<td>73.68</td>
<td>73.68</td>
<td>73.68</td>
<td>73.68</td>
<td>73.68</td>
</tr>
</tbody>
</table>

Notes: This table presents county-level regressions where the dependent variable is the vote share of the indicated candidate in the Democratic party primaries in 2016 or 2020. Log(SXSW followers, March 2007) is the number of Twitter users (in logs, with 1 added inside) who joined in March 2007 and follow South by Southwest (SXSW). SXSW followers, Pre is the number of SXSW followers who registered at some point in 2006, defined similarly. Twitter users are the number of users in 2014-2015. All regressions control for population deciles, Census region fixed effects, and the full set of controls (as in columns 5 and 10 of Table 2). The first-stage regressions for 2SLS results (Panel B) are analogous to the one presented in Table 1, except for the different sample of counties for which primary results are available. The F-stat for the excluded instrument is provided in the bottom row. Observations are weighted by turnout in the 2000 presidential election. Standard errors in parentheses are clustered by state. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table C.8: Twitter and Vote Decisions in the 2016 CCES – Robustness

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Verified vote</th>
<th>Vote intention</th>
<th>Intended Trump vote</th>
<th>Intended other vote</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>Log(Twitter users)</td>
<td>-0.135***</td>
<td>-0.154***</td>
<td>-0.133**</td>
<td>-0.230***</td>
<td>-0.064*</td>
</tr>
<tr>
<td></td>
<td>(0.045)</td>
<td>(0.054)</td>
<td>(0.052)</td>
<td>(0.082)</td>
<td>(0.034)</td>
</tr>
<tr>
<td>Marginal effect</td>
<td>[-0.049]</td>
<td>[-0.055]</td>
<td>[-0.048]</td>
<td>[-0.005]</td>
<td>[-0.013]</td>
</tr>
<tr>
<td>Observations</td>
<td>146,579</td>
<td>56,375</td>
<td>46,418</td>
<td>14,723</td>
<td>24,354</td>
</tr>
<tr>
<td>Mean of DV</td>
<td>0.492</td>
<td>0.497</td>
<td>0.455</td>
<td>0.991</td>
<td>0.137</td>
</tr>
</tbody>
</table>

Notes: This table presents results estimated using IV probit models, as in equation (4). The dependent variable is a dummy for individuals in the CCES who voted for Trump in 2016. Log(Twitter users) is instrumented using the number of SXSW followers that joined Twitter in March 2007. All regressions control for the (log) number of SXSW followers that joined Twitter at some point in 2006, family income, gender, education levels, marital status, news interest, and age, as well as county-level population deciles and Census region fixed effects. Regressions are weighted by survey weights. Standard errors in parentheses are clustered by state. *** p < 0.01, ** p < 0.05, * p < 0.10.
D Further Results

Table D.1: Additional Outcomes

<table>
<thead>
<tr>
<th></th>
<th>Obama to Trump (1)</th>
<th>ΔCampaign don., 2000-16</th>
<th>Trump approval, 2017</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Switching prob.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log(Twitter users)</td>
<td>-0.138***</td>
<td>0.866***</td>
<td>-0.011**</td>
<td>-0.037***</td>
</tr>
<tr>
<td></td>
<td>(0.048)</td>
<td>(0.185)</td>
<td>(0.005)</td>
<td>(0.009)</td>
</tr>
<tr>
<td>Observations</td>
<td>3,065</td>
<td>2,250</td>
<td>2,446</td>
<td>2,727</td>
</tr>
<tr>
<td>Mean of DV</td>
<td>0.105</td>
<td>1.943</td>
<td>1.096</td>
<td>0.066</td>
</tr>
<tr>
<td>Robust F-stat.</td>
<td>74.65</td>
<td>62.57</td>
<td>64.34</td>
<td>60.20</td>
</tr>
</tbody>
</table>

Notes: This table presents results from county-level regressions of equation (3). Column 1 shows results from an IV probit regression where the dependent variable is a dummy equal to 1 for the 217 counties for which both Obama and Trump gained the majority of votes in 2008 and 2016, respectively. In columns 2 and 3, the dependent variable is the difference in the natural logarithm of campaign donations to the Democratic and Republican party, respectively, between 2000 and 2016. In columns 4 and 5, the dependent variable is the share of respondents in the Gallup Daily Poll approving of Trump in 2017. Log(Twitter users) is instrumented using the number of users who started following SXSW in March 2007. All regressions control for population deciles and Census region fixed effects and geographical controls. Regressions are weighted by turnout in the 2000 presidential election. Standard errors in parentheses are clustered by state. *** $p < 0.01$, ** $p < 0.05$, * $p < 0.1$.

25
Table D.2: Twitter and Changes in Voter Turnout, 2004-2020

<table>
<thead>
<tr>
<th></th>
<th>Δ(\text{Votes cast/voting age pop.})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
</tbody>
</table>

Panel A: Reduced form

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Log(SXSW followers, March 2007)</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.001</td>
<td>0.001</td>
<td>0.007***</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.003)</td>
<td>(0.004)</td>
<td>(0.004)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Log(SXSW followers, Pre)</td>
<td>-0.000</td>
<td>0.000</td>
<td>-0.002</td>
<td>-0.001</td>
<td>-0.005</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.004)</td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.005)</td>
</tr>
</tbody>
</table>

Panel B: 2SLS

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Log(Twitter users)</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.001</td>
<td>0.002</td>
<td>0.014***</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.006)</td>
<td>(0.008)</td>
<td>(0.008)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>Log(SXSW followers, Pre)</td>
<td>-0.000</td>
<td>0.000</td>
<td>-0.002</td>
<td>-0.001</td>
<td>-0.006</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.005)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>Observations</td>
<td>3,063</td>
<td>3,063</td>
<td>3,063</td>
<td>3,063</td>
<td>3,063</td>
</tr>
<tr>
<td>Mean of DV</td>
<td>0.088</td>
<td>0.079</td>
<td>0.053</td>
<td>0.057</td>
<td>0.126</td>
</tr>
<tr>
<td>Robust F-stat.</td>
<td>121.23</td>
<td>121.23</td>
<td>121.23</td>
<td>121.23</td>
<td>121.23</td>
</tr>
</tbody>
</table>

Notes: This table presents county-level regressions where the dependent variable is the change in the voter turnout (as a share of voting age population) between 2000 and the indicated year. Log(SXSW followers, March 2007) is the number of Twitter users (in logs, with 1 added inside) who joined in March 2007 and follow South by Southwest (SXSW). SXSW followers, Pre is the number of SXSW followers who registered at some point in 2006, defined similarly. Twitter users are the number of users in 2014-2015. All regressions control for population deciles, Census region fixed effects, and the full set of controls (as in columns 5 and 10 of Table 2). The first-stage regressions for 2SLS results (Panel B) are presented in Table 1, with the F-stat for the excluded instrument in the bottom row. Observations are weighted by turnout in the 2000 presidential election. Standard errors in parentheses are clustered by state. *** \(p < 0.01\), ** \(p < 0.05\), * \(p < 0.1\).
Table D.3: Twitter and Congressional Elections – 2SLS Estimates

Panel A: House elections

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7)</td>
<td>(8)</td>
<td>(9)</td>
<td>(10)</td>
</tr>
<tr>
<td>Log(Twitter users)</td>
<td>0.014</td>
<td>-0.003</td>
<td>0.027</td>
<td>0.032</td>
<td>0.019</td>
<td>0.023</td>
<td>0.039</td>
<td>0.006</td>
<td>0.028</td>
<td>0.023</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>(0.019)</td>
<td>(0.020)</td>
<td>(0.022)</td>
<td>(0.021)</td>
<td>(0.023)</td>
<td>(0.024)</td>
<td>(0.024)</td>
<td>(0.023)</td>
<td>(0.023)</td>
</tr>
<tr>
<td>Observations</td>
<td>2.982</td>
<td>2.955</td>
<td>2.971</td>
<td>2.957</td>
<td>2.969</td>
<td>2.983</td>
<td>2.978</td>
<td>2.980</td>
<td>2.983</td>
<td>2.982</td>
</tr>
<tr>
<td>Mean of DV</td>
<td>0.02</td>
<td>0.01</td>
<td>-0.04</td>
<td>-0.06</td>
<td>0.03</td>
<td>-0.01</td>
<td>0.02</td>
<td>0.00</td>
<td>-0.04</td>
<td>-0.01</td>
</tr>
</tbody>
</table>

Panel B: Senate elections

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7)</td>
<td>(8)</td>
<td>(9)</td>
<td>(10)</td>
</tr>
<tr>
<td>Log(Twitter users)</td>
<td>0.019</td>
<td>0.015</td>
<td>0.007</td>
<td>0.008</td>
<td>-0.011</td>
<td>0.021</td>
<td>-0.035</td>
<td>-0.013</td>
<td>-0.008</td>
<td>-0.019</td>
</tr>
<tr>
<td></td>
<td>(0.023)</td>
<td>(0.024)</td>
<td>(0.021)</td>
<td>(0.021)</td>
<td>(0.018)</td>
<td>(0.031)</td>
<td>(0.026)</td>
<td>(0.026)</td>
<td>(0.022)</td>
<td>(0.018)</td>
</tr>
<tr>
<td>Observations</td>
<td>2.183</td>
<td>1.985</td>
<td>1.832</td>
<td>2.183</td>
<td>1.985</td>
<td>1.832</td>
<td>2.183</td>
<td>1.985</td>
<td>1.832</td>
<td>2.183</td>
</tr>
<tr>
<td>Mean of DV</td>
<td>0.01</td>
<td>-0.03</td>
<td>-0.06</td>
<td>-0.05</td>
<td>0.01</td>
<td>-0.06</td>
<td>0.03</td>
<td>-0.07</td>
<td>-0.10</td>
<td>-0.00</td>
</tr>
<tr>
<td>Robust F-stat.</td>
<td>79.24</td>
<td>85.91</td>
<td>72.85</td>
<td>79.24</td>
<td>85.91</td>
<td>72.85</td>
<td>79.24</td>
<td>85.91</td>
<td>72.85</td>
<td>79.24</td>
</tr>
</tbody>
</table>

Notes: This table presents results estimated using 2SLS, as in equation (3). For House elections in Panel A, the dependent variable is the change in the Republican vote share since 2000. For Senate elections in Panel B, the dependent variable is the change in the Republican vote share from six, twelve, or eighteen years ago (to accommodate senators’ 6-year terms). Log(Twitter users) is instrumented using the number of users who started following SXSW in March 2007 (in logs with 1 added inside). All regressions control for the (log) number of SXSW followers that joined Twitter at some point in 2006, population deciles and Census region fixed effects and the full set of controls (as in columns 5 and 10 of Table 2). Regressions are weighted by turnout in the 2000 presidential election. Standard errors in parentheses are clustered by state. *** $p < 0.01$, ** $p < 0.05$, * $p < 0.1$.

Table D.4: Twitter and Individuals’ Vote Decisions in 2016 (Age Splits)

<table>
<thead>
<tr>
<th></th>
<th>Dep. var.: Voted for Trump in 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Log(Twitter users)</td>
<td>-0.178***</td>
</tr>
<tr>
<td></td>
<td>(0.053)</td>
</tr>
<tr>
<td>Marginal effect</td>
<td>[-0.062]</td>
</tr>
<tr>
<td>Observations</td>
<td>57,013</td>
</tr>
<tr>
<td>Mean of DV</td>
<td>0.410</td>
</tr>
</tbody>
</table>

Panel A: Age Group 18-49

<table>
<thead>
<tr>
<th></th>
<th>Dep. var.: Voted for Trump in 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Log(Twitter users)</td>
<td>-0.129**</td>
</tr>
<tr>
<td></td>
<td>(0.052)</td>
</tr>
<tr>
<td>Marginal effect</td>
<td>[-0.047]</td>
</tr>
<tr>
<td>Observations</td>
<td>89,324</td>
</tr>
<tr>
<td>Mean of DV</td>
<td>0.546</td>
</tr>
</tbody>
</table>

Notes: This table presents results estimated using IV probit models, as in equation (4). The dependent variable is a dummy for individuals in the CCES who voted for Trump in 2016. Log(Twitter users) is instrumented using the (log) number of SXSW followers that joined Twitter in March 2007. All regressions control for the (log) number of SXSW followers that joined Twitter at some point in 2006, family income, gender, education levels, marital status, news interest, and age, as well as county-level population deciles and Census region fixed effects. Regressions are weighted by survey weights. Standard errors in parentheses are clustered by state. *** p < 0.01, ** p < 0.05, * p < 0.10.
Table D.5: Twitter and the Republican Vote Share in Swing and Safe Counties

<table>
<thead>
<tr>
<th></th>
<th>Swing counties</th>
<th>Republican counties</th>
<th>Democratic counties</th>
<th>Safe counties</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Panel A: ΔRepublican vote share 2000-2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log(Twitter users)</td>
<td>-0.073***</td>
<td>-0.006</td>
<td>-0.008</td>
<td>-0.005</td>
</tr>
<tr>
<td></td>
<td>(0.024)</td>
<td>(0.008)</td>
<td>(0.008)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>Log(SXSW followers, Pre)</td>
<td>0.013</td>
<td>-0.001</td>
<td>0.000</td>
<td>-0.002</td>
</tr>
<tr>
<td></td>
<td>(0.015)</td>
<td>(0.014)</td>
<td>(0.008)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>Observations</td>
<td>716</td>
<td>1,990</td>
<td>358</td>
<td>2,348</td>
</tr>
<tr>
<td>Mean of DV</td>
<td>-0.033</td>
<td>0.021</td>
<td>-0.040</td>
<td>-0.012</td>
</tr>
<tr>
<td>Robust F-stat.</td>
<td>14.70</td>
<td>11.97</td>
<td>105.57</td>
<td>99.87</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panel B: ΔRepublican vote share 2000-2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log(Twitter users)</td>
<td>-0.066***</td>
<td>-0.017**</td>
<td>-0.013</td>
<td>-0.007</td>
</tr>
<tr>
<td></td>
<td>(0.019)</td>
<td>(0.007)</td>
<td>(0.009)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>Log(SXSW followers, Pre)</td>
<td>0.006</td>
<td>-0.005</td>
<td>-0.001</td>
<td>-0.003</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.013)</td>
<td>(0.009)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>Observations</td>
<td>716</td>
<td>1,990</td>
<td>358</td>
<td>2,348</td>
</tr>
<tr>
<td>Mean of DV</td>
<td>-0.027</td>
<td>0.026</td>
<td>-0.026</td>
<td>-0.002</td>
</tr>
<tr>
<td>Robust F-stat.</td>
<td>14.70</td>
<td>11.97</td>
<td>105.57</td>
<td>99.87</td>
</tr>
</tbody>
</table>

Notes: This table presents results estimated using 2SLS, as in equation (3). The dependent variable is the change in the vote share of the Republican party between the 2000 and 2016/2020 presidential elections in Panels A and B, respectively. Swing counties are those that were not consistently won by either Republicans or Democrats between 2000 and 2012; Republican and Democratic counties are those who voted consistently. Safe counties are the counties from columns (2) and (3) combined. Log(Twitter users) is instrumented using the number of users who started following SXSW in March 2007. SXSW followers, Pre is the number of SXSW followers who registered at some point in 2006. All regressions control for population deciles and Census region fixed effects and the full set of controls (as in columns 5 and 10 of Table 2). Regressions are weighted by turnout in the 2000 presidential election. Standard errors in parentheses are clustered by state. *** $p < 0.01$, ** $p < 0.05$, * $p < 0.1$.
Figure D.1: Twitter’s Partisan Slant (Tweet Measure)

(a) Tweets about Republican Presidential Candidates

(b) Tweets about Democratic Presidential Candidates

Notes: These figures present the number of tweets (as opposed to the number of “likes” of such tweets in Figure 9) that contain the last name of the candidates in the 2012, 2016 and 2020 presidential elections, depending on whether the tweet was classified as having a Republican (instead of Democratic) slant. We classify the slant of a tweet based on the Twitter network of the user who sent the tweet. If the user follows more Democratic than Republican Congress members, they will be classified as a Democrat, and vice versa. Users who follow an equal number of Democrats and Republican or no Congress members are classified as neutral.
Figure D.2: Twitter’s Partisan Slant (Text-Based Classifier)

(a) Likes for Tweets about Republican Presidential Candidates

(b) Likes for Tweets about Democratic Presidential Candidates

(c) Tweets about Republican Presidential Candidates

(d) Tweets about Democratic Presidential Candidates

Notes: These figures present the number of “likes” received by tweets, or the number of tweets, that contain the last name of the candidates in the 2012, 2016 and 2020 presidential elections, depending on whether the tweet was classified as having a Republican (instead of Democratic) slant. We classify the slant of a tweet based on similarity in the language to that of a congressional Republican or Democrat, using a L2 regularized logistic regression classifier using the tweets sent by Congress members. Optimal normalization strength is chosen using 10-fold cross-validation. Tweets with a predicted class probability below 60% are coded as neutral. See Appendix A.1. for details.
Figure D.3: Specification Curve

(a) 2016 Presidential Election Results

Notes: These figures plot the 2SLS estimates and 95% confidence intervals from a regression of the Republican vote share in 2016 on $\log(\text{Twitter users})$, instrumented with $\text{SXSW}^{\text{March 2007}}$. All regressions include population deciles, census region fixed effects, and SXSW^{Pre}. The combination of the other included control variables is shown at the bottom; filled circles mean a set of controls was included. The baseline specification with all controls is marked by the vertical line.
Notes: These figures plot the 2SLS estimates and 95\% confidence intervals from a regression of the Republican vote share in 2020 on $\log(\text{Twitter users})$, instrumented with $SXSW_{March 2007}$. All regressions include population deciles, census region fixed effects, and $SXSW_{Pre}$. The combination of the other included control variables is shown at the bottom; filled circles mean a set of controls was included. The baseline specification with all controls is marked by the vertical line.
E Additional Details on the Extrapolation for the Average Treatment Effect

Andrews and Oster (2019) show how selection into participating in an experiment can be used to make extrapolations regarding the external validity of an experiment. They illustrate their approach using the experiment from Bloom et al. (2015) within a Chinese call centre in which workers were asked to volunteer for a work-from-home program. 50% of workers volunteered and were then randomly assigned to either treatment and control group. Given this, the measured treatment effect from the experimental sample might be different from the average treatment effect for the population as a whole, since the volunteers likely receive a higher utility from the work-from-home program.

When a set of covariates X is observed for both the “experimental sample” and “population,” Andrews and Oster (2019) provide a procedure that uses effect heterogeneity based on X estimated within the experimental sample to extrapolate to the average treatment effect for the “population.”

We build on their procedure and argue that we can similarly use heterogeneity in the treatment effect within the counties that “identify” our results to extrapolate the treatment effect to all other counties in the US. Column (5) of Table C.3 show that we obtain similar estimates to our baseline when we only compare counties with SXSW followers that joined Twitter in March 2007 to counties with followers that joined in the pre-period, while excluding those counties in neither group. We can use this subsample of counties as the “experimental sample,” and extrapolate effects to the “population” of all other counties.

Since Andrews and Oster (2019) approach is designed for a binary treatment, we adjust our regression framework by defining a treatment indicator variable equal to 1 for counties with SXSW followers who joined in March 2007 and 0 for the counties with followers that joined in the pre-period. We estimate the treatment effect for the subsample of counties that do not have zero SXSW followers in both periods using the regression specification

$$y_c = \alpha + \beta \cdot 1[SXSW_{c_{March2007}} > 0] + \epsilon_c.$$

The resulting treatment effect estimate is -0.075, which is similar Table 2 Panel B column (1).55 We then perform a linear prediction of this treatment effect based all observable variables in Table A.5 within this subsample. The resulting predicted treatment effect is -0.085. Last, we extrapolate the treatment effect for the rest of US counties. Based on the variation in observable characteristics we would predict an ATE of -0.218 for the US overall.

55Note that our regression specification does not include controls, as in the Andrews and Oster (2019) approach. Moreover, partialling out the controls and applying the Frisch-Waugh theorem was not feasible since the residualized treatment would no longer be binary.
Note that this extrapolation is based on adjusting our reduced-form estimates to use a binary indicator variable for treatment thus the coefficients are not directly comparable to our baseline estimates. The approach further assumes quasi-random treatment assignment with in the counties with SXSW variation. Taken this into account, the extrapolation should therefore be viewed as suggestive, but confirming the notion that the effect for all US counties would be larger since the more urban counties for which we have variation in our instrument tend to be Democratic strongholds, and thus likely have fewer independents and moderate Republicans, for which we find the largest persuasion effects (in survey data).