
1 Copyright © 1998 by ASME

Proceedings of FEDSM’98
1998 ASME Fluids Engineering Division Summer Meeting

June 21-25, 1998, Washington DC

FEDSM98-4950

A NEW MEAN VELOCITY SCALING FOR TURBULENT BOUNDARY LAYERS

Mark V. Zagarola
Creare Incorporated

Etna Road • P.O. Box 71
Hanover, New Hampshire  03755

mvz@creare.com

Alexander J. Smits
Department of Mechanical & Aerospace Engineering

Princeton University
Princeton, New Jersey  08544

asmits@princeton.edu

ABSTRACT
A new scaling, originally developed for the mean velocity

profile of turbulent pipe flow, was extended to the case of zero
pressure gradient turbulent boundary layers.  At low Reynolds
numbers, the new scaling leads to a power law for the overlap
region of the mean velocity profile.  At high Reynolds
numbers, the conventional overlap region given by a log law is
also obtained.  Comparisons were made between the power law
and 17 velocity profiles covering a large range of Reynolds
numbers.  This comparison showed that a power law with
empirical constants determined from pipe flow data was in good
agreement with boundary layer data.  A new outer velocity scale
was also proposed.  The new outer velocity scale was used to
normalize the 17 velocity profiles and the collapse of these
profiles was significantly better than for profiles normalized by
the friction velocity or the freestream velocity.
KEYWORDS:  Boundary layers, overlap region, pipe flow,
mean-velocity profile.

NOMENCLATURE
B Empirical constant in log law
C1 Empirical constant in power law
Cf Skin-friction coefficient = 2 (uτ /U∞)2

δ Boundary layer thickness
δ* Displacement thickness
δ+ Ratio of outer to inner length scales for a boundary layer

     = δu τ / ν
f Function of y+

γ Empirical constant in power law
g Function of η
η Wall-normal distance normalized by outer length scale

     = y/R or y/δ
κ Empirical constant in log law
Λ Ratio of outer to inner velocity scales = uo /uτ

ν Kinematic viscosity
Θ Momentum thickness
ρ Density
R Pipe radius
R+ Ratio of outer to inner length scales for a pipe = Ruτ/ν
ReΘ Reynolds number based on momentum thickness

     = U∞Θ/ν
τw Wall shear stress
U Streamwise velocity
U+ Velocity normalized by friction velocity = U/uτ

UCL Centerline velocity
U∞ Free-stream velocity
U Average velocity
uo Outer velocity scale
uτ Friction velocity = τ ρ

w
/

x Streamwise distance
y Wall-normal distance
y+ Wall-normal distance normalized by inner length scale

     = yuτ / ν

BACKGROUND
In this paper a new scaling argument, originally developed

for the mean velocity profile in turbulent pipe flow, is extended
to the case of turbulent boundary layers.  The original argument
is based on the observations made in the Princeton University
pipe flow experiment which covered over three orders of
magnitude in Reynolds number (Zagarola & Smits, 1997).
There it was shown that at sufficiently high Reynolds numbers
the mean velocity profile in a pipe consists of two overlap
regions.  At small Reynolds numbers, a single overlap region
exists, and the mean velocity profile in this region can be
represented by a power law.  The power law exists in a discrete
region between the inner and outer region or between the inner
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and logarithmic overlap region, depending on the magnitude of
the Reynolds number, and the empirical constants in the power
law do not depend on Reynolds number when expressed using
inner scaling variables.  This region is not the overlap region
expected at very large Reynolds number, but an intermediate
overlap region that covers the range of y+ at which most
previous experiments have been performed.  At very large
Reynolds number, a second overlap region is apparent, and the
scaling in this region was shown to be logarithmic.  

An overlap argument was developed that is consistent with
this behavior.  A new velocity scale is required for the outer
region such that the ratio of the outer velocity scale to the inner
velocity scale (the friction velocity) is a function of Reynolds
number at low Reynolds numbers, and approaches a constant
value at high Reynolds numbers.  A reasonable candidate for the
outer velocity scale is the velocity deficit in the pipe.  In this
paper, we will review the arguments used to derive the two
overlap regions for pipe flow, extend these arguments to
boundary layers, and compare the new scaling for boundary
layers with existing experimental data.  The boundary layer
analysis and comparisons will be confined here to the
incompressible case with no streamwise pressure gradient.

For wall-bounded turbulent shear flows, the shape of the
mean velocity profile, or equivalently, the relative fraction of
the flow occupied by the inner and outer regions, changes with
Reynolds number.  If the Reynolds number is large enough, it
is usually assumed that the interaction between these regions
vanishes because of the disparity of length scales, and
consequently, independent similarity solutions may exist for
each region.  Therefore, most theoretical treatments start by
dividing the flow into an inner and outer region.  For each
region, a length and velocity scale may be defined.  The velocity
scale in the near-wall region is typically taken to be the friction
velocity.  The length scale associated with the inner region is
then the kinematic viscosity ν  divided by the friction velocity,
ν/uτ.  For the outer region, the velocity scale is also typically
taken to be the friction velocity, although this has long been
the source of controversy (Zagarola & Smits, 1997; George et
al., 1996), and the length scale is taken to be the radius of the
pipe R or the boundary layer thickness δ.

Using dimensional analysis, the scaling for the inner
region is

U f y
+ += ( ) (1)

where f represents the functional dependence in the inner region
(see Schlichting, 1987).  Equation 2 is known as the “law-of-
the-wall” and is valid only in the inner region.  It can be shown
from the Navier-Stokes equation that f is linear near the wall,
and we may expect that Equation 1 is valid further from the wall
than the linear region but not into the outer region (i.e.
Equation 1 will hold for 0 < y+ << R+).  

The dimensionless scaling law for the outer region is

U U

u
gCL

o

−
= ( )η (2)

where g represents the functional dependence in the outer region
and η  = y/R for a pipe.  If uo = uτ, then Equation 2 is known
as the “defect-law” (see Schlichting, 1987).  Equation 2 is valid
only in the outer region where viscosity is not important (i.e.,
Equation 2 will hold for 0 << η  < 1).

Equations 1 and 2 are based on the assumption that R+ is
large enough for both regions to be independent of Reynolds
number.  If we assume that an intermediate region exists where
both scaling laws are valid, then we can define two different
matching conditions.  By matching the velocity gradients given
by Equations 1 and 2, we find

y f g+ ′ = − ′Λη (3)

where the differentiation in Equation 3 is with respect to the
dependent variables and Λ is the ratio of the outer to inner
velocity scales, uo/uτ.  If uo = uτ, then Equation 3 is the same
relation used by Millikan (1938) to derive the classical
logarithmic overlap region.

Alternatively, if we simultaneously match the velocities
and velocity gradients, the matching condition is

y
f

f

g
U

u
gCL

o

+ ′
= −

′

−

η (4)

Equation 4 is the same relation used by George et al. (1996)
with uo = U∞ to support their assertion that the overlap region
in a boundary layer is given by a power law.

We argue that at low Reynolds numbers, but still high
enough that an overlap region exists, Λ depends on R+.  At
these Reynolds numbers, Equation 3 does not define an overlap
region that is independent of R+, but Equation 4 does.  By
integrating Equation 4, the velocity profile in this region can be
written using inner layer variables as

U C y+ += ( )1

γ

(5)

For pipe flow, the values of C1 and γ were shown to be
independent of Reynolds number and equal to 8.70 and 0.137,
respectively (Zagarola & Smits, 1997).  Equation 5 with these
constants was shown to be in excellent agreement with pipe
flow data for 60 < y+ < 500 or y+ < 0.15R+, the outer limit
depending on whether R+ is greater or less than 9 × 103

(Zagarola & Smits, 1998).  With these limits, a power law can
exist only if R+ > 400.

At even higher Reynolds numbers, it was shown that uo/uτ
approaches a finite limit (Zagarola & Smits, 1997).  For this
case, Equation 3 also gives an overlap region which is
independent of Reynolds number.  Equation 3 can be set equal
to a constant (typically 1/κ) and integrated to give the classical
log law which can be written in terms of inner scaling variables
as
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U y B+ += +
1

κ
ln (6)

The values of κ  and B were shown to be 0.436 and 6.15, and
this log law was shown to be in excellent agreement with
experimental pipe flow data for 600 < y+ < 0.07R+ (Zagarola
& Smits, 1998).  With these limits, a log law can exist only if
R + > 9 ×  103 which is a very large Reynolds number
compared to most laboratory flows.

For the preceding argument to be valid, uo must be
proportional to uτ at high Reynolds number.  The correct
velocity scale for the outer region was shown to be the velocity
deficit in the pipe, or U U

CL
− , which is a true outer velocity

scale, in contrast to the friction velocity which is a velocity
scale associated with the inner region which is “impressed” on
the outer region (Zagarola & Smits, 1997).

SCALING OF TURBULENT BOUNDARY LAYERS
The preceding analysis for pipe flow may also hold for

boundary layers if the centerline velocity is replaced by the
freestream velocity and the radius is replaced by the boundary
layer thickness.  Here we also assume that the streamwise
dependence of the velocity profile is properly accounted for by
our choice of length and velocity scales.  An outer velocity
scale equivalent to U U

CL
−  can be expressed using boundary

layer parameters as follows.

u U U
U U

U
dy U

o
= − = − =∞
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δ

δ
1

0

*

(7)

This new outer velocity scale can be accurately determined from
the velocity profiles, in contrast to the friction velocity uτ
which is not easily measured accurately in a boundary layer.  At
high Reynolds numbers, we can expect that uo ~ uτ, or

equivalently δ*/δ ~   C
f
, for a logarithmic overlap region to

exist.
Even though a similar scaling may exist for boundary

layers and pipe flow, we can not expect the functional form of
the velocity profiles in the outer region g(η) to be the same
since the equations of motion and the boundary conditions are
different.  This is true even in the infinite Reynolds number
limit.  Furthermore, any limit that depends on Reynolds
number (R+ or δ+) may be different due to the differences in the
outer region.  These limits include the Reynolds number at
which complete similarity exists in the outer and inner region,
the outer limit of the power law or log law, and the Reynolds
number at which the overlap regions appear.  Conversely, the
equations of motion and boundary conditions of the inner region
are the same for both flows in the infinite Reynolds number
limit, and we may therefore expect that the functional form of
the velocity profiles in the inner region f(y+) are the same.

The remainder of this paper is devoted to a comparison
between the new scaling laws and experimental boundary layer
data.

COMPARISON WITH EXPERIMENTS
Data from three separate investigations were used for the

comparison presented here.  The data from Purtell et al. (1981)
spanned the low Reynolds number range; the data from Smith
(1994) spanned the moderate Reynolds number range; and the
data from Fernholz et al. (1995) spanned the high Reynolds
number range.  A summary of the relevant boundary layer
parameters is given in Table 1.

Purtell et al. used a hot wire to measure the velocity
profiles and inferred uτ from an assumed log law with κ  = 0.41
and B = 5.0.  For comparison, they also inferred uτ from dU/dy
and dΘ/dx, and found that the agreement was ± 2.5 % for the
higher Reynolds numbers and was somewhat poorer for the
lower Reynolds numbers.  Smith in his experiment used a
flattened Pitot probe to measure the velocity profiles and a
Preston probe to measure uτ.  He also inferred uτ from an
assumed log law with κ  = 0.41 and B = 5.2.  The agreement
between the different methods used to determine uτ was ±   1  %.
Fernholz et al. used a hot wire to measure the velocity profiles
and inferred uτ from an empirical relation based on the
measurement of ReΘ.  They also measured uτ using a Preston
probe and inferred uτ from several other empirical relations.  The
agreement between the different methods used to determine uτ
was ± 4%.

Table 1.  Boundary Layer Parameters

Profile
#

ReΘ δ+ Reference

1 470 220 Purtell et al. (1981)
2 500 220 Purtell et al. (1981)
3 700 290 Purtell et al. (1981)
4 1.0 × 103 390 Purtell et al. (1981)
5 1.3 × 103 470 Purtell et al. (1981)
6 1.8 × 103 650 Purtell et al. (1981)
7 2.8 × 103 970 Purtell et al. (1981)
8 3.5 × 103 1.2 × 103 Purtell et al. (1981)
9 4.1 × 103 1.4 × 103 Purtell et al. (1981)
10 4.6 × 103 1.5 × 103 Smith (1994)
11 5.0 × 103 1.6 × 103 Smith (1994)
12 5.1 × 103 1.7 × 103 Purtell et al. (1981)
13 5.4 × 103 1.7 × 103 Smith (1994)
14 5.9 × 103 1.8 × 103 Smith (1994)
15 6.9 × 103 2.1 × 103 Smith (1994)
16 7.7 × 103 2.3 × 103 Smith (1994)
17 9.1 × 103 2.7 × 103 Smith (1994)
18 10 × 103 3.1 × 103 Smith (1994)
19 12 × 103 3.5 × 103 Smith (1994)
20 13 × 103 4.0 × 103 Smith (1994)
21 21 × 103 6.9 × 103 Fernholz et al. (1995)
22 58 × 103 18 × 103 Fernholz et al. (1995)
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In Figure 1, the velocity profiles measured by Purtell et al.,
Smith, and Fernholz et al. are shown normalized by inner layer
variables.  The data cover a Reynolds number range given by
650 < δ+ < 18 ×  103 or 4.6 ×  103 < ReΘ < 58 ×  103.
The data at lower values of δ+ (Profiles 1 to 5) are not shown
since it is doubtful that a universal overlap region exists at
these Reynolds numbers (δ+ < 500).  The power law
established from pipe flow data is also shown, as are the regions
marking a ± 3% error in uτ.  For all profiles except at the
highest Reynolds number, the data are nominally within ±  3%
of the power law for some range of y+ and deviate from the
curve in the inner region where viscosity dominates and in the
outer region where the inner scaling no longer holds.  At the
highest Reynolds number, the data near the wall deviates from
the other profiles by more than 3%, but this perhaps can be
attributed to an error in position since the five points nearest to
the wall are all within 1 mm of the wall.  The log law
established from pipe flow data is also shown in Figure 1.
According to our analysis of pipe flow data, the log law should
be apparent only at the highest Reynolds number since a log
law should not exist until δ+ is of order 104.  The uncertainty in
the friction velocity prevents us from drawing any definitive
conclusions here, but a power law with C1 = 8.70 and
γ = 0.137 seems to be in good agreement with these boundary
layer data.

In Figures 2, 3 and 4, the velocity profiles are normalized
by outer layer variables.  The conventional outer velocity scale,
uτ, is used to normalize the profiles in Figure 2, the proposed
outer velocity scale U∞δ*/δ is used in Figure 3, and the outer
velocity scale proposed by George et al. (1996), U∞, is used in
Figure 4.  For comparison between these figures, error bars are
shown which represent a ± 3% uncertainty of the ordinate at
y/δ = 0.1.  When normalizing the wall-normal position in the
outer region, the length scale was taken to be the boundary layer
thickness at 0.99 U∞, although it was found that the profiles
collapsed equally well when using the displacement thickness or
momentum thickness.  Regardless of the length scale used, the
collapse is poor in the outer region for the profiles normalized
by uτ and U∞.  When the profiles are normalized by the proposed
outer velocity scale, the collapse is much improved for
y/δ > 0.07 and for 650 < δ+ < 18 × 103.

CONCLUSIONS
A new scaling for the mean velocity profile of turbulent

boundary layers was proposed.  The new scaling leads to a
power law for the overlap region of the mean velocity profile at
low Reynolds numbers, and both a power law and log law
region at high Reynolds numbers.  Comparisons were made
between the power law and 17 velocity profiles spanning a large
range of Reynolds numbers (650 < δ+ < 18 × 103 or
4.6 × 103 < ReΘ < 58 × 103).  This comparison showed that

a power law with empirical constants determined from pipe flow
data was in good agreement with boundary layer data, although
large uncertainties in the friction velocity prevents us from
making definitive conclusions.  The proposed scaling requires a
new outer velocity scale given by U∞δ*/δ.  The new outer
velocity scale was used to normalize the 17 velocity profiles.
This velocity scale collapsed the profiles significantly better
than profiles normalized by the friction velocity or the
freestream velocity.  The comparison given in this paper
supports the adoption of a new velocity scale for the outer
region of turbulent boundary layers.
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Figure 1.  Velocity profiles normalized using inner scaling variables.
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Figure 2.  Velocity profiles normalized using the traditional outer scaling variables.
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Figure 3.  Velocity profiles normalized using the proposed outer scaling variables.
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Figure 4.  Velocity profiles normalized using the outer scaling variables proposed by
George et al (1996).


