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Periodic axial motion of the inner cylinder in Taylor-Couette flow is used to delay tran-
sition to Taylor vortices. The outer cylinder is fixed. The marginal stability diagram
of Taylor-Couette flow with simultaneous periodic axial motion of the inner cylinder is
determined using flow visualization. For the range of parameters studied, the degree of
enhanced stability is found to be greater than that predicted by Hu & Kelly (1995), and
differences in the scaling with axial Reynolds number are found. The discrepancies are
attributed to essential differences between the base flow in the open system considered
by Hu & Kelly, where mass is conserved over one period of oscillation, and the base flow
in the enclosed experimental apparatus, where mass is conserved at all sections at all
times.

1. Introduction

The central importance of flow between concentric cylinders as a fluid-dynamical
paradigm has been well documented in the reviews by Di Prima & Swinney (1985) and
Tagg (1994). One reason for the great number of studies of this “Taylor-Couette” flow
is the orderly progression of nonlinear flow states observed in the system as it undergoes
transition to turbulence. For example, if the outer cylinder is held fixed and the inner
one rotates at angular speed Ω, a series of four critical speeds exist between the purely
azimuthal Couette flow at low values of Ω and the turbulent Taylor vortices that appear
at large values of Ω (Andereck et al., 1986). This orderly progression to turbulence makes
Taylor-Couette flow attractive as a model for studying transition to turbulence in more
complex systems.

The first transition, from steady azimuthal flow to Taylor vortices, has been the focus
of many previous studies. Variations of the basic Taylor-Couette flow experiment which
raise the critical angular speed for this transition have also been explored. In particular,
Taylor-Couette flow with superposed Poiseuille flow (that is, a non-zero axial through-
flow) has been studied experimentally by Cornish (1933), Fage (1938), Kaye & Elgar
(1957), Donnelly & Fultz (1960), Snyder (1962), Schwartz et al. (1964), Takeuchi &
Jankowski (1981), Buhler & Polifke (1990), Babcock et al. (1991), Lueptow et al. (1992),
Tsameret & Steinberg (1994) and Tsameret et al. (1994), and analytically by Goldstein
(1937), Chandrasekhar (1960), Di Prima (1960), Krueger & Di Prima (1964), Chung
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& Astill (1977), Takeuchi & Jankowski (1981), Buhler & Polifke (1990), Tsameret &
Steinberg (1994) and Tsameret et al. (1994). These efforts established that the critical
rotation rate increases with increasing axial flow rates.

Taylor-Couette flow with superposed axial Couette flow (that is, where one of the
cylinders is moving in the axial direction) has also been studied analytically (Ludweig,
1960, Kiessling, 1963, Wedemeyer, 1967) and experimentally (Ludweig, 1964) but much
less extensively than the axial Poiseuille flow case. In all these studies both cylinders
were rotating. In addition, a number of researchers examined the general case of both
axial Couette and axial Poiseuille flow (Joseph & Munson, 1970, Hung et al., 1972),
including a numerical linear stability analysis for a finite flow domain (Ali & Weidman,
1993).

All the previously mentioned investigations were confined to steady axial flows. How-
ever, Hu & Kelly (1995) performed a linear stability analysis to include the effects of
periodically varying axial pressure gradients and inner cylinder axial speeds, for the case
of the inner cylinder rotating, as well as for the cases where the cylinders were co-rotating
and counter-rotating. For periodic axial motion of the inner cylinder, with only the inner
cylinder rotating, Hu & Kelly found enhanced stability for all axial speeds and oscillation
frequencies. In the case of an open flow, corresponding to infinitely long cylinders, the
fluid pathlines at subcritical angular speeds consist of constant radius spirals that ascend
and descend in response to the inner cylinder’s axial motion. Here, the azimuthal and
axial velocity profiles are decoupled, so changes in the axial motion have no effect on
the azimuthal velocity field. Once the flow undergoes transition to Taylor vortices the
flow field becomes much more complex, but it still instantaneously resembles closely the
Taylor-vortex-dominated flow-field which exists when axial motion is not present. This
observation, coupled with the fact that the axial and azimuthal subcritical flow fields are
independent, yield the supposition that the stability of Taylor-Couette flow with axial
motion of the inner cylinder is closely related to the stability of Taylor-Couette flow
without axial motion of the inner cylinder.

2. Experiment

To study these questions further, the experimental apparatus depicted in Figure 1
was constructed. Angular motion of the inner cylinder is controlled by a stepper motor,
through a timing belt drive and a splined shaft. This shaft fits in a splined bushing in the
top end cap, which, together with the ball joint in the bottom end cap, enabled the inner
cylinder to be simultaneously spun as well as translated in the axial direction. The axial
motion was controlled by a separate stepper motor through a variable ratio timing belt
drive and a Scotch yoke mechanism, which imparts a sinusoidally varying axial velocity to
the inner cylinder. The dimensions of the apparatus are shown in Table 1 and Figure 1.
The top and bottom seals are rigidly attached to the outer cylinder, and are therefore
non-rotating. The inner edges of the seals were machined to knife edges but they could
not provide perfect dynamic seals, and therefore an overflow reservoir was designed into
the top seal, and a second, spring-loaded, rubber lip seal (not shown) was incorporated
into the base cylinder.

The working fluid used throughout this work was a 20:1 mixture of distilled water
and Kalliroscope AQ-1000 rheoscopic concentrate†. The flakes align themselves with the
local shear stress direction thereby making flow patterns visible. When the “face” of
a flake is oriented toward the observer incident light is reflected back, “coloring” the

† Kalliroscope Corporation, 264 Main St., Box 60, Groton MA 01450, (508) 448-6302
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local fluid white. When the flake is oriented sideways light is not reflected back to the
observer, and the fluid appears darker. These flakes have been used in many previous
Taylor-Couette flow experiments (Andereck et al., 1986). When using the water and
Kalliroscope mixture, the flow field appears to be uniformly gray at subcritical angular
speeds. Once Taylor vortices ( which are pairs of counter-rotating toroidal vortices)
appear, the flow field displays alternating light and dark bands indicating the presence
of vortices of opposite sign.

The kinematic viscosity of the mixture as a function of temperature was measured
to within 1% by a professional laboratory. The apparatus was placed in a temperature
controlled enclosure, resulting in a temperature fluctuation of less than 0.2◦C. The un-
certainty in the value of the kinematic viscosity due to temperature and other sources
of error is less than 1.4%. Settling of the Kalliroscope flakes can introduce a viscosity
gradient, but under our experimental conditions the uncertainty in the viscosity was
dominated by temperature variations. When the cylinders are vertical, as in the current
experiment, the slowly increasing Kalliroscope flake concentration is known to affect
slightly the wavelength of the Taylor vortices (Dominguez-Lermaet al., 1985), but the
effect on the critical Taylor number is not known. This issue is addressed further below.

The onset of transition to Taylor vortices was recorded by a black and white CCD
video camera connected to a personal computer which acquired and stored the images
directly. The images were processed using a modified version of the public domain
image processing program NIH Image† for the Macintosh. Custom stepper motor control
circuitry was built which enabled both stepper motors in the experiment to be completely
controlled by software (for further details of the image processing procedure and the
electronic control circuitry, see Weisberg, 1996).

Three dimensionless parameters determine the state of the system. Following Hu &
Kelly, we use a Taylor number, Ta, based on the rotation rate of the inner cylinder, a
Reynolds number, Re, based on the maximum axial speed of the inner cylinder, and an
oscillation parameter, β, where the axial frequency of oscillation was non-dimensionalized
by the viscous time scale:

Ta =
4Ω2η2d4

(1− η2) ν2
, Re =

Umaxd

ν
, β =

√
ωd2

2ν
,

where Ω is the angular speed of the inner cylinder, η is the radius ratio ri/ro of the
cylinders (= 0.9051), d is the gap size (= ro − ri), ν is the kinematic viscosity of the
working fluid, Umax is the amplitude of axial speed of the inner cylinder, and ω is
the (angular) frequency of the axial motion of the inner cylinder. The experimental
uncertainties are: δTa = 3.1%, δRe = 2.1%, and δβ = 0.71%.

3. Results

To determine the critical value of the Taylor number as a function of Reynolds number
and the oscillation parameter, the rotation rate of the inner cylinder was increased very
slowly and the flow field was monitored for the presence of Taylor vortices. A number
of experiments were conducted to determine quasi-static levels of acceleration, and to
determine the threshold at which it was judged that transition had occurred. In most
experimental systems, Taylor vortices first appear near the ends of the cylinders at lower

† NIH Image developed at the U.S. National Institutes of Health and available from the Inter-
net by anonymous FTP from zippy.nimh,nih.gov or on floppy disk from the National Technical
Information Service, Springfield, Virginia, part number PB95-500195GEI
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than expected values of Ta. The extent of the flow domain dominated by Taylor vortices
then spreads from the end walls toward the center of the apparatus, until, for systems
with large aspect ratios (cylinder length/gap width), the vortices meet at mid-length
at what we expect to correspond to the theoretical critical value of the Taylor number
(Lueptow et al., 1992). In contrast to previous experimental work, the vortices observed
in this experiment appeared at the lower end first, and propagated up towards the center
at progressively higher values of Ta. This sequence is shown in Figure 2. The reason for
this discrepancy is not clear. There exists a slight eccentricity of the cylinders at the top
of the flow domain but the level of eccentricity (a maximum of 0.005 in, or 0.6% of the
gap size) is a factor of 5 less than the level at which the critical Taylor number begins to
be reduced (Cole, 1976). For our experiment, transition to Taylor vortices was defined as
the value of Ta at which the vortices reached the center of the cylinders. This definition
yielded consistent values for the critical Taylor number in a variety of experiments in
which the initial speed and the acceleration rate of the inner cylinder was varied. The
effects of gravity on the Kalliroscope concentration also seems to be rather small, given
the typical duration of an experiment was very much less than the settling time of the
flakes.

In fact, using this definition, the critical Taylor number, Tac,0, for ordinary Taylor-
Couette flow (Re = 0) was determined to be = 3636 ± 3.6%. This value compares very
well with the values found by previous experimental and analytical studies, as indicated
in Figure 3. The same method used to obtain Tac,0 was used to determine Tac, the
transitional value of Ta at nonzero Re and β. Note that, for our apparatus, Re and β
were not independent, and Re ∝ β2.

The results for Tac,0 are shown in Figure 4. Two axial drive reduction ratios were
used to obtain the two sets of data for Re = 6.35β2. The agreement between these two
sets demonstrates that the results are independent of the particular experimental config-
uration. Very recently, Marques & Lopez (1996) by a numerical linear stability analysis
determined the critical Taylor numbers for the case of an enclosed system similar to that
studied in the experiment. The agreement bewteen their results and the experimental
data is extremely good, as seen in Figure 4.

Hu & Kelly found that the increase in the critical Taylor number scales with Re2 for
Re < 30, and their results for Re = 1 and Re ¿ 1 very nearly coincide with the results
for Re = 30 for the range of β examined here (0 ≤ β ≤ 10). The data in Figure 4, for Re
ranging from approximately 10 to 100, was therefore rescaled with Re2 and replotted in
Figure 5.

A number of preliminary conclusions can be drawn from Figure 5. The experimental
data and analytical results converge at the larger values of the oscillation parameter β.
This is expected, since as the axial frequency is increased, the effects of the oscillat-
ing inner cylinder will propagate shorter and shorter distances into the gap due to the
damping effects of viscosity. Therefore in the limit of very large values of β, the data
and analytical results should approach the critical value of Ta corresponding to Re = 0.

For values of β greater than approximately 1.5, the Re2 scaling is broadly evident in
the data although the experimental data and analytical results do not agree. At values
of β below 1.5, the Re2 scaling is less evident, and the trends in the experimental data
and analytical results differ as well. While Hu & Kelly’s results are nearly constant for
β < 1 in the scaling of Figure 5, the experimental data points appear to be increasing
with diminishing β. The loss of scaling with Re2 is most likely due to the higher values
of Re associated with many of the data points.

While Hu & Kelly computed results for Re = 30, the largest value of Re in the
data is close to 100. Further, with the breakdown of the Re2 scaling, the uncertainty
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envelope grows. The growth of the uncertainty in the data, as scaled in Figure 5, is also
substantially larger than that seen in Figure 4 due to the presence of the 1/Re2 term.
However, the ratio of parameters on the vertical axis greatly magnifies the experimental
uncertainties in the parameters Tac, Tac,0 and Re, and therefore it misrepresents the
high degree of accuracy in the measurements. The behavior of the experimental results
is more satisfactorily demonstrated in the form given in Figure 4.

Outside the range of Re and β values shown in Figure 4 there are values of Re and β
at which a different transition was observed to take place. In these cases vortices did not
propagate in an orderly fashion from the bottom end of the apparatus, but appeared in
various locations intermittently. At larger values of Ta the vortices became increasingly
permanent until they filled the apparatus at all times. These vortices were often tilted
with respect to the axis of rotation. Because of the different nature of this transition,
those results are not shown here, although they present an interesting direction in which
to extend this investigation.

4. Discussion and Conclusions

We propose that the discrepancies between the analytical results presented by Hu &
Kelly (1995) and the experimental data given here are due to the fundamental differences
in the subcritical flow fields (the “base” flows): the experiment was an “enclosed” system,
whereas Hu & Kelly considered an “open” system. In an open flow system, mass is
conserved over an entire axial period through any cross section normal to the axis of
rotation. In an enclosed system, however, net mass flux through any cross section is zero
at all times. At low values of β the base flow in open systems is unidirectional over most
of the axial period. In contrast, the base flow in an enclosed system will always consist
of equal fluid volumes travelling in opposite directions.

As β is increased from zero, the base flow in the open system develops regions of
reversed flow. This can be seen as the growth of the viscous time scale, d2/ν, relative
to the axial period. Consequently, in the range of β between approximately 2 and 4, the
two types of base flows more closely resemble one another. At larger values of β the axial
base flow is almost stationary except close to the inner cylinder wall because viscosity
damps out the axial oscillations well before they can propagate into the gap. This is true
of the base flow in both the open and enclosed cases.

These differences help to explain why the experimental data and analytical results
approach one another at larger values of β and diverge at lower values. Additional
insight can be acquired using just the trend in Hu & Kelly’s results. In particular, the
magnitude of azimuthal vorticity in the base flow field, which arises as a consequence of
the axial motion, appears to play a key role. At values of β < 1 the axial velocity profile
in the open system, which is nearly linear in the case of η ≈ 1, has very little curvature,
and therefore the azimuthal component of the vorticity field is determined by the slope
of the axial velocity profile. As β increases, the axial velocity develops regions of reversed
flow, and the magnitude of the azimuthal vorticity in the flow, integrated over the gap
size, increases. This results in increased stability enhancement when normalized by Re2,
as the analytical results in Figure 5 indicate. As β increases further, viscous damping
reduces the magnitude of the vorticity in the flow, and the degree of enhanced stability
reduces as well.

The role of azimuthal vorticity becomes clearer when the vorticity distribution in
supercritical Taylor-Couette flow with Re = 0 is considered. When the flow field is
dominated by Taylor vortices, the azimuthal vorticity changes sign along the axial direc-
tion. Consequently, transition from subcritical flow to supercritical flow can be viewed
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as the generation of azimuthal vorticity, with equal amounts of fluid acquiring either pos-
itive or negative azimuthal vorticity. However, when Re > 0 the fluid already contains
azimuthal vorticity that is a function of radial position only. Therefore, transition to
Taylor vortices, which have axial variations in azimuthal vorticity, will require that some
of the fluid’s azimuthal vorticity undergo a sign reversal. To undergo this change, it is
likely that higher than usual values of Ta will be required to reverse the local angular
momentum vectors to this extent, which indicates a flow that is centrifugally unstable
to a greater degree. For the case of steadily translating cylinders (β = 0) the predicted
change in Ta can be readily calculated:

∆Taencl ∝
1

r0 − ri

r0∫

ri

ω2
θ,encl rdr

∆Ta∞ ∝ 1

r0 − ri

r0∫

ri

ω2
θ,∞ rdr

where ωθ is the azimuthal vorticity, ∆Ta = Tac − Tac,0, and the subscripts ∞ and encl
denote the open and enclosed systems, respectively. Inserting the expressions for the
azimuthal vorticity for each case we find that:

∆Taencl
∆Ta∞

=

r0∫
ri

ω2
θ,encl rdr

r0∫
ri

ω2
θ,∞ rdr

= 3.8

After accounting for the lower value of η in the experiments versus the calculations, this
value should be 3.5. This number is in good agreement with the experimental data:
extrapolating the data in Figure 5 to β = 0 gives a value of this ratio of about 3 (3.5
falls within the experimental uncertainty). The increased level of the azimuthal vorticity
therefore seems to be a good indication of the enhanced stability of the system.

These considerations were first presented by Weisberg (1996). The numerical linear
stability analysis by Marques & Lopez (1996) agrees extremely well with the experiment
(see Figure 4), providing strong analytical support for the physical arguments presented
here and by Weisberg (1996). The divergent trend seen at low β in Figure 5 was also
reproduced in their enclosed flow analysis, as was the breakdown of the Re2 scaling for
values of Re > 30.

In summary, the marginal stability curve for Taylor-Couette flow has been determined
experimentally for the range of parameters: 0.5 < β < 6.0, 10 < Re < 100. The curve
traced by the experimental values was found to lie above the curve calculated by Hu &
Kelly. It was suggested that this occurs because, in contrast to the system considered by
Hu & Kelly, the experiment was an enclosed flow system. Given the essential differences
in the subcritical flow fields, as well as the trends in Hu & Kelly’s results, it appears that
the integral of the square of azimuthal vorticity over the gap plays an important role in
the degree of enhanced stability. The greater the square of the azimuthal vorticity, the
greater is the enhanced stability. A physical argument can be made that this enhanced
stability results because transition from Taylor-Couette flow with axial motion of the
inner cylinder requires a greater change in the azimuthal vorticity of the fluid than in
the case without axial motion.
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Tables and Figures

Table 1. Summary of cylinder dimensions.

Figure 1. Schematic drawing of the apparatus. All dimensions are in inches.

Figure 2. From top to bottom, Taylor vortices propagating into the flow domain at
subcritical (0.85 Tac,0), critical and supercritical (1.1Tac,0) values of the Taylor number
Ta.

Figure 3. Critical values of the Taylor number in ordinary Taylor-Couette flow (Re =
0), Tac,0 as a function of the radius ratio, η. 3, present results. The other experimental
(×) and theoretical (◦) values are taken from Lueptow et al. (1992) and Cole (1976),
and their cited sources. The theoretical values are shown with their best linear curve fit.

Figure 4. Enhanced stability of Taylor-Couette flow with axial motion of the inner
cylinder as a function of Re and β. Experiments: ◦, Re = 1.59β2; 2, Re = 3.18β2;
3, Re = 6.35β2; 4, Re = 6.35β2 (in a different experimental configuration); ◦, Re =
12.7β2; 2, Re = 25.6β2; 3, Re = 41.3β2. The uncertainty in each measurement is
between 3% and 4%. The solid lines are the results of the analysis by Marques & Lopez
(1996).

Figure 5. Enhanced stability due to axial motion of the inner cylinder normalized
by Re2 as a function of the oscillation parameter β. Symbols are as given in Figure 4.
The range of uncertainty in the measurements is given by the distance between the solid
lines. The analytical results by Hu & Kelly (1995) for Re = 30 and β ≤ 6 are indicated
by the × symbol.
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Figure 1. Schematic drawing of the apparatus. All dimensions are in inches.
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Figure 2. From top to bottom, Taylor vortices propagating into the flow domain at
subcritical (0.85Tac,0), critical and supercritical (1.1 Tac,0) values of the Taylor number Ta.

Figure 3. Critical values of the Taylor number in ordinary Taylor-Couette flow (Re = 0),
Tac,0 as a function of the radius ratio, η. 3, present results. The other experimental (×) and
theoretical (◦) values are taken from Lueptow et al. (1992) and Cole (1976), and their cited
sources. The theoretical values are shown with their best linear curve fit.
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Figure 4. Enhanced stability of Taylor-Couette flow with axial motion of the inner cylinder as
a function of Re and β. Experiments: ◦, Re = 1.59β2; 2, Re = 3.18β2; 3, Re = 6.35β2; 4,
Re = 6.35β2 (in a different experimental configuration); ◦, Re = 12.7β2; 2, Re = 25.6β2; 3,
Re = 41.3β2. The uncertainty in each measurement is between 3% and 4%. The solid lines are
the results of the analysis by Marques & Lopez (1996).

Figure 5. Enhanced stability due to axial motion of the inner cylinder normalized by Re2

as a function of the oscillation parameter β. Symbols are as given in Figure 4. The range of
uncertainty in the measurements is given by the distance between the solid lines. The analytical
results by Hu & Kelly (1995) for Re = 30 and β ≤ 6 are indicated by the × symbol..


