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Abstract
Measurements are reported of the error in wall static pressure reading due to
the finite size of the pressure tapping. The experiments were performed in
incompressible turbulent pipe flow over a wide range of Reynolds numbers,
and the results indicate that the correction term (as a fraction of the wall
stress) continues to increase as the hole Reynolds number d+ = uτ d/ν
increases, contrary to previous studies. For small holes relative to the pipe
diameter the results follow a single curve, but for larger holes the data
diverge from this universal behaviour at a point that depends on the ratio of
the hole diameter to the pipe diameter.

Keywords: static pressure, pressure tapping

Nomenclature

D pipe diameter
d diameter of static pressure tapping
d+ non-dimensional diameter duτ /ν

dc manometer connection diameter
l tapping depth
uτ friction velocity (τw/ρ)0.5

�p difference between measured and true
pressure at the wall

ε burr height
µ fluid dynamic viscosity
ν fluid kinematic viscosity
� non-dimensional pressure error �p/τw

ρ fluid density
τw wall shear stress

1. Introduction

To measure static pressure in a flowing fluid, a wall static
tapping is often used, consisting of a small hole drilled in the
wall connected to a pressure gauge. The presence of the hole
affects the flow so that the streamlines are deflected into the
hole and a system of eddies, often called cavity vortices, are
generated within the tapping (figure 1). As a consequence, a
pressure will be recorded by the tapping that is higher than the
‘true’ value at the wall. This problem is well known, and it has

Figure 1. Flow structure within the static pressure tapping.

been the focus of several major investigations, including those
by Allen and Hooper (1932), Ray (1956), Thom and Appelt
(1957), Rayle (1959) and Livesey et al (1962). A summary of
the complete literature is given in Chue (1975). Among the
works of most interest are those by Shaw (1960), Franklin and
Wallace (1970) and Ducruet and Dyment (1984).

We expect that the pressure error �p will depend on the
hole diameter d, the hole depth l (figure 1), the diameter of the
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connection to the manometer dc, the wall shear stress τw , the
fluid density ρ and the dynamic viscosity µ. The characteristic
length scale of the facility, in this case the pipe diameter D,
may be important for large holes. Thus

�p = f (d, D, τw, ρ, µ, l, dc) (1)

and

� = �p

τw

= f

(
duτ

ν
,

d

D
,

l

d
,

dc

d

)
(2)

where uτ is the friction velocity given by
√

τw/ρ, ν is the
kinematic viscosity and � is the non-dimensional pressure
error.

We assume first that d/D, l/d and dc/d are held constant
in order to explore how the pressure error depends on hole
Reynolds number, d+ = uτ d/ν. As Shaw (1960) noted, for
very small d

� = �p

τw

= const = 0 (3)

since the streamline deflection becomes smaller as d → 0
(and d+ → 0) and hence �p → 0 also. Although this limit
is generally accepted as being correct, Kistler and Tan (1967)
suggested that the mechanism for the pressure rise within the
hole was such that, even for small holes, the measured pressure
would always be higher than the true static pressure. However
the error introduced by this effect would be asymptotically
small.

Shaw (1960) also proposed that far from the wall,
dynamic, and possibly turbulent, effects dominate the flow
behaviour and thus for large d we have

� = �p

τw

= f

(
d

D

)
(4)

where we see that the ratio d/D may be important. Shaw
performed his experiments in a pipe of 50 mm diameter at pipe
flow Reynolds numbers up to about 1.7 × 105. The absolute
error at each Reynolds number was obtained by extrapolating
the relative errors for all tappings to zero diameter and
offsetting the data by this amount, which implicitly assumes
that the absolute error follows a unique curve for small values
of d+. Shaw found that the non-dimensional pressure error, �,
increased with increasing d+ but reached an asymptotic limit
of approximately three at the highest value of d+ (=750). In
fact, a closer inspection of his data reveals a dependence on
d, or more specifically d/D, that becomes more obvious as
d+ increases (see figure 2). Shaw, however, dismissed these
trends for all but the largest tapping and concluded that a single
curve could be found that describes all the results.

Franklin and Wallace (1970) studied the effects of hole
Reynolds number up to d+ = 2000 in a wind tunnel wall
boundary layer. They employed flush-mounted transducers
to determine the reference pressure reading (corresponding to
zero hole diameter). When plotted on equivalent axes their
results are very close to those of Shaw (1960) with a slightly
higher asymptotic value of pressure error (3.7 compared to
3.0). Ducruet and Dyment (1984) also investigated the effects
of hole Reynolds number in a boundary layer, including the
effects of variations in streamwise velocity gradient and wall
curvature. Their results again tend to those of Shaw (1960) for
large d+.

d+

Π

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

3

d = 0.075 mm
d = 0.100 mm
d = 0.125 mm
d = 0.150 mm
d = 0.175 mm
curve fit

Figure 2. Results of Shaw (1960) for different diameter tappings in
a 2 inch diameter pipe. Shaw’s ‘universal’ curve is shown as a solid
curve. Other curves are for guidance only.

As far as hole geometry effects are concerned, we see that
as d is increased, the hole Reynolds number and the ratio of
the hole to the pipe diameter d/D both increase. Eventually
the hole must become large enough to change the flow field
itself. Shaw (1960) suggested that this occurred at a value of
d/D of about 0.1.

The depth-to-diameter ratio also plays an important role
since it dictates the eddy system set up within the cavity. It
has been shown in past investigations that the error increases
with l/d ratio, and that the error is always positive (that is
the measured value is always higher than the true value) but
when l/d approaches 1.5–2 Shaw found that there is no further
change with l/d, and this may represent the ‘deep’ limit for
all Reynolds numbers. Chue (1975) pointed out that the
connection to the manometer is important for tappings with
a small l/d ratio: a wide cavity behind the tapping reduces the
error and for a very shallow tapping can even lead to a negative
pressure error, while a contraction in diameter from the tapping
to the manometer connection can increase the error (Livesey
et al 1962).

The present investigation was driven by the need to make
accurate static pressure measurements at pipe flow Reynolds
numbers up to 35 × 106, with a maximum d+ > 6400, and
d/D = 0.006 (Zagarola and Smits 1998). First, we had
reasons to doubt the earlier conclusions by Shaw that the ratio
d/D was not important for values less than 0.1, and second,
the behaviour of static pressure tappings at Reynolds numbers
that were an order of magnitude greater was unknown. It was
decided, therefore, to perform a new investigation of static
pressure errors for Reynolds numbers up to d+ = 8000. As
we will show, it was found that the error does not reach
an asymptotic limit, but continues to increase with d+, and
demonstrates a significant d/D dependence.

2. Experimental facility and procedures

The experiments were performed in the Princeton/DARPA/
ONR Superpipe, a facility constructed to enable the study
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Table 1. Dimensions of tappings.

d (mm) d/D

A 2.381 0.0184
B 2.083 0.0161
C 1.588 0.0123
D 1.191 0.0092
E (×2) 0.794 0.0061
R (reference, ×4) 0.572 0.0044
F 0.254 0.0020

Figure 3. Photograph of test piece.

of fully developed turbulent pipe flow over a wide range
of Reynolds numbers. The working fluid is air at ambient
temperature and pressures up to 187 atm, allowing a variation
in the kinematic viscosity by a factor up to 160. Reynolds
numbers in the range ReD = 31×103–35×106 can be achieved
in this manner. The maximum Mach number encountered in
the facility is approximately 0.07. The test pipe has a nominal
diameter of 129.36 ± 0.08 mm, and a length of 202D. The
facility is described in detail by Zagarola and Smits (1998) and
Zagarola (1996).

The current study was performed at a location
approximately 200D downstream from the entrance to the
pipe. Pressure tappings with diameter ranging from 0.254 to
2.381 mm (or d/D = 0.0020–0.0184) were drilled into the
blank test piece. The 0.572 mm tappings were designated as
reference values dre f . For the first set of tappings, three rows
of holes were drilled, 12.7 mm apart to minimize interference
between the tappings, with one tapping of reference diameter
in each row to verify the reference pressure measurement. In
addition, there were two holes of diameter 0.794 mm in the
set in order to check the error in pressure reading associated
with nominally identical tappings. The tappings used in the
final experiment are given in table 1 and shown in figure 3.
The test piece, which sits flush with the pipe surface in a slot
machined to an interference fit, was approximately 9.21 cm
long and approximately 27.6◦ of the circumference. The rms
base roughness of this insert was approximately 0.15 µm,
similar to the rest of the pipe.

All the tappings were examined under an optical
microscope with 10× magnification. The design of the test
facility meant that the tappings were drilled inwards from
the polished measurement surface, thus reducing the expected
level of burring and avoiding additional rounding of the hole
edge due to polishing or honing after drilling. Nevertheless,
it was found to be extremely difficult to drill the smallest hole
with smooth edges, and the largest hole displayed some burring

Figure 4. Sample magnification of 0.794 mm tapping.

at the edge. Since sanding has been found to round the edges
of the tappings to some extent (Franklin and Wallace 1970) and
a radius on the edge alters the separation of the flow from the
cavity edge (Savory et al 1996) which can affect the pressure
error magnitude (Rayle 1959), new holes were drilled in an
additional row of tappings. The holes were observed to be
round and perpendicular to the surface. A Zygo white light
scanning interferometer was then used to examine the profile
of the holes. The only burr observed was to the side of one of
the largest holes, but the amplitude, ε, was less than 1.5 µm,
giving ε/dre f = 0.63 × 10−3. Extrapolating the results of
Shaw’s (1960) study of burr effects, this ε/d corresponds to a
negligible additional pressure error. Nevertheless, the results
from this hole were removed from the data set. The maximum
ratio of edge radius to hole diameter was estimated to be less
than 0.001. Rayle (1959) found that an edge radius of D/4 led
to an error of 0.2%, so the effect of edge radius on the current
study can be considered to be negligible. A sample surface
profile is shown for one of the 0.794 mm tappings in figure 4.
The insert was thoroughly cleaned before each use, since a
speck of dust sitting on the edge of a tapping would have the
same effect as a similarly sized burr, as observed by Shaw.

Each hole was drilled to a depth of 4d and backed into a
hole of diameter large enough to receive tubing of d internal
diameter. In this way, the overall l/d was effectively infinite.
All the tappings were connected to the transducer through
a Scanivalve in an identical fashion. The overall reference
tapping was connected directly to the transducer.

Validyne pressure transducers DP15-30 and DP15-22
with a combined range of 0–8.6 kPa were used to measure
differential pressures with a resolution of 0.25% full scale. For
each pipe Reynolds number, the pressure drop along the pipe
and the pressure error for each tapping relative to the reference
pressure were recorded. Special care was taken to eliminate
transducer drift since this has an important effect on the
accuracy of the pressure error measurement. The transducer
signals were filtered using a Krohn–Hite filter model 3988
in low-pass mode at 10 Hz and sampled at 500 Hz for 20 s,
which was found to be sufficient to achieve convergence at all
Reynolds numbers.

The absolute error for the reference hole was established at
the lowest Reynolds number by extrapolating the relative error
(which is zero for the reference diameter tapping and therefore
negative for the smallest tapping F) to zero hole diameter. The
scaled data at this Reynolds number were curve fitted and
this curve was then used to establish the absolute error at the
reference hole Reynolds number d+

re f at the next pipe Reynolds
number, ReD . The reference hole Reynolds number always lay
within the range of hole Reynolds numbers described by the
lower Reynolds number curve. This procedure was continued
to the highest Reynolds numbers. It was therefore assumed that
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Figure 5. Distribution of non-dimensional pressure error data, �
(�), around curve fit (——), ReD = 3 × 106.

the low Reynolds number data were described by a universal
curve. This proved to be correct, as the results will show. In
this manner, the error due to extrapolation of data at high d+ to
zero hole diameter was avoided. It should be noted that even
when the error for the larger tappings diverged from the curve
that describes the lower Reynolds number results, at least two
data points lay on the curve (including the reference tapping).

3. Static pressure errors

Figure 5 shows a sample distribution of data and the
corresponding curve fit for ReD = 3 × 106. The maximum
deviation of the � data from the curve was observed to be
0.3 and in general the difference was less than half that value.
Zagarola (1996) estimated that the errors in τw and �p were
±0.83 and ±0.40%, respectively, or less than 1% of �p/τw .
Additional errors will be introduced due to the non-ideal
tapping geometry, since we know that small deviations can
have large effects. Comparing two tappings of nominally the
same diameter, the maximum difference in measured pressure
error was found to be �� = 0.35 at ReD = 14×106, although
this value was smaller at low Reynolds numbers. Thus the
interference between tappings was confirmed to be negligible.

The variation of non-dimensional pressure with hole
Reynolds number is shown in figure 6 for all tappings and flow
Reynolds number greater than 5 × 105. The low Reynolds
number data (180 × 103 < ReD < 750 × 103) lie on the
universal curve that exists for d+ < 500. The shape of the
curve for each Reynolds number is similar, but achieving a
high d+ by increasing the flow Reynolds number leads to a
different result than achieving a high d+ by increasing the hole
diameter at the same flow Reynolds number. This is in contrast
to Shaw (1960) who concluded that a single curve described the
behaviour for all d/D < 0.0945 (the curve of Shaw is shown in
figure 6 for comparison). The data follow a common curve up
to some value of d+, and then diverge at some point depending
on the value of d/D. The higher d/D, the lower the divergence
value of d+. This observation is discussed further below. We
find that, for the range of experiments performed here, the
maximum error continues to increase with Reynolds number.
For the largest tapping diameter at the highest pipe Reynolds
number ReD = 14 × 106 the error has a maximum value of
�p/τw = 7.4, about twice the maximum value observed in
previous work performed at lower Reynolds numbers.
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Figure 6. Variation of non-dimensional pressure error, �, for
different pipe Reynolds numbers ReD .
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Figure 7. Variation of non-dimensional pressure error, �, with
tapping diameter.

The variation of non-dimensional pressure for each
tapping diameter is shown in figure 7. There is agreement
between all the tappings for d+ up to approximately 500.
Beyond this value the pressure error for larger tappings is
smaller than obtained using a smaller diameter hole at the same
d+.

4. Discussion and comparison with previous work

Figure 6 suggests that there is a universal dependence of non-
dimensional pressure error on hole Reynolds number, d+, as
long as d+ is small. If the flow Reynolds number is held
constant and measurements of pressure error are made with
tappings of increasing diameter (that is, d+ is increased by
increasing d), a value of d+ will be reached at which the
pressure errors diverge from this universal curve: the tapping is
‘too large’ for the wall scaling to hold. Similarly, if a tapping
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of a certain diameter is used and the flow Reynolds number
is increased, there will be a Reynolds number at which the
pressure error diverges from the universal curve. The larger
the diameter of the tapping, or more specifically the larger
the value of d/D, the smaller the value of d+ at which the
divergence takes place.

Shaw’s (1960) data reveal the same trend (see figure 2).
His data are entirely consistent with those shown here, although
they were in general obtained at lower ReD by using larger
values of d/D (0.0080 < d/D < 0.0945). The same trends
occur, and different curves for each tapping diameter may be
observed, although as indicated earlier Shaw ignored these
trends in making his conclusions. His data also show that
for the same d+, but for a smaller d/D, the pressure error �

is higher, and it seems clear that the value of d/D must be
considered in analysing the results. While it is obvious that
large values of d/D could change the global flow pattern in
the pipe, or at least the flow over the tapping, it is not clear at
what value of d/D these effects become important.

These studies do not directly address the mechanism that
is responsible for producing the pressure error. In fact, little is
known regarding the flow induced within the tapping and in its
immediate neighbourhood. There is an obvious analogy with
the lid-driven or shear-driven cavity flows, and there are many
numerical and experimental studies of shear-driven rectangular
cavities from which the basic flow can be deduced. Stokes
flow was assumed by Roshko (1955), Burggraf (1966), Kistler
and Tan (1967), Pan and Acrivos (1967), Shen and Floryan
(1985) and Gustafson and Halasi (1986), but studies at high
Reynolds numbers were done by Nallasamy and Prasad (1977).
Unfortunately, there is very little information on the flow within
a cylindrical cavity, for either lid- or shear-driven flows. What
literature there is deals almost exclusively with cavity Reynolds
numbers in the Stokes flow regime, with the exception of the
study by Savory et al (1996). For example, Pozrikidis (1994)
and Shankar (1997) performed numerical studies of Stokes
flow in cylindrical cavities: Pozrikidis examined shear flow
over a plane wall containing the cavity while Shankar used
a lid-driven cylindrical cavity. The basic flow structure in a
centreline plane has been shown in figure 1 (Savory et al 1996).

Part of the difficulty in making the analogy with a lid-
driven cavity flow is that the driving velocity for a cavity under
a shear flow is unknown. Livesey et al (1962) postulated that
the pressure error in a tapping was proportional to the dynamic
pressure averaged over some fraction of a tapping diameter
from the wall. He found that the pressure averaged over a
distance d+/20 was a good match to his data. Thus the driving
velocity for a lid-driven cavity model might be taken to be the
velocity calculated from a dynamic pressure averaged over a
y distance that depends on the tapping size. A simpler model
would assume that the driving velocity is equivalent to the
velocity at some fraction of the hole diameter away from the
wall, where the fraction could be Reynolds number dependent.
It may be speculated that a local hole Reynolds number defined
using a driving velocity would give a more obvious criterion
on where the pressure error deviates from the universal curve.

The lid-driven cavity may also give some insight into the
flow structure within the tapping. For example, Shankar (1997)
showed that for a cylindrical cavity of infinite depth driven by
the lid such that the flow inside was within the Stokes regime,

an infinite series of eddies was formed along the depth of
the cavity. The strength of the eddies decreased rapidly with
distance from the lid, and the eddy closest to the lid was shown
to extend to a depth of approximately 1.5 hole diameters. For
cavities of finite depth, the number of eddies depended on the
depth. In all cases, small and complex secondary eddies were
observed in the corners of the cavity, where the recirculating
flow of the large primary eddy separated from the wall. For
cavity depths less than approximately 1.5d, only one primary
eddy was observed. As the depth was increased, the eddy
grew to fill the cavity, but when the depth was increased to
just above 1.5d, the primary eddy stopped expanding and the
secondary eddies merged, leading to two primary eddies and
new secondary eddies. These flow patterns were also observed
by Pozrikidis (1994) for shear-driven flow. Savory et al (1996)
observed the primary eddy at higher Reynolds numbers but in
cavities with rounded edges.

This observation fits nicely with Shaw’s (1960) conclusion
that the non-dimensional error increases with l/d for l/d < 1.5
and then remains fixed (for a given d+). At this point in the
lid-driven cavity the flow structure near the top of the cavity
is fixed, and any subsequent eddies are significantly weaker;
this may provide an explanation of why the pressure error
remains constant even if the cavity is made deeper. However,
as the Reynolds number within the cavity increases beyond
the Stokes regime, the streamline pattern need no longer
be symmetrical. Studies of the two-dimensional lid-driven
rectangular cavity by Pan and Acrivos (1967) suggest that the
core of the eddy will move slowly downwards, and that the
eddy will never reach an inviscid limit but continue to grow as
the Reynolds number increases (this was shown to be true for
cavity Reynolds number up to 4000 for infinite depth). Further
visualization or numerical studies are necessary to confirm that
l/d = 1.5 is a valid criterion for constant error as the Reynolds
number increases, but the suggestion looks promising.

The divergence of the pressure error from wall scaling at
higher Reynolds numbers may be related to the presence of
a shear layer formed by the separation of the turbulent pipe
flow from the upstream edge of the tapping. It is possible
that instabilities may develop in the shear layer that cause it
to flap, and the cavity would then no longer remain closed.
For inviscid flow, the resonant frequency would be the organ
pipe natural frequency of the tapping, but for viscous flow
it is probable that any instability is damped until a critical
condition is exceeded. Covert (1970), for example, found a
critical Strouhal number based on effective natural frequency
of the cavity for a laminar shear layer over a deep rectangular
cavity and Sarohia (1977) found a critical value of (d

√
Reδ/δ)

for oscillations of a laminar shear layer (of thickness δ at the
separation point) over a shallow rectangular cavity.

Developing the ideas of Covert, a cylindrical cavity may
display a critical value of Strouhal number, St = f d/U , where
f is the natural frequency of the cavity, d is the diameter of a
neutrally stable cavity and U is the effective driving velocity,
corresponding to neutral stability of the shear layer. If the
driving velocity were increased above this neutral limit, the
shear layer would become unstable and the cavity flow would
effectively enter a new regime. It is expected that the instability
would grow until the energy extracted from the mean flow was
equal to the dissipation inside the cavity, at which point the
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pressure error may asymptote to a final value. Experimentally,
the pressure reading for larger holes at high pipe Reynolds
numbers displays larger fluctuations, but the connection with
possible shear layer instabilities remains to be established.

Alternatively, visualizations by Ligrani et al (2001) of the
flow over a dimpled surface show that a pair of counter-rotating
vortices is formed above two recirculation zones within each
dimple. This mechanism may also be applicable to the tapping
problem, hinting at some three-dimensional aspects of the flow.
The larger the tapping with respect to the pipe diameter, the
larger the curvature of the stagnation stream surface introduced
by the wall curvature alone and hence, perhaps, the lower the
Reynolds number at which these vortices would develop. This
may help to explain why the effect of diameter observed in the
present study and that of Shaw in pipes was not apparent at
low d+ in the boundary layer study of Franklin and Wallace
(1970).

Finally, we note that this correction will be important in
all high Reynolds number facilities where velocity results are
calculated from an impact tube and wall static tapping, and
not simply pressurized facilities like the Superpipe, since for
a given pressure error �,

�p

pmeas
= �ρu2

τ

0.5ρu2
meas

= 2A

u+2
meas

(5)

and
u+

u+
meas

=
(

1 +
2�

u+2
meas

)1/2

(6)

where u+ = U/uτ , which increases with distance from the
wall. Thus the error in velocity is maximum for measurements
near the wall, where u+ is small, and for large �. Figure 6
has shown that the pressure error � continues to grow as the
Reynolds number increases, therefore the velocity error for a
given u+ also continues to increase with Reynolds number and
is important for high Reynolds number experiments.

5. Conclusions

Investigation of the pressure error introduced by a static
pressure tapping of finite size at high Reynolds number
shows that the error continues to increase with increasing
hole Reynolds number d+ beyond the asymptotic limit of
approximately three suggested by previous researchers. A
maximum error of about � = �p/τw = 7.4 was observed
for the largest tapping diameter at the highest pipe Reynolds
number ReD = 14 × 106 (d+ = 8000). For high d+, the error
is not identical for large and small diameter holes: the larger
the ratio of tapping diameter to pipe diameter, the smaller the
pressure error. The mechanism for this dependence on d/D is
not clear. Further visualization studies would be required to
ascertain the flow structure within the tapping as the Reynolds
number is increased.

As a practical guide, it is suggested that if a Pitot
tube and static tapping are used to make dynamic pressure
measurements in pipe flow, the static tapping should have
(1) large and constant l/d, at least l/d > 2 to ensure that
the flow structure within the cavity is fully developed and
not changing with Reynolds number, and (2) a small ratio of
diameter to pipe diameter, to prevent the tapping fundamentally

altering the external flow. Impact tubes may be used to obtain
measurements closer to the wall than would be possible with
a Pitot-static probe, but it should be noted that the effect of the
static pressure error is most important at small distances from
the wall and hence care must be taken to use the appropriate
static correction. Although the maximum pressure error was
observed to be less than 1% of the dynamic pressure on the
pipe centreline in all cases, the error has a significant effect on
the conclusions drawn from the high Reynolds number mean
velocity data taken in the Princeton Superpipe. This has been
reported in a separate publication (McKeon et al 2002).
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