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Özgür Evren∗

Department of Economics, New York University

19th West 4th Street, New York, NY 10012

E-mail: oe240@nyu.edu

Draft: June 15, 2010

Abstract

We characterize the class of (possibly incomplete) preference relations over lotteries that can

be represented by a compact set of (continuous) expected utility functions which preserve both

indifferences and strict preferences. This finding contrasts with the representation theorem of

Dubra, Maccheroni and Ok (2004) which either delivers a noncompact set of utility functions,

or at least one function that does not respect strict preferences (unless the completeness axiom

holds). For a preference relation of the sort we consider, our representation theorem reduces the

problem of recovering the induced choice correspondence over convex sets of lotteries to a scalar-

valued, parametric optimization exercise. Several applications of this observation are presented.

Most notably, in an otherwise standard game with incomplete preferences, the collection of pure

strategy equilibria that one can find using this scalarization method is found to correspond to

a refinement of the notion of Nash equilibrium that requires the (deterministic) action of each

player be undominated by any mixed strategy that she can follow, given others’ actions. Along

similar lines, we also obtain a refinement of Walrasian equilibrium and provide an equilibrium

existence theorem assuming a continuum of traders.
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1. Introduction

Starting with Aumann (1962), early research on representation of incomplete preference

relations under risk explored sufficient conditions that allow one to extend a preference rela-

tion by a single expected utility (EU) function. Put precisely, given a (possibly incomplete)

preference relation �, the purpose of a typical work in this early literature is to find an

EU-function u that is �-increasing (Ep(u) > Eq(u) whenever p � q) and that is indiffer-

ence preserving (Ep(u) = Eq(u) whenever p ∼ q). As noted by Aumann, the main merit of

this representation notion is that maximization of an �-increasing function over a choice

set delivers a maximal lottery that can possibly be selected from that set by the decision

maker defined by �.

However, when studying economic phenomena related to indecisiveness, the researcher

often needs to recover the choice correspondence induced by an incomplete preference

relation in its entirety. Indeed, the best-known behavioral consequences of indecisiveness

include (i) a certain degree of randomness in choices, which, as Mandler (2005) notes,

may reflect itself with intransitivity of observed choice behavior; and (ii) the multiplicity

of alternatives that might be chosen in a given situation, which is the focus of Rigotti

and Shannon (2005) in their work on indeterminacy of equilibria in security markets. The

study of how an agent might resolve her indecisiveness is a related area of research where

the central goal is to determine a suitable procedure that describes the agent’s behavior

in choice problems which involve a multiplicity of maximal alternatives.1 More generally,

it has been recently observed that a variety of interesting behavioral phenomena can be

explained by two-stage choice procedures where in the first stage the agent identifies a

collection of maximal alternatives in a given choice set (with respect to an endogenously

determined incomplete preference relation), and then makes her final choice among these

maximal alternatives according to a secondary criterion.2

The problem of recovering the choice correspondence induced by an incomplete pref-

erence relation gave rise to the literature on multi-utility representations which provide a

set of utility functions that fully characterize a given preference relation. In fact, it seems

fair to argue that the virtue of such a representation theorem lies in its potential use as

1For example, Ok et al. (2009) propose such a procedural model of attraction effect which refers to
the phenomenon in which, given a set of two feasible alternatives, the addition of a third alternative that
is clearly inferior to one of the existing alternatives increases agent’s tendency to choose the item that
dominates the new alternative.

2Various reference-dependent choice models, for instance, necessitate the use of incomplete preferences
in such a procedural context (Masatlioglu and Ok, 2005; Apesteguia and Ballester, 2009). Another example
is the procedural model of Manzini and Mariotti (2007) that accounts for intransitive choice behavior. A
longer list of indecisiveness-related phenomena includes preference for flexibility (Danan and Ziegelmeyer,
2006), preference for commitment (Danan et al., 2009), and several implications for political games (Roe-
mer, 1999; Levy, 2004).
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an analytical tool that can facilitate the exercise of identifying the choice correspondence

associated with a preference relation which satisfies certain behavioral axioms. The per-

formance of a representation theorem in this regard depends, in turn, on the properties of

the set of utility functions that it delivers.

In this paper, assuming a compact prize space, we provide necessary-sufficient axioms

on a preference relation � over lotteries that allow one to represent � by a compact set

of �-increasing and indifference preserving (continuous) EU-functions.3 By a well-known

“theorem of alternative,” one can then show that, given such a preference relation and a

representing set of utility indices U , an element of a convex set K of lotteries is maximal in

K if and only if it maximizes over K the expectation of a weighted average of some utility

indices in U . Thus, for a preference relation of the sort that we consider, our representation

theorem reduces the problem of recovering the associated choice correspondence over convex

sets of lotteries to a scalar-valued, parametric optimization exercise.

The axioms that we use in this representation theorem are surprisingly weak. Other

than the independence axiom, all we require is the openness of (strict) upper and lower

contour sets of the preference relation under consideration, and a further mild continuity

axiom.

Though we focus on the same structural framework as Dubra, Maccheroni and Ok

(2004) (henceforth, DMO), our representation theorem is logically distinct from theirs in

that, under the axioms of DMO, a preorder cannot be characterized by a compact set of

(strictly) increasing functions unless it is actually complete (or trivial).4,5 Put differently,

3A suitable normalization condition ensures the uniqueness of the representing set of utility functions
up to closed convex hull.

4The reason is that, as we just noted, this sort of a representation requires open contour sets while DMO
focus on closed preorders. In turn, according to a fundamental result by Schmeidler (1971), an incomplete
and nontrivial preorder on a connected domain cannot satisfy both of these continuity conditions. We will
elaborate on this matter in the next section. (A preorder is trivial if it declares maximal all alternatives.)

5Bewley’s (1986) seminal work in the Anscombe-Aumann framework also employs the open-continuity
axiom and delivers increasing functions as the present paper. Though Bewley’s original approach proved
particularly useful in applications (see, e.g., Rigotti and Shannon, 2005), in the subsequent theoretical
work attention shifted to closed preorders. To our knowledge, the only exception is Manzini and Moriotti
(2008). Their representation is based on utility intervals (instead of a set of utility functions) and requires
some independence assumptions which differ significantly from those used in the present paper and the
rest of the multi-utility literature (see Footnote 23 below). The works in this literature that focus on
closed preorders include Ghirardato et al. (2003) in a Savagean framework; Gilboa et al. (forthcoming) in
the Anscombe-Aumann framework; Evren and Ok (2010) in the ordinal framework; Baucells and Shapley
(2008) where a convex subset of a Euclidean space is chosen as the domain of preferences; and a paper of the
present author which provides negative and positive results on DMO type representations over noncompact
domains (see Evren, 2008). It is also worth noting that in the Anscombe-Aumann framework, the focus of
the literature has been “indecisiveness in beliefs,” rather than “indecisiveness in tastes” which is the subject
of DMO and the present paper. Ok et al. (2008) combine indecisiveness in tastes with indecisiveness in
beliefs, albeit under the closedness assumption.
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assuming away the case of a complete preference relation, a set of EU-functions that one

can ever find using DMO theorem will either be noncompact or contain (at least) one

function that yields the same expected utility for two lotteries one of which dominating

the other. This, in turn, implies that under the axioms of DMO, the conclusion of the

aforementioned scalarization result will typically fail. The trouble is that maximization of

nonincreasing EU-functions over a choice set will deliver nonmaximal lotteries, and if one

maximizes only the increasing EU-functions, typically it will not be possible to identify all

maximal lotteries. In particular, we will present in this paper an example of a (nontrivial)

preorder of the type considered by DMO that admits a plethora of lotteries which are not

dominated by any other lottery and which do not maximize any nonconstant EU-function.

In the same example, it is also true that the elements of a dense subset of maximal lotteries

do not maximize any increasing EU-function.

In fact, given a preorder of the type considered by DMO, their representation theorem

transforms the problem of identifying the induced choice correspondence to a vector-valued

optimization exercise that is equivalent to the problem of finding the (strong) “Pareto-

frontier” of a utility possibility set. Moreover, this utility possibility set that one has to

deal with typically consists of infinite dimensional utility vectors even when there are only

finitely many riskless prizes.6 It seems to us that the standard tools of economists are much

more suitable for the class of aforementioned scalar optimization problems.

While the present paper is mainly motivated by this tractability concern, it is also

possible to draw a conceptual line between our representation theorem and that of DMO.

More specifically, our theorem can be seen as amulti-self representation of a decision maker,

for (at least on convex sets of lotteries) there is a one to one correspondence between the

utility functions delivered by the theorem and different patterns of choice behavior that the

decision maker might actually follow. By contrast, the behavior of an agent who can be

described à la DMO is analogous to that of a coalition of distinct individuals who respect

the Pareto rule.7

In this paper, we also discuss several applications of our representation theorem to in-

dividual choice theory, consumer theory, game theory and social choice theory. In some

of these applications, we use the scalarization method to obtain characterizations of some

(new or known) solution concepts. Most notably, in an otherwise standard game with in-

complete preferences, the collection of pure strategy equilibria that one can find using the

6Behavioral axioms that ensure representability of a preorder over lotteries by a finite set of EU-functions
are unknown and likely to be rather restrictive. As a side payoff of our representation theorem, in Ap-
pendix B of this paper we will provide axiomatic foundations of preorders that can be represented à la
DMO by a compact set of EU-functions (each increasing in at least one common direction).

7Obviously, in both cases the corresponding multi-person interpretation refers to a set of agents who
respect the completeness axiom.

3



scalarization method corresponds to a refinement of the notion of Nash equilibrium that

requires the (deterministic) action of each player be undominated by any mixed strategy

that she can follow, given others’ actions.8 Along similar lines, we propose and character-

ize a refinement of the notion of Walrasian equilibrium that requires the (deterministic)

consumption choice of each agent be undominated by any random mixture of consumption

bundles that she can afford. As a simple corollary, we will also establish the existence of

such a refined equilibrium assuming a continuum of traders and incomplete preferences.

2. Notation and Terminology

Given a compact metric space Y , we denote by C(Y ) the Banach space of continuous,

real functions on Y endowed with the sup-norm ‖·‖∞. In turn, ∆(Y ) stands for the set of

all (Borel) probability measures on Y , and ca(Y ) for the space of signed measures on Y . We

equip ca(Y ) with the usual setwise algebraic operations and weak*-topology, which is the

coarsest topology that makes continuous every functional of the form η → Eη(u) :=
∫
Y
udη

with u ∈ C(Y ). As is well-known, the induced topology on ∆(Y ), the so called “topology of

weak-convergence,” can be metrized by the Prokhorov metric. In what follows, topological

concepts regarding subsets and elements of ∆(Y ) will refer to this relative topology. We

will sometimes write E(η, u) instead of Eη(u).

Following the standard conventions, by a binary relation R on a set A we mean a

subset of A2, and often write aRb instead of (a, b) ∈ R. If A is a topological space, when

we say that R is closed or open, we will be referring to the product topology. As usual, a

preorder refers to a reflexive and transitive binary relation, which is said to be a partial

order if it is also antisymmetric. If R is a preorder on A, given any K ⊆ A, we say that

a point a ∈ K is R-maximal in K if there does not exist b ∈ K such that bRa and not

aRb.

Throughout the paper, X stands for a compact metric space of riskless prizes, and ∆(X)

for the set of lotteries. In some part of our analysis, we take as the primitive a preorder

� on ∆(X), which is interpreted as the preference relation of a decision maker. When

we follow this approach, we denote by � and ∼ the asymmetric and symmetric parts

of �, respectively, which are defined as usual: p � q iff p � q and not q � p; in turn,

8As Nehring (1997) and Heller (2010) note, for the case of an incomplete preference relation, a lottery
over two prizes x, y may dominate another prize z even if x, y and z are pairwise incomparable. More
generally, given a (predetermined) nonconvex set K of feasible lotteries, the maximality of a lottery in
K may not be sufficient to “justify” the choice of that lottery, for a random choice over the feasible
lotteries may render better off the decision maker in question. In a recent application of the present paper,
Heller (2010) provides choice-theoretic foundations of behavior that complies with this stronger notion of
rationality, and derives a representation result by utilizing our main findings. A more detailed discussion
of the choice-theoretic implications of our results can be found in Section 6.1 below.
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p ∼ q iff p � q and q � p. The incomplete part of �, denoted ��, is defined by p �� q iff

neither p � q nor q � p. When p �� q, we say that p and q are �-incomparable, meaning

that the decision maker is indecisive between p and q. The preference relation � is said to

be complete if ��= ∅, and incomplete otherwise. In turn, we say that � is nontrivial

if p � q for some p, q in ∆(X). As usual, the open-continuity property refers to the

requirement that the sets {p ∈ ∆(X) : p � q} and {p ∈ ∆(X) : q � p} be open in ∆(X) for

each q ∈ ∆(X).

It will often be convenient to focus on a transitive and irreflexive binary relation � on

∆(X) which will be interpreted as a strict preference relation. When such a relation �
is taken as the primitive, incompleteness of the agent’s (weak) preference relation can be

deduced from the lack of negative-transitivity of �.

3. Scalarization Method and Representations Notions

In his seminal work, Aumann (1962) proposed representing a preference relation �
on ∆(X) by an expected utility index u ∈ C(X) that is �-increasing (Ep(u) > Eq(u)

whenever p � q) and that is indifference preserving (Ep(u) = Eq(u) whenever p ∼ q).

In what follows, we will refer to such a function u as an Aumann utility for �. As we

noted earlier, the appeal of this notion of representation mainly stems from the fact that a

lottery which maximizes the expectation of an �-increasing function over a set of lotteries

is guaranteed to be a �-maximal element of that set.

On the other hand, the exercise of finding a single Aumann utility for a preference

relation is of limited use, for such a function simply extends the relation in question to

a complete preorder, but does not characterize it. In particular, this approach ceases to

be useful when one wishes to understand among which sorts of alternatives the decision

maker in question is indecisive, or to determine the associated choice correspondence in its

entirety.

To overcome this difficulty, DMO identified necessary-sufficient conditions which allow

one to find a set of functions U ⊆ C(X) such that, for every p, q in ∆(X),

p � q if and only if Ep(u) ≥ Eq(u) for every u ∈ U . (1)

When viewed as an analytical tool, this representation transforms the problem of pref-

erence maximization to a vector-valued optimization exercise. Specifically, given � and U

as above, an element p of a set K ⊆ ∆(X) is �-maximal in K if and only if the utility
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vector (Ep(u))u∈U is a ≥-maximal9 element of the following set:

{
(Eq(u))u∈U : q ∈ K

}
⊆ R

U .

As the set U in (1) is typically infinite, it appears that this sort of a vector-valued opti-

mization problem can be extremely tedious, even when the prize space X is finite.10 To

demonstrate how elusive such an exercise can be, it may suffice here to note that this sort

of an optimization problem is equivalent to identifying the Pareto-frontier of the utility

possibility set in an infinite society.

Similar observations led optimization theorists to search for conditions that might allow

one transform a given multi-objective optimization problem to a scalar-valued, parametric

optimization exercise which produces, at least approximately, the same solutions as the

original problem.11 With regard to this scalarization issue, in the present framework the

best-case scenario is a one-to-one correspondence between the �-maximal elements and the

maximizers of the representing set of utility functions:

M (�, K) =
⋃
u∈U

argmax
q∈K

Eq(u), (2)

where M (�, K) := {p ∈ K : there does not exist q ∈ K such that q � p}.
The main finding of the present paper is an expected multi-utility representation the-

orem which ensures that the equality (2) holds whenever K is a convex subset of ∆(X)

(Theorem 3 below). This result characterizes the class of preference relations � that can

be represented by a compact and convex set U of Aumann utilities as follows: For every

p, q in ∆(X),

p � q if and only if Ep(u) > Eq(u) for every u ∈ U ,

p ∼ q if and only if Ep(u) = Eq(u) for every u ∈ U .

If one assumes that the set K consists of two lotteries p, q, or equals the closed line

segment between these two lotteries, the right side of (2) would be contained in the left

side only if p � q implies Ep(u) > Eq(u). Put differently, a representation theorem can be

compatible with the scalarization method that we shall utilize in the present paper, only

if it delivers �-increasing functions, as in our representation theorem. By contrast, the set

9 ≥ stands for the usual partial order on R
U .

10Let us note that when X is finite,
{
(Eq(u))u∈U : q ∈ K

}
is contained in a finite dimensional subspace

of RU , but the order structure of this subspace (as determined by ≥) can be much more complicated than
the usual order structure of a Euclidean space, unless one can choose the set U to be finite.

11See, e.g., Ehrgott (2005) and references therein.
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U in DMO representation (1) may contain functions that are not �-increasing.12 In fact,

if one requires U to be compact (in particular, finite) this is necessarily the case unless �
is complete or trivial.

Observation 1. If U and � satisfy (1) for every p, q in ∆(X), and if U is a compact

subset of C(X) that consists of �-increasing functions, then the preorder � is either

complete or trivial.

In the Appendix, we will deduce Observation 1 from Schmeidler’s (1971) theorem which

shows that on a connected set a nontrivial preorder that satisfies the open-continuity prop-

erty cannot be closed unless it is actually complete. To gain intuition, let us offer here an

alternate proof for the case of a set of the form U = {u, v} ⊆ C(X). Suppose � is nontriv-

ial, and let r, w be two lotteries such that r � w. Then, if both u and v are �-increasing

we must have Er(u) > Ew(u) and Er(v) > Ew(v). Let p and q be arbitrary lotteries. If we

can show that

Ep(u) = (>)Eq(u) imply Ep(v) = (>)Eq(v),

we can deduce the desired conclusion from the uniqueness result of the classical expected

utility theory. To this end, first suppose Ep(u) = Eq(u) and Ep(v) 	= Eq(v), say Ep(v) >

Eq(v). Then, if DMO representation holds, we cannot have q � p. As u is �-increasing, we

can also rule out the case p � q. It follows that p �� q. For DMO representation to hold, �
must be closed, and hence, ��must be open. Thus, there exists a sufficiently small α ∈ (0, 1),

such that αr + (1 − α)p �� αw + (1 − α)q. But this is a contradiction, as we clearly have

Eαr+(1−α)p(f) > Eαw+(1−α)q(f) for f = u, v, implying that αr+ (1− α)p � αw+ (1− α)q.

To complete the proof, suppose now Ep(u) > Eq(u). Then, clearly, there is a number

β ∈ (0, 1) such that Eβw+(1−β)p(u) = Eβr+(1−β)q(u). As we have just seen, this implies

Eβw+(1−β)p(v) = Eβr+(1−β)q(v), and hence, Ep(v) > Eq(v), as sought.

3.1. Examples

For further motivation, we shall now present a few examples that demonstrate the

difficulties of DMO approach with regard to the scalarization issue. First of all, as we

already noted, if U represents � in the sense of DMO, the equality (2) will typically fail.

One may therefore think of utilizing some approximation methods.

12However, any DMO type preorder admits an Aumann utility. In fact, as shown by DMO, given a
countable dense subset U0 of a set U as in (1), any continuous function on X which can be written as a
positive-weighted sum of elements of U0 is an Aumann utility for �. It is also true that the set of all such
functions would also represent � in the sense of (1), but typically this set will not be closed.

7



Following earlier works on Pareto type, vector-valued optimization problems, one ap-

proach to this approximation issue is to seek for inequalities of the following form:

⋃
u∈UA

argmax
q∈K

Eq(u) ⊆ M (�, K) ⊆
⋃
u∈U

argmax
q∈K

Eq(u), (3)

where UA stands for the set of �-increasing functions in U . Of course, if one chooses the

set U to be large enough to contain a constant function, the second inclusion in the above

expression is not informative, for any lottery maximizes a constant function. This raises

the following question:

Q1. Does there exist a nontrivial preorder of the type considered by DMO that admits

maximal lotteries on a (compact, convex) set which maximize on that set only a constant

EU-function?

As we shall shortly see, the answer to this question is affirmative.

An alternate approach that one might follow is to maximize only �-increasing functions

and utilize a topological method to approximate the set of �-maximal elements in a given

choice set. Indeed, for a DMO type partial order � on ∆(X) and a compact, convex

K ⊆ ∆(X), the set MA (�, K) is dense in M (�, K), where we denote by MA (�, K) the

union of all sets of the form argmaxq∈K Eq(u) for some u in C(X) that is �-increasing. 13

However, in principle, the set M (�, K) \MA (�, K) may also be topologically large. Thus,

in a given choice problem associated with a DMO type preorder, it may be impossible to

recover a topologically large set of potential choices by simply maximizing Aumann utilities.

In particular, M (�, K) \MA (�, K) may be a dense subset of K.14 When this is the case,

in order to recover the set M (�, K) \MA (�, K), if one applies the closure operator to

MA (�, K), one would also end up with every lottery in K\M (�, K), which are not likely

to be selected fromK by the decision maker in question. In summary, the following question

also seems to be of interest:

Q2. Does there exist a nontrivial partial order � of the type considered by DMO such that

M (�,∆(X)) \MA (�,∆(X)) is a dense subset of ∆(X)?

Let us now construct a nontrivial, DMO type partial order which provides positive

13Makarov and Rachovski (1996) investigate this approximation problem for the case of an affine partial
order on a topological vector space. The said observation on DMO type partial orders is an immediate
consequence of their Corollary 4.4. To the best of our knowledge, it is an open question if the antisymmetry
requirement is dispensable.

14Here, an implicit difficulty is the fact that M (�,K) need not be a (relatively) closed subset of K. As
we will see in Section 5.1, such anomalies do not occur for preference relations that we will characterize in
our main representation theorems.
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answers to both Q1 and Q2. Put X := [0, 1],

Û := {u ∈ C(X) : u(0) = 0, u(1) = 1 and ‖u‖∞ ≤ 2} ,

and let �∧ be the preorder on ∆(X) induced by Û via the rule (1). The next claim lists

the interesting properties of �∧.

Observation 2.(i) For any p ∈ ∆(X) and α ∈ (1/2, 1], we have δ1 �∧ αδ0 + (1− α)p. 15

(ii) Any lottery r on X with r({0}) = 0 is �∧-maximal on ∆(X).

(iii) In particular, if r({0}) = 0 and r(I) > 0 for every nondegenerate interval I in X,

then r ∈ M (�∧,∆(X)). But whenever such an r belongs to argmaxq∈∆(X) Eq(u) for some

u ∈ C(X), then u is a constant function.

(iv) Moreover, the set M (�∧,∆(X)) \MA (�∧,∆(X)) is dense in ∆(X). (Hence, the set

MA (�∧,∆(X)) is also dense in ∆(X), as �∧ is a partial order.)

Part (i) of this observation shows that ∆(X)\M (�∧,∆(X)) is a substantially large

set.16 However, it follows from part (iv) that the set M (�∧,∆(X)) \MA (�∧,∆(X)) is

topologically so large that if one wishes to recover this set by applying the closure operator

to MA (�∧,∆(X)), it is inevitable to cover every “bad” lottery in ∆(X)\M (�∧,∆(X))

as well. To see why M (�∧,∆(X)) \MA (�∧,∆(X)) is dense in ∆(X), we simply note

that any neighborhood of a lottery on [0, 1] contains a lottery r such that r ({0}) = 0 and

r (I) > 0 for every nondegenerate interval I in [0, 1] that contains 0 or 1. 17 Assuming

(ii), this proves our claim, for if such a lottery r maximizes E(·, u) on ∆ ([0, 1]) for some

u ∈ C([0, 1]), then u(0) = u(1), though we have δ1 �∧ δ0.

Part (iii) of Observation 2 is a straightforward consequence of (ii), which we prove in

the Appendix. For the present, it should be noted that the set Û is closed, convex and

bounded, but it does not contain a constant function. Hence, it follows from part (iii) that

the maximization of a set U of utility functions delivered by DMO representation may not

allow us to recover M (�, K), not even up to the inclusion relation given by (3) provided

that one focuses on nonconstant utility functions.

In this example, part of the trouble is caused by the lack of compactness of the set Û .

Indeed, it is not difficult to verify the following claim:

15Throughout the paper, δx stands for the degenerate lottery supported at x ∈ X.
16In fact, for any finite dimensional, convex subset ∆0 of ∆(X) which contains δ0, the set

∆0\M (�∧,∆(X)) has interior points relative to the affine hull of ∆0. (But as X is infinite in this
example, the relative interior of ∆(X) (with respect to its affine hull) is empty.)

17To construct such an r that approximates a given lottery p on [0, 1], if p({0}) > 0 we can transfer this
mass to a sequence (xk) that converges to 0 and that is contained in an arbitrarily small neighborhood of 0.
Similarly, an arbitrarily small mass from the support of p can be transferred to points that are arbitrarily
close to 1 (and to 0 if we already have p({0}) = 0).
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Observation 3. If U and � satisfy (1) for every p, q in ∆(X), and if U is a compact

and convex subset of C(X), then (3) holds. 18

As a side payoff of our main representation theorems, in Appendix B of this paper we

will provide axiomatic foundations of preorders that can be represented à la DMO by a

compact (and convex) set of utility functions (each increasing in a common direction). In

light of Observation 3, this subclass of DMO type preorders seem to be better-behaved.

However, still, maximization of a set of functions U as in Observation 3 may not allow us to

recover the set M (�, K) precisely, for both of the inclusions in (3) may indeed be proper

inclusions. Let us now demonstrate this point within the context of the classical consumer

theory.

Example 1. Put

X :=
{
x ∈ R

3
+ : x1 + x2 + x3 ≤ 4

}
and U := {u, v},

where, for every x ∈ X, 19

u(x) := (x1 + x2)
1/2 (x3)

1/2 and v(x) := 2 (x1)
1/2 (x2)

1/2 .

It is clear that

argmax
x∈X

u(x) = {x ∈ X : x1 + x2 = 2, x3 = 2} , and

arg max
q∈∆(X)

Eq(u) =

{
q ∈ ∆(X) : q

(
argmax

x∈X
u(x)

)
= 1

}
.

However, x∗ := (1, 1, 2) is the unique maximizer of v on argmaxx∈X u(x), implying that the

lottery δx∗ is the only element of argmaxq∈∆(X) Eq(u) that is �-maximal on ∆(X), where

� is the preorder on ∆(X) induced by U via the rule (1). Hence, argmaxq∈∆(X) Eq(u) is

not contained in M (�,∆(X)).

Moreover, δx∗ does not maximize the expectation of any �-increasing function f ∈
C(X) on ∆(X). To see this, take any such f . Since U is normalized in the sense that

u(x∗) = v(x∗) = 2 and u(0) = v(0) = 0, where 0 := (0, 0, 0), by normalizing f accordingly

we can assume that f ∈ co (U) (for more on this argument, see the proof of Theorem 2

below).20 In fact, since neither u nor v are �-increasing, we can write f = αu+(1−α)v for

some α ∈ (0, 1). It easily follows that ∂f
∂x1

(x∗) > ∂f
∂x3

(x∗), and hence, x∗ /∈ argmaxx∈X f(x).

18Bade (2005) proves similar results for the case of a polyhedral set U.
19When X is a subset of a Euclidean space, we denote by xi the ith coordinate of a vector x ∈ X.
20By co we mean the convex hull operator, and co stands for the closed-convex hull operator.
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�

Finally, we remark that when the set X is finite we can precisely recover M (�,∆(X))

by maximizing all Aumann utilities for a DMO type preorder �, but this observation (which

is due to Aumann (1962, 1964)) cannot be generalized to the case of an arbitrary compact

convex set K ⊆ ∆(X). Suppose, for instance, that X consists of three alternatives, and

consider a closed ball B in the interior of ∆(X). Let u ∈ R
3 be a nonconstant utility

vector, and denote by p the (unique) maximizer of E(·, u) on B. Now, we can pick a

q ∈ ∆(X) such that E(q, u) = E(p, u) and q 	= p. Put v := p − q, 21 U := {u, v} and

K := co ({q} ∪ {r ∈ B : E(r, v) ≥ E(p, v)). Then, both p and q maximize E(·, u) on K,

but only p is a maximal element of K with respect to the DMO type preorder �′ induced

by U (since p �′ q). Moreover, there does not exist an �′-increasing f ∈ R
3 such that

p ∈ argmaxr∈K E(r, f). (Hence, the conclusion of Example 1 applies to the set K as it

is.) As Figure 1 illustrates, this scenario simply replicates a well-known problem related to

the identification of the Pareto frontier of a utility possibility set contained in a Euclidean

space.

K

◦p◦q

u

v

{r ∈ ∆(X) : r �′ p}

Figure 1

4. Representation Theorems

As before, X stands for a compact metric space of riskless prizes. We first focus on a

binary relation � on ∆(X) that is understood as a strict preference relation. We will later

extend our model to distinguish between the notions of indifference and indecisiveness.

We say that � is an open-continuous strict preference relation if it satisfies the following

axioms.

21As usual, we identify ∆(X) with the unit simplex in R
3.
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Open-Continuity. For every p, q in ∆(X), whenever p � q there exist a neighborhood

Np of p and a neighborhood Nq of q such that Np � q and p � Nq.
22

Independence. For every p, q, r in ∆(X) and α ∈ (0, 1),

p � q if and only if αp+ (1− α)r � αq + (1− α)r.

Strict Preorder. � is irreflexive and transitive.

Nontriviality. p• � q• for some p•, q• in ∆(X).

Remark 1. Let � be an open-continuous strict preference relation. Then � is open in

∆(X)2. Indeed, p � q implies p � 1
2
p + 1

2
q � q by the independence axiom, and applying

the open-continuity axiom to the pairs
(
p, 1

2
p+ 1

2
q
)
and

(
1
2
p+ 1

2
q, q

)
yields, by transitivity

of �, a neighborhood Np of p and a neighborhood Nq of q such that r � w for every

(r, w) ∈ Np ×Nq. Moreover, � is also asymmetric, for p � q and q � p would imply p � p

by transitivity, which contradicts irreflexivity of �.

The next theorem shows that an open-continuous strict preference relation � can be

characterized by a compact set of �-increasing functions.

Theorem 1. Let X be a compact metric space. A binary relation � on ∆(X) is an

open-continuous strict preference relation if and only if there exists a nonempty compact

set U ⊆ C(X) such that:

(i) For every p, q in ∆(X),

p � q if and only if Ep(u) > Eq(u) for every u ∈ U.

(ii) Ep•(u) > Eq•(u) for every u ∈ U and some p•, q• in ∆(X).

If � admits a set U ⊆ C(X) as in Theorem 1, we will say that U is a utility set for

�. When proving this theorem, we will see that, in fact, given any pair of lotteries p•, q•

with p• � q•, we can find a utility set U such that Ep•(u) = 1 and Eq•(u) = 0 for every

u ∈ U . We will refer to such a set U as a (p•, q•)-normalized utility set for �, or simply

as a normalized utility set if the choice of a particular pair (p•, q•) is immaterial. In

turn, given any nonempty, compact U ⊆ C(X), by �U we will denote the binary relation

on ∆(X) defined by U as in part (i) of Theorem 1.

It is important to note that if U is a utility set for �, so is any closed subset V of C(X)

such that co (V ) = co (U). By the uniqueness result of DMO, it can be shown that the

22For any nonempty set N ⊆ ∆(X) and r ∈ ∆(X), by N � r we mean that w � r for every w ∈ N . The
expression r � N is understood analogously.
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converse is also true if one focuses on normalized utility sets:

Theorem 2. Let U ⊆ C(X) be a (p•, q•)-normalized utility set for an open-continuous

strict preference relation. Then V ⊆ C(X) is another such set if and only if V is closed

and co (V ) = co (U).

Theorem 2 shows that a (p•, q•)-normalized utility set is unique up to closed-convex

hull. An immediate implication is that, depending on the choice of (p•, q•), there exists a

unique, convex (p•, q•)-normalized utility set. It is also clear that, in fact, this is the largest

(p•, q•)-normalized utility set. Moreover, by the Krein-Milman theorem, taking the closure

of the set of extreme points of this largest set gives us the smallest (p•, q•)-normalized

utility set. The next observation highlights these points.

Observation 4. Let � be an open-continuous strict preference relation, and pick any

two lotteries p•, q• with p• � q•. Then, there exist largest and smallest (p•, q•)-normalized

utility sets, U+ and U−, respectively. Here, U+ = co (U−) and U− is the closure of the set

of extreme points of U+.

In passing, a few remarks on the proof of the “only if” part of Theorem 1 are in order.

First of all, it should be noted that when the prize space X is finite, the proof is relatively

simpler, for then the preference cone C := {γ(p−q) : p � q and γ > 0} turns out to be open

(in its span), and standard duality arguments suffice to obtain a closed and bounded utility

set, which will also be compact. In general, however, the set C is only boundedly open, i.e.,

for any (total variation) norm-bounded subset B of the span of C, the set B∩C is relatively

weak*-open in B. We provide two different methods that overcome this difficulty. The

initial step in the first method is to show that the closure �∗ of an open-continuous strict

preference relation � is a DMO type preorder. (The main challenge in this direction is to

verify transitivity of �∗.) After completing this task, using the open-continuity axiom and

the findings of DMO, we show that, in fact, �∗ admits a nonempty compact set U ⊆ C(X)

that represents �∗ in the sense of DMO and that satisfies condition (ii) of Theorem 1

for some predetermined lotteries p•, q• with p• � q•. Finally, by using the fact that C is

boundedly open, we show that such a set U must also satisfy condition (i) of Theorem 1.

Alternatively, one can focus on a finer topology which declares C open and which produces

the same set of continuous linear functionals as the weak*-topology. This allows one to

proceed, roughly speaking, as one would do in the case of a finite prize space.

4.1. Extension to Preorders

We now consider a binary relation � on ∆(X) that is interpreted as a (weak) preference

relation. (As usual, we will denote by ∼ and � the symmetric and asymmetric parts of �,
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respectively.) Here, our purpose is to give a suitable extension of Theorem 1 that allows

one to distinguish between the notions of indifference and indecisiveness embodied in �.

To this end, we will employ the following axioms.

Indifference Independence (II). For every p, q, r in ∆(X) and α ∈ (0, 1),

p ∼ q implies αp+ (1− α)r ∼ αq + (1− α)r. 23

Symmetric Algebraic-Closedness (SAC). For every p, q, r, w in ∆(X) with r � w,

αp+ (1− α)r � αq + (1− α)w

and for all α ∈ (0, 1)

αq + (1− α)r � αp+ (1− α)w

⎫⎪⎬
⎪⎭ imply p ∼ q.

II is motivated exactly as in the standard independence axiom. SAC, on the other hand,

amounts to saying that, given any ρ1, ρ2 in {p, q}, if αρ1 + (1 − α)r is strictly preferred

to αρ2 + (1 − α)w regardless of how large α might be and regardless of whether ρ1 or

ρ2 equals p or q, then p must be indifferent to q. The reader will note that if the set

{α ∈ [0, 1] : αp + (1 − α)r � αq + (1 − α)w} were closed for any lotteries p, q, r, w, then

SAC would trivially hold.24 (In particular, every DMO type preorder satisfies SAC.) This

observation also clarifies the intuition behind the term “SAC.”

The following theorem is our main result, which completes the task of characterizing

the class of preorders that can fully be described by a compact set of Aumann utilities.

Theorem 3. Let X be a compact metric space. For a binary relation � on ∆(X) the

following two statements are equivalent.

(i) � is a preorder that satisfies II and SAC, and � is an open-continuous strict preference

relation.

(ii) There exists a utility set U ⊆ C(X) for � such that, for every p, q in ∆(X),

p ∼ q if and only if Ep(u) = Eq(u) for every u ∈ U. (4)

Moreover, upon normalization, the set U is unique up to closed convex hull.

23By contrast to the interval representation of Manzini and Mariotti (2008), our multi-utility approach
does not require independence axioms on �-incomparable lotteries. More specifically, an important dif-
ference between the two models is that in the present approach we allow for the existence of pairwise
�-incomparable lotteries p, q, r such that 1

2p +
1
2q � r. Such situations may give rise to nonbinariness of

choice behavior induced by an incomplete preference relation, which has attracted considerable attention
in the literature. (For more on this, see Section 6.1 below.) Furthermore, the representation of Manzini
and Mariotti implies that for any p, q, r with p � q, the independence property αr+(1−α)p � αr+(1−α)q
will typically fail for large α ∈ (0, 1).

24The said closedness property, however, is too strong for our purposes by Schmeidler’s (1971) theorem.
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Remark 2. As we have seen in Observation 1, the representation theorem of DMO is

logically distinct from Theorem 3.

While we are interested in Theorem 3 mainly for tractability concerns, the conceptual

content of this result, as a multi-self representation, is also remarkable. Though the term

“multi-self representation” is used in the literature in several different meanings, in the

present context it seems reasonable to view a function u ∈ C(X) as a description of a

possible self of the agent defined by � if, in principle, the agent defined by � might behave

as if her choices are guided by maximization of E(·, u). 25 In formal terms, this amounts to

requiring that maximization of E(·, u) over any set K ⊆ ∆(X) should return �-maximal

elements of K. In this precise sense, Theorem 3 is a multi-self representation result thanks

to the fact that it delivers �-increasing functions.

It is also worth noting that, given a set U as in Theorem 3, whenever Ep(u) = Eq(u) for

some u ∈ U we cannot have p � q (as each function in U is �-increasing). This is a logical

requirement for the validity of the above interpretation. Indeed, whenever Ep(u) = Eq(u)

for some u ∈ U , it would follow that a “self” of the agent may choose q when p is available,

while p � q would imply that the agent “herself” would never behave in the same way.

Put differently, in the present model, whenever Ep(u) = Eq(u) for some u ∈ U , the agent

defined by � may choose either alternative from the set {p, q}. 26

By contrast, given a nonempty set U ⊆ C(X) that represents a preorder �∗ in the sense

of DMO, the choice behavior induced by �∗ is analogous to that of a coalition of distinct

individuals, as defined by U , who respect the Pareto rule:

p �∗ q iff Ep(u) ≥ Eq(u) for all u ∈ U and Ep(v) > Eq(v) for some v ∈ U .

Hence, a typical function u ∈ U may not bear sufficient information to determine a �∗-

consistent choice among two lotteries p and q, as we may have Ep(u) = Eq(u) even if

p �∗ q.

5. More on Scalarization and Maximal Elements

In this section, we will show that recovering the choice correspondence associated with

a preference relation can be reduced to a scalar-valued, parametric optimization exercise

provided that the strict part of the preference relation satisfies hypotheses of Theorem 1.

25The agent defined by� refers to a decision maker who might select a lottery from a choice setK ⊆ ∆(X)
if and only if that lottery is a �-maximal element of K. (In Section 6.1, we will discuss an alternate choice
behavior that is consistent with a given preference relation in a stronger sense.)

26In particular, p and q are �-incomparable whenever Ep(u) = Eq(u) and Ep(v) > Eq(v) for some u, v
in U .
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We will then investigate some further desirable properties that are peculiar to choice cor-

respondences associated with such preference relations.

In the remainder of the paper, the symmetric part of the preferences of the decision

maker in question will be irrelevant for our purposes. Hence, we simply focus on a strict

preference relation � on ∆(X), and modify our notation and terminology in an obvious way.

For example, M (�, K) denotes the set of �-maximal elements of a set K ⊆ ∆(X); that

is M (�, K) := {p ∈ K : there does not exist q ∈ K such that q � p}, which is interpreted

as the set of lotteries that can possibly be chosen from K by the decision maker. Moreover,

throughout this section, without further mention we assume that X is a compact metric

space.

As we noted several times, it is plain that maximization of the expectation of an �-

increasing function on a set K ⊆ ∆(X) would deliver a �-maximal element of K. A more

interesting question is the converse: Given a utility set U for �, is it true that each element

of M (�, K) maximizes E(·, u) on K for some u ∈ U? The next proposition shows that

the answer is affirmative if K is convex and if one focuses on a convex utility set.

Proposition 1. Suppose that � is an open-continuous strict preference relation on ∆(X),

and let U ⊆ C(X) be a utility set for �. Then, for any convex subset K of ∆(X),

M (�, K) =
⋃

v∈co(U)

argmax
q∈K

Eq(v).

In particular, if U is a convex utility set, M (�, K) =
⋃

u∈U
argmaxq∈K Eq(u).

Remark 3. Using the terminology of the previous section, Proposition 1 simply says that

the agent defined by � may choose a lottery from a convex subset of ∆(X) if and only

if this is consistent with the behavior of a self of the agent as defined by a function in a

convex utility set.

On occasion, it may be of interest to focus on a smaller utility set U , and express every

function in co (U) as a weighted average of functions in U . This can easily be done thanks

to compactness of U and a (primitive) version of Choquet’s theorem which guarantees that

a point l of a locally convex topological vector space L belongs to the closed-convex hull of

a compact subset H of L if and only if there is a (countably additive, Borel) probability ϕ

on the set H such that T(l) =
∫
H
T(h)dϕ(h) for every continuous, linear functional T on

L. 27 Since (by the Riesz representation theorem) a continuous linear functional on C(X)

is none but a function of the form v → Eη(v) for some η ∈ ca(X), it readily follows that a

27See Phelps (2001, Proposition 1.2, p. 4).
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continuous, real function v on X belongs to co (U) if and only if there exists a ϕ ∈ ∆(U)

such that Eq(v) =
∫
U
Eq(u)dϕ(u) for every q ∈ ∆(X). 28 Hence, Proposition 1 is equivalent

to the following:

Proposition 1’. Suppose that � is an open-continuous strict preference relation on ∆(X),

and let U ⊆ C(X) be a utility set for �. Then, for any convex subset K of ∆(X), we

have

M (�, K) =
⋃

ϕ∈∆(U)

argmax
q∈K

∫
U

Eq(u)dϕ(u).

Given the definition of a utility set, Proposition 1’ is simply a version of a theorem of

alternative due to Fan et al. (1957). In passing, we sketch the argument for the sake of

completeness.

Proof of Proposition 1’. Since the other inclusion is trivial, suffices to show that

M (�, K) ⊆
⋃

ϕ∈∆(U)

argmaxq∈K
∫
U
Eq(u)dϕ(u). Let q∗ ∈ M (�, K), and note that for

each q ∈ K, the function u → Eq−q∗(u) is continuous on U . Since q → Eq−q∗(·) is an

affine operator, convexity of the set K implies that K̃ := {Eq−q∗(·) : q ∈ K} ⊆ C(U) is

also convex. Moreover, by �-maximality of q∗ on K, we have K̃ ∩ C(U)++ = ∅ where

C(U)++ := {f ∈ C(U) : f(u) > 0 for every u ∈ U}. Since C(U)++ is an open con-

vex cone,29 by standard separation and duality arguments we conclude that there exists a

ϕ ∈ ∆(U) such that
∫
U
f(u)dϕ(u) ≤ 0 for every f ∈ K̃. �

5.1. Continuity Properties and Connectedness of M (�, K)

Our next task will be to establish upper hemicontinuity of the choice correspondence

induced by an open-continuous strict preference relation. Given a sequence (Kn) of subsets

of ∆(X), we define lim infKn := {lim pn : (pn) converges and pn ∈ Kn for every n} , and
lim supKn :=

⋃
lim infK ′

n where the union is taken over the collection of all subsequences

of (Kn) with a generic member (K ′
n). When lim infKn = K = lim supKn, the set K is

said to be Kuratowski limit of (Kn). Since ∆(X) is compact, on the collection of nonempty

closed subsets of ∆(X) (denoted as K), the notion of Kuratowski convergence coincides

with convergence in the Hausdorff metric, dH .

Upper hemicontinuity of a choice correspondence induced by a strict preference relation

demands, in fact, nothing more than openness of that relation:

28It can be shown that, given a compact set U ⊆ C(X) and any ϕ ∈ ∆(U), the system of equali-
ties Eq(v) =

∫
U
Eq(u)dϕ(u) (q ∈ ∆(X)) has a unique solution v∗ ∈ C(X) which is defined by v∗(x) :=∫

U u(x)dϕ(u) for x ∈ X.
29Throughout the paper, by a convex cone we mean a convex subset of a vector space that is closed

under positive scalar multiplication.
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Observation 5. Let �⊆ ∆(X)2 be relatively open. Then:

(i) For any K ⊆ ∆(X), the set M (�, K) is relatively closed in K.

(ii) Given a sequence (Kn) of subsets of ∆(X), we have

lim infM (�, Kn) ⊆ M (�, lim supKn) .

In particular, for any K ⊆ lim supKn,

K ∩ lim infM (�, Kn) ⊆ M (�, K) .

That is, for any convergent sequence (pn) with pn ∈ M (�, Kn) for every n, whenever

lim pn belongs to K it also belongs to M (�, K).

(iii) The correspondence K ⇒ M (�, K) is upper hemicontinuous on the metric space

(K, dH).

Here, the critical observation is (ii). Indeed, (i) is a trivial consequence of (ii), and (iii)

also follows immediately because K ⇒ M (�, K) , when considered as a correspondence

from (K, dH) into ∆(X), has a closed graph by (ii), and its range is compact. On the other

hand, (ii) readily follows from definitions: If q � lim pn for a lottery q and a convergent

sequence (pn) ∈ M (�, K1) × M (�, K2) × · · ·, then q cannot belong to lim supKn, for

otherwise openness of � would imply that qn � pn for some large n and qn ∈ Kn.

In contrast to the conclusions of Observation 5, for a DMO type preorder �∗, the

set M (�∗, K) need not be closed, even if K ⊆ ∆(X) is compact and convex. While

Observation 2 already demonstrates this point, since the Pareto frontier of a compact

convex set in a Euclidean space may not be closed,30 using the aforementioned analogy one

can also provide finite dimensional examples in the same direction. Moreover, typically,

the correspondence M (�∗, ·) is not upper hemicontinuous. In Figure 2, for example, the

increasing sequence of closed convex sets (Kn) converges to K∞. But with U := {u, v}, the
lottery p is the unique maximal element of K∞ with respect to the DMO type preorder �∗

induced by U , while the lottery q belongs to M (�∗, Kn) for all n.

We will close this section with the proof of the following result.

Observation 6. If � is an open-continuous strict preference relation on ∆(X), and if K

is a closed and convex subset of ∆(X), then M (�, K) is a connected set.

Thanks to Proposition 1, this observation is easily proved by adapting to the present

setting an argument that is well-known in the literature on multi-criteria optimization.

30See, e.g., Arrow et al. (1953, Section 3).
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Proof of Observation 6. Let U be a convex utility set for �, and assume by contra-

diction that there are two disjoint, nonempty, closed sets M1,M2 such that M1 ∪ M2 =

M (�, K). Then, for each u ∈ U we have argmaxq∈K Eq(u) ⊆ M1 or argmaxq∈K Eq(u) ⊆
M2, for argmaxq∈K Eq(u) is a connected (in fact, convex) subset of M1 ∪M2. It follows

that U = U1 ∪ U2 where Ui := {u ∈ U : argmaxq∈K Eq(u) ⊆ Mi} for i = 1, 2. The sets U1

and U2 are disjoint since argmaxq∈K Eq(u) is nonempty for each u ∈ U by compactness of

K. Moreover, by Proposition 1, for any p ∈ Mi we have p ∈ argmaxq∈K Eq(u) for some

u ∈ U which implies in fact that argmaxq∈K Eq(u) ⊆ Mi. Thus, U1 and U2 are nonempty,

and as can easily be seen they are also closed. These conclusions contradict convexity of

U . 31

6. Applications

6.1. Incomplete Preferences and Nonbinary Choice Behavior

Let � represent the strict preference relation of an agent who has to choose a lottery

from a set K ⊆ ∆(X). Following the traditional practice, so far we have assumed that

such an agent might choose any element of M (�, K). However, analogously to the use of

a mixed strategy in a game-theoretic framework, in principle, our agent can condition her

choice from the set K to the outcome of a random experiment such as flipping a coin or

rolling a die. Considering any such randomization device that she could possibly use, we

can thus say that, effectively, the choice set available to our agent is equal to co (K), or

even more generally, to co (K) (provided that one also allows for the use of randomization

31It seems to be a nontrivial problem to determine whether the analogue of Observation 6 holds for an
arbitrary DMO type preorder. However, one can prove a positive result for the case of an antisymmetric
DMO type preorder using the aforementioned finding of Makarov and Rachovski (1996) (see Footnote 13).
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devices that can return infinitely many outcomes).32 Upon relaxation of the completeness

axiom, this observation becomes material, for �-maximality of a lottery in K does not

guarantee its �-maximality in co (K), implying that the agent may have a reason to avoid

choosing some elements of M (�, K). That indecisiveness may give rise to such nonbinary

choice behavior has been widely recognized following the seminal work of Nehring (1997).33

For instance, let us consider the following adaptation of Nehring’s Example 1.

Example 2. Let X := {x, y, z} and pick any number ε ∈ (0, 1/2). Consider the open-

continuous strict preference relation �U on ∆(X) induced by the set U := {u, v} where u

and v are the real functions on X defined as in the following table:

u v

x 1 0

y ε ε

z 0 1

Then, obviously, δy is �U -maximal in {δx, δy, δz}, but we have 1
2
δx +

1
2
δz �U δy. �

One can think of various real-life choice situations in concert with this example. Sup-

pose, for example, that x, y and z are three different restaurants. While x and z are

specialized in vegetarian and meat dishes, respectively, y offers both types of dishes, but

at a lower quality. Our decision maker is supposed to make a reservation for two in one of

these restaurants, but she does not know the preferences of her guest, who may or may not

like meat. Then, in the former case, our decision maker may rank the restaurants according

to v, while the relevant ranking may be as in u in the latter case.

More generally, Example 2 is intimately linked with extremeness seeking which refers

to a tendency to opt for extreme alternatives in choice problems where feasible alterna-

tives vary in multiple dimensions. Gourville and Soman (2007) provide empirical evidence

which shows that extremeness seeking is rather common when alternatives differ in non-

compensatory, not so easily comparable attributes, such as the features of a high-priced,

fully-loaded model of a car versus those of a mid-priced, average model or a low-priced,

basic model. Example 2 is in concert with this phenomenon. Indeed, x and z in this exam-

ple can be considered as extreme alternatives that perform very well with respect to one

of u or v, and very poorly with respect to the other function. Moreover, the observation

32Of course, we view the convex combination α1p1 + · · ·+ αnpn as a compound lottery that yields the
lottery pi with probability αi. After all, the usual justification of the independence axiom relies on this
interpretation. (By Choquet’s theorem, one can similarly interpret the elements of co (K) provided that
K ⊆ ∆(X) is compact.)

33A recent discussion of the literature on nonbinary choice behavior can be found in Alcantud (2006).
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1
2
δx +

1
2
δz �U δy suggests that, when faced with the choice set {x, y, z}, the decision maker

in question would be better off if she randomly selects x or z with equal probabilities,

instead of opting for the mild alternative y (despite the fact that neither x nor z is better

than y).34

In light of these observations, it seems to be in order to replace the traditional binary

approach with the alternate model that declares rational to select a lottery p from the

choice set K if and only if p ∈ K ∩ M (�, co (K)). Recently, Heller (2010) provided

necessary-sufficient conditions that allow one to rationalize a choice correspondence C in

this stronger sense. In fact, Heller studies the class of choice correspondences C that admit

an open-continuous strict preference relation � such that C(K) = K ∩M (�, co (K)) for

every K ∈ K. By combining Theorem 1 with the following observation, one obtains Heller’s

representation for such choice correspondences:

Corollary 1. Suppose that � is an open-continuous strict preference relation on ∆(X)

for a compact metric space X, and let U ⊆ C(X) be a convex utility set for �. Then, for

every nonempty K ⊆ ∆(X),

⋃
u∈U

argmax
q∈K

Eq(u) = K ∩M (�, co (K)) = K ∩M (�, co (K)) . (5)

This corollary is an obvious consequence of Proposition 1, and hence, we omit its proof.35

Remark 4. As we have seen in Section 3, excluding some special situations, for the case

of a DMO type preorder, one cannot obtain an analogue of the first equality in (5) (even if

one focuses on a compact and convex set K). The second equality in (5) may also fail. For

instance, if we let K0 be the convex set obtained by removing the half-open line segment

(q, p] from the set K in Figure 1, then q is a �′-maximal element of K0, but we have p �′ q

and p ∈ cl (K0) = K. (When the set X is infinite, one can find more interesting examples

in the same direction. For example, in this case, the set of all lotteries with finite support

is not closed, and hence, a lottery p which is maximal on this set with respect to a DMO

type preorder may not be maximal on ∆(X).)

34As Gourville and Soman (2007) discuss in detail, the opposite (i.e., extremeness averse) behavior
is predominant in choice problems where feasible alternatives vary in easily measurable and comparable
attributes, such as size/quantity and price. Thus, in a broader sense, extremeness seeking seems to be a
consequence of incomparability of alternatives.

35It follows from Theorem 1 and Corollary 1 that given a choice correspondence C that satisfies Heller’s

(2010) axioms, one can find a compact, convex set U ⊆ C(X) such that C(K) =
⋃

u∈U
argmaxq∈K Eq(u)

for every K ∈ K; which is the content of Heller’s representation result. In an ordinal framework with
finitely many alternatives, Eliaz, Richter and Rubinstein (forthcoming) prove an analogous representation
which characterizes a decision maker who selects the feasible alternatives that are deemed best by (at least)
one of two utility functions.
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In the remainder of this subsection, we assume that X is a convex subset of a vector

space. The next observation shows that if � admits a utility set that consists of concave

functions, then the traditional, binary approach coincides with the present approach in

every choice problem where the set of feasible alternatives is a convex set of riskless prizes.36

Put differently, under the said conditions, the scalarization method can also be used to

identify the maximal elements of a convex set of riskless prizes. (For a set D ⊆ X, we

define KD := {δx : x ∈ D}.)

Corollary 2. Let X be a compact metric space which is also a convex subset of a vector

space. Consider an open-continuous strict preference relation � on ∆(X) which admits a

convex utility set U ⊆ C(X) that consists of concave functions. Then, for every convex D ⊆
X and x ∈ D, the following four conditions are equivalent: (i) x ∈

⋃
u∈U

argmaxy∈D u(y);

(ii) δx ∈ M (�, co (KD)); (iii) δx ∈ M (�, co (KD)) ; (iv) δx ∈ M (�, KD).

Proof. The equivalence of conditions (i)-(iii) is a trivial consequence of Corollary 1. What

needs to be shown is that δx ∈ M (�, KD) implies δx ∈ M (�, co (KD)). To this end, let us

assume by contradiction that we have α1δx1+· · ·+αnδxn � δx for some {x1, ..., xn} ⊆ D and

{α1, ..., αn} ⊆ [0, 1] with Σn
i=1αi = 1. Then, by definition of U and concavity of functions

in U , we must also have u(α1x1 + · · · + αnxn) ≥ α1u(x1) + · · ·+ αnu(xn) > u(x) for each

u ∈ U . But if D ⊆ X is convex, the riskless prize y := α1x1 + · · · + αnxn belongs to D,

and the definition of U implies δy � δx, as we sought.37 �

In passing, along the usual lines, we characterize concavity of functions in a utility set.

Remark 5. Given a set X as in Corollary 2, let U ⊆ C(X) be a utility set for an open-

continuous strict preference relation � on ∆(X). Then, U consists of concave functions if

and only if for every x, y in X, α, β in (0, 1) and p, q in ∆(X), we have

βδαx+(1−α)y + (1− β)p � β (αδx + (1− α)δy) + (1− β)q

whenever p � q. (We omit the simple proof of this assertion.)

36Needless to say, even if D ⊆ X is convex, the set of degenerate lotteries supported at elements of D
will be a nonconvex subset of ∆(X) whenever |D| ≥ 2.

37In his work on consumer theory without the completeness axiom, Nascimento (2009) notes the equiv-
alence of (i) and (iv) in an ordinal setup. The focus of Nascimento is a DMO type preorder induced by a
compact set of utility functions. While Theorem B in Appendix B of this paper facilitates Nascimento’s
approach, his findings provide further instances of the uses of our representation theorems, for the desirable
properties of the induced demand correspondence follow from some assumptions that allow Nascimento to
conclude that the strict part of the preference relation that he studies behaves as if it is the restriction of
an open-continuous strict preference relation to deterministic alternatives.
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6.2. A Refinement of the Notion of Walrasian Equilibrium

The need to relax the completeness axiom has been long recognized in the literature

on general equilibrium theory (see, e.g., Schmeidler, 1969; Mas-Colell, 1974). However, to

the best of our knowledge, none of the available models accounts for the nonbinary choice

behavior that may arise as a consequence of incomparability of alternatives, as we discussed

in the previous subsection. While Corollary 2 and Remark 5 provide sufficient conditions

that make redundant the modification of the traditional approach that we will propose

below, from a foundational point of view, concavity of utility functions over consumption

bundles seems to be a rather strong requirement. In particular, a long tradition that models

the notion of perfect competition using a continuum of agents avoids assuming convexity

of preferences38 over consumption bundles (cf. Aumann, 1966; Schmeidler, 1969), which is,

of course, a weaker property than concavity of utility functions.39 Following this tradition,

we will focus here on an exchange economy with a continuum of agents.

For further motivation, let us first show that upon relaxation of the completeness axiom,

even with Cobb-Douglas utility functions, a random mixture of (deterministic) consumption

bundles available to a consumer may be preferable to a bundle that is, in fact, undominated

by any other available bundle.

Example 3. Put

X := {x ∈ R
2
+ : x1 + x2 ≤ 20} and U := {u, v},

where, for every x ∈ X,

u(x) := (x1)
4 x2 and v(x) := (x1)

0.1 (x2)
0.9 .

Then u attains its maximum on X at the point x∗ := (16, 4), and v at z∗ := (2, 18).

Moreover, since both u and v are >-increasing and strictly quasiconcave on {x ∈ X :

x1 	= 0 	= x2}, for any y in the line segment [x∗, z∗] and any x ∈ X\{y}, we have either

u(y) > u(x) or v(y) > v(x). It follows that δy is �U -maximal in KX for each y ∈ [x∗, z∗].

But with y := (5, 15) and p := 1
10
δx∗ + 9

10
δz∗ , it is easily verified that p �U δy. (In fact,

Ep(u) = 26, 473.6 > u(y) = 9, 375 and Ep(v) = 13.464 > v(y) = 13.439.) �

We now consider an exchange economy. To compactify the domain of preferences, we

38This well-known concept can be adapted to the present setting as follows: If X is a convex set of
consumption bundles, then �⊆ ∆(X)2 is convex on X if for every x, y in X , α, β in (0, 1) and p, q in ∆(X),
we have βδαx+(1−α)y + (1− β)p � βδy + (1− β)q whenever δx � δy and p � q.

39In fact, convexity of preferences over consumption bundles would not suffice for the conclusion of
Corollary 2. (See Example 3 below.)
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assume that each agent’s consumption of a given commodity cannot exceed a sufficiently

large number b > 0. Thus, the commodity space is given by X := {x ∈ R
n
+ : x ≤ b} where

b is the n-vector (b, ..., b). (Similarly, 0 stands for the origin of Rn.) The strict preference

relation of a consumer t is denoted by �t. We suppose that �t is defined on ∆(X) (instead

of X) which is a central departure from the classical approach.

The consumer space is identified with a set T , a σ-algebra Σ of subsets of T , and a

measure � on Σ with �(T ) < ∞. As usual, we assume that the measure space (T,Σ, �)

is complete, that is, any subset of a �-null member of Σ belongs to Σ as well. Each

consumer t is endowed with a bundle e(t) ∈ X such that e : t → e(t) is a (Σ-Borel)

measurable map. Given a measurable function g := (g1, ..., gn) that maps T into X, we

set
∫
gd� :=

(∫
T
g1(t)d�(t), ...,

∫
T
gn(t)d�(t)

)
which is well defined by compactness of X.

Such a function g is referred to as an allocation. An allocation g is said to be feasible if∫
gd� ≤

∫
ed�.

In the remainder of this subsection, we will not distinguish between a point x ∈ X and

the lottery δx.

As usual, a Walrasian equilibrium refers to a price vector φ ∈ R
n
+\{0} and a feasible

allocation g such that, for �-almost every t ∈ T , the budget set Bt(φ) := {x ∈ X : φx ≤
φe(t)} does not contain any element x with x �t g(t). Our focus will be the following

refinement of this traditional solution concept, which requires the consumption choice of

an agent be undominated not only by the consumption bundles in her budget set, but also

by any random mixture of such bundles.

Definition 1. A Walrasian equilibrium (φ, g) is randomization proof if, for �-almost

every t ∈ T , there does not exist p ∈ ∆(X) such that p �t g(t) and p(Bt(φ)) = 1.

WE
(
(�t)t∈T , e

)
(resp. RPE

(
(�t)t∈T , e

)
) will denote the set of Walrasian (resp. ran-

domization proof) equilibria. When each �t is induced by a utility function ut ∈ C(X),

we will write WE
(
(ut)t∈T , e

)
instead of WE

(
(�t)t∈T , e

)
.

Since the set {p ∈ ∆(X) : p(Bt(φ)) = 1} equals co
(
KBt(φ)

)
, as an immediate conse-

quence of Corollary 1 (and the axiom of choice), we obtain the following characterization

of randomization proof equilibria.

Corollary 3. For each t ∈ T , suppose that �t is an open-continuous strict preference

relation on ∆(X), and let Ut ⊆ C(X) be a convex utility set for �t. Then

RPE
(
(�t)t∈T , e

)
=

⋃
WE

(
(ut)t∈T , e

)
, (6)

where the union is taken over (ut)t∈T such that ut ∈ Ut for each t ∈ T .
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The classical result of Schmeidler (1969) establishes the existence of a Walrasian equilib-

rium in an economy with a continuum of traders and incomplete preferences. We will now

strengthen this conclusion by proving the existence of a randomization proof equilibrium

in the present setup. To this end, we need the following additional assumptions.

(A1) The measure space (T,Σ, �) is nonatomic, that is, for every T0 ∈ Σ with �(T0) > 0

there exists a set T1 ∈ Σ such that 0 < �(T1) < �(T0).

(A2) t ⇒�t is a graph-measurable correspondence from T into ∆(X)2, that is, its graph

G� := {(t, p, q) ∈ T ×∆(X)2 : p �t q} belongs to the product σ-algebra Σ⊗B (∆(X)2). 40

(A3) ei(t) > 0 for every i = 1, ..., n and t ∈ T .

(A4) For each t ∈ T, �t is an open-continuous strict preference relation on ∆(X) such

that b �t 0.

(A1) formalizes the notion of perfect competition as suggested by Aumann (1966) and

Schmeidler (1969), among others. Measurability assumptions of the sort (A2) are also

standard in this strand of literature. A merit of the present cardinal approach is that

graph-measurability of the preference correspondence is equivalent to graph-measurability

of a utility correspondence obtained upon a natural choice of normalization:

Lemma 1. Suppose (A4) holds. For each t ∈ T , let U+,t stand for the unique, convex

(b, 0)-normalized utility set for �t. Then, (A2) holds if and only if GU := {(t, u) ∈
T ×C(X) : u ∈ U+,t} belongs to Σ⊗B (C(X)).

The proof of Lemma 1 can be found in Appendix A. We are now ready to state our

existence result which is a simple consequence of our previous findings and known existence

results for the case of complete preferences.

Corollary 4. RPE
(
(�t)t∈T , e

)
is nonempty whenever (A1)-(A4) hold.

Proof. Let U : t ⇒ U+,t be the correspondence defined as in Lemma 1. Since U is a graph-

measurable, nonempty valued correspondence from the complete measure space (T,Σ, �)

into separable, complete metric space C(X), Aumann’s measurable selection theorem im-

plies that there exists a Σ-B (C(X)) measurable function t → ut such that ut ∈ U+,t for

every t ∈ T (Aliprantis and Border, 1999, Theorem 17.25, p.574). From measurability

of t → ut and the existence theorem of Khan and Yannelis (1991), it easily follows that

40Given a topological space Y , the product σ-algebra Σ⊗B (Y ) refers to the smallest σ-algebra of subsets
of T × Y that contains {T ′ × Y ′ : T ′ ∈ Σ and Y ′ ∈ B (Y )} where B (Y ) is the Borel σ-algebra on Y .
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WE
(
(ut)t∈T , e

)
	= ∅. 41 Thus, we obtain the desired conclusion by Corollary 3. 42 �

Remark 6. Following known approximation arguments, the conclusion of Corollary 4 can

be extended to include the case X := R
n
+. Specifically, suppose that for each t ∈ T and

b > 0, the restriction of �t to lotteries over the compact box {x ∈ R
n
+ : x ≤ b} is an

open-continuous strict preference relation. Assuming e(T ) is a bounded subset of Rn
+, we

can find a number a > 0 such that, for every t ∈ T and b ∈ N, the set Xb(t) := {x ∈ R
n
+ :

x ≤ (Σn
i=1ei(t))b} is contained in X ′

b := {x ∈ R
n
+ : x ≤ ab}. Then, upon modifying the

statement of Lemma 1 so thatX ′
b takes the role of X (and ab that of b), the existence result

of Khan and Yannelis (1991) (which allows for t dependent consumption sets) would enable

us to show that the economy induced by the consumption set correspondence t ⇒ Xb(t)

has a randomization proof equilibrium (φb, gb), for each b ∈ N. By normalizing and passing

to a subsequence if necessary, one can assume that (φb) converges. Since (φb, gb) is also a

Walrasian equilibrium of the corresponding economy, from Schmeidler’s (1969, Section 4)

findings it immediately follows that (φb) must actually be converging to a strictly positive

vector if all commodities are desirable in the sense that x > y implies x �t y, for each t ∈ T

and x, y in R
n
+. Finally, given such a sequence (φb), it is a simple exercise to show that for

all sufficiently large b, we have {x ∈ R
n
+ : φbx ≤ φbe(t)} ⊆ Xb(t) for each t ∈ T , implying

that (φb, gb) is a randomization proof equilibrium in the economy where consumption sets

equal Rn
+.

Remark 7. Assuming (A2) and (A4), by a measurable selection argument it can be shown

that in equation (6), we can restrict our attention to union over measurable selections of

the correspondence t ⇒ U+,t. Put differently, the method that we used when proving

Corollary 4 gives us a generic element of RPE
(
(�t)t∈T , e

)
. Of course, such an equivalence

result would not hold for the case of a DMO type preorder. However, one could still prove

an analogue of Corollary 4 by finding an Aumann utility ut for each t ∈ T such that t → ut

41While Khan and Yannelis (1991) assume convexity of preferences over consumption bundles, as they
discuss in detail, this assumption becomes redundant when there are finitely many commodities and the
consumer space is nonatomic (as we assume here). The key observation that allows us to utilize their
existence theorem is that if t → ut is Σ-B (C(X)) measurable, then the induced weak preference corre-
spondence on X2 is graph-measurable; that is, {(t, x, y) ∈ T ×X2 : ut(x) ≥ ut(y)} belongs to Σ⊗B

(
X2

)
.

(This assertion is analogous to the “if” part of Lemma 1, and its proof is a routine exercise.) Conti-
nuity of ut on X, the definition of X, and the assumption (A3) immediately imply that the economy
((T,Σ, �), (ut)t∈T , e,X) also satisfies the remaining hypotheses of Khan and Yannelis.

42Rustichini and Yannelis (1991) prove a generalization of Schmeidler’s (1969) result where agents’
consumption sets are weakly compact subsets of a separable Banach space. Their key assumption formalizes
the idea that there are “many more agents than commodities,” and allows them to relax the convexity
requirement of Khan and Yannelis (1991), even when there are infinitely many commodities. Extending
Corollary 4 to the framework considered by Rustichini and Yannelis, therefore, is a routine exercise. (I am
grateful to Nicholas C. Yannelis for calling my attention to this point.)
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is a measurable function.

6.3. On Weak Pareto Optimality and Social Planing with Incompletely Known Prefer-

ences

We now consider a finite society T := {1, ..., T } , and denote by X a compact metric

space of social alternatives. Each agent t is assumed to have a strict preference relation �t

on ∆(X). The weak Pareto order �wp is then defined as, for every p, r in ∆(X),

p �wp r if and only if p �t r for every t = 1, ..., T .

The following result is a Negishi-type characterization of weak Pareto optimality that

does not require completeness of agents’ preferences.

Corollary 5. For each t = 1, ..., T , suppose that �t is an open-continuous strict preference

relation on ∆(X), and let Ut ⊆ C(X) be a convex utility set for �t. Then, for every convex

K ⊆ ∆(X),

M (�wp, K) =
⋃

argmax
q∈K

Eq(α1u1 + · · ·+ αT uT ),

where the union is taken over (αt, ut)t∈T ∈ R
T
+×C(X)T such that

∑T
t=1 αt = 1 and ut ∈ Ut

for every t = 1, ..., T .

Proof. It is clear that�wp=�U where U :=
⋃T

t=1Ut. Moreover, co (U) is a compact set that

consists of all functions of the form α1u1 + · · ·+ αT uT for some (αt, ut)t∈T ∈ R
T
+ ×C(X)T

such that
∑T

t=1 αt = 1 and ut ∈ Ut for every t = 1, ..., T . Thus, the proof follows from

Proposition 1.43 �

Alternatively, in Corollary 5, we can consider �t as a binary relation that represents

the incomplete knowledge of a social planner about the strict part of preferences of agent

t, which may themselves be complete. When viewed from this perspective, Corollary 5

resembles the efficiency theorems of McLennan (2002) and Carroll (forthcoming). The

present approach, however, differs from theirs in many respects. First, we do not directly

assume that planner’s knowledge about a given agent can be summarized by a set of utility

functions. Rather, we derive this conclusion from the properties of the binary relations

that model planner’s knowledge. Second, we allow X to be infinite and do not restrict

our attention to the grand set K = ∆(X). Moreover, the notion of optimality considered

by McLennan and Carroll is stronger than weak Pareto optimality, and hence, requires

43More precisely, we have in mind the obvious generalization of Proposition 1 that also applies to a
possibly trivial strict preference relation � such that �=�U for some nonempty, compact U ⊆ C(X).
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different analytical tools.44

6.4. On Nash Equilibria of Games with Incomplete Preferences

Let us consider a finite set of players T := {1, ..., T }, and denote by t and i generic

players. Xt stands for the set of pure strategies available to player t, which is assumed to be

a compact metric space. Thus, the set X := X1 × · · · ×XT of pure strategy profiles is also

a compact, metrizable space. Each player t has a strict preference relation �t on the set

∆(X). Given a generic element p := (p1, ..., pT ) of ∆ := ∆(X1)×· · ·×∆(XT ), the product

probability p⊗ is the unique element of ∆(X) which satisfies p⊗(X ′
1×···×X ′

T ) =
∏T

t=1pt(X
′
t)

for every (X ′
1, ..., X

′
T ) ∈ B(X1) × · · · × B(XT ). It is important to note that for each

f ∈ C(X), the real function p → E (f,p) :=
∫
X
fdp⊗ is continuous on ∆ (with respect to

the product topology) (see, e.g., Glycopantis and Muir, 2000).

We will denote by K a generic set of the form K = K1×· · ·×KT for some Kt ⊆ ∆(Xt),

t ∈ T . A Nash equilibrium for the K-restricted game is a strategy profile p in K

such that p⊗ ∈ M
(
�t,

{
(qt, p−t)

⊗ : qt ∈ Kt

})
for each player t, where p−t := (pi)i∈T\{t}.

The set of all such equilibria will be denoted by NE
(
(�t)t∈T ,K

)
. When each �t is induced

by a utility function ut ∈ C(X) (via the rule p �t q iff
∫
X
utdp >

∫
X
utdq) we will write

NE
(
(ut)t∈T ,K

)
instead of NE

(
(�t)t∈T ,K

)
.

It is clear that whenever Kt ⊆ ∆(Xt) is convex, the set {(qt, p−t)
⊗ : qt ∈ Kt} is a convex

subset of ∆(X) for each p ∈ ∆. Thus, as an obvious consequence of Proposition 1, we

obtain the following characterization of Nash equilibria for convex games.

Corollary 6. For each t ∈ T , suppose that �t is an open-continuous strict preference

relation on ∆(X), and let Ut ⊆ C(X) be a convex utility set for �t. If Kt ⊆ ∆(Xt) is

convex for each t ∈ T , then

NE
(
(�t)t∈T ,K

)
=

⋃
NE

(
(ut)t∈T ,K

)
,

where the union is taken over (ut)t∈T such that ut ∈ Ut for each t ∈ T .

As we have seen in Section 6.1, even with a single player, an equilibrium in pure strate-

gies may not be an equilibrium when the use of mixed strategies are allowed. The next

result is a game-theoretic version of Corollary 1, which shows that the scalarization method

characterizes pure strategy equilibria that survive upon the introduction of mixed strate-

gies. (We define KX := {(δxt)t∈T : (xt)t∈T ∈ X}.)
44Specifically, given U1, ..., UT ⊆ C(X), a lottery p dominates a lottery r in the sense of McLennan and

Carroll if there exists an agent t such that Ep(u) > Er(u) for every u ∈ Ut, and Ep(u) ≥ Er(u) for every
u ∈ Ui and i ∈ T \{t}.
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Corollary 7. For each t ∈ T , let �t and Ut be as in Corollary 6. Then:

KX ∩NE
(
(�t)t∈T ,∆

)
=

⋃
NE

(
(ut)t∈T ,KX

)
, (7)

where the union is taken over (ut)t∈T such that ut ∈ Ut for each t ∈ T .

Proof. That the left side of (7) is contained in the right side is an immediate consequence

of Corollary 6 and definitions. To prove the other inclusion, first note that if a point

xt ∈ Xt maximizes the function ut(·, x−t) on Xt for some x−t ∈ ×i �=tXi and ut ∈ C(X),

then ut(xt, x−t) ≥
∫
Xt
ut(·, x−t)dqt = E (ut, (qt, (δxi

)i �=t)) for every qt ∈ ∆(Xt). Thus, the

right side of (7) is contained in
⋃

NE
(
(ut)t∈T ,∆

)
. Hence, the proof follows from Corollary

6. �

The notion of an ε-equilibrium can be adapted to the present setting as follows.

Definition 2. Let (�t)t∈T and (Ut)t∈T be as in Corollary 6. For any number ε ≥ 0 and

sets Kt ⊆ ∆(Xt) (t ∈ T ), a strategy profile p in K is an (ε,U)-equilibrium for the

K-restricted game if there exists (ut)t∈T ∈ U := U1×· · ·×UT such that, for each t ∈ T ,

E (ut,p) ≥ E (ut, (qt, p−t))− ε for every qt ∈ Kt.

As Fudenberg and Levine (1986) note, restricting the set of strategies available to players

sometimes produces more tractable games. Hence, the following continuity result seems to

be of interest.

Corollary 8. Let (�t)t∈T and (Ut)t∈T be as in Corollary 6. For each t ∈ T , consider a

convex set Kt ⊆ ∆(Xt), and let (Kn
t ) be a sequence of subsets of Kt. Suppose that the sets

Kn := Kn
1 ×· · ·×Kn

T converge to K := K1×· · ·×KT in the sense that for each p ∈ K, we

have p = limpn for a sequence (pn) ∈ K1×K2×·· ·.45 Then, a strategy profile p belongs to

NE
(
(�t)t∈T ,K

)
if and only if there exist a sequence (pn) ∈ K1×K2×· · · and a sequence

(εn) ∈ R
∞
+ such that: (i) pn → p; (ii) εn → 0; and (iii) pn is an (εn,U)-equilibrium for

the Kn-restricted game, for each n ∈ N.

Proof. To prove the “if” part suppose that p, (pn) and (εn) satisfy (i)-(iii). Then, for each

n, there exists (un
t )t∈T ∈ U such that

E (un
t ,p

n) ≥ E
(
un
t ,
(
qnt , p

n
−t

))
− εn for every qnt ∈ Kn

t and t ∈ T. (8)

45Since Kn ⊆ K for each n, when K is closed, this is equivalent to saying that K is the Kuratowski limit
of (Kn).
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Since U is compact, by passing to a subsequence if necessary, we can assume that (un
t )t∈T

converges to a vector of utility functions (ut)t∈T ∈ U in the product of sup-norm topologies.

Fix any γ > 0, q ∈ K and t ∈ T. By hypothesis, there exists a sequence (qn) ∈
K1 ×K2 × · · · such that qn → q.

As we noted earlier, for each f ∈ C(X) the function E (f, ·) is continuous on ∆. Hence,

E (ut,p
n)− E (ut,p) ≤ γ for all sufficiently large n. (9)

Similarly,

E (ut, (qt, p−t))− E
(
ut,

(
qnt , p

n
−t

))
≤ γ for all sufficiently large n. (10)

Moreover, ‖f − h‖∞ ≤ γ implies |E (f, r)− E (h, r)| = |E (f − h, r)| ≤ γ for any f, h in

C(X) and r ∈ K. It follows that

E (un
t ,p

n)− E (ut,p
n) ≤ γ for all sufficiently large n. (11)

Similarly,

E
(
ut,

(
qnt , p

n
−t

))
− E

(
un
t ,
(
qnt , p

n
−t

))
≤ γ for all sufficiently large n. (12)

Combining (8)-(12) yields E (ut,p) ≥ E (ut, (qt, p−t))− εn − 4γ for all sufficiently large

n. Since εn → 0, in view of arbitrariness of γ, it follows that E (ut,p) ≥ E (ut, (qt, p−t)).

As q ∈ K and t ∈ T are also arbitrarily chosen, we conclude that p ∈ NE
(
(ut)t∈T ,K

)
.

By Corollary 6, this proves the “if” part.

Conversely, suppose p ∈ NE
(
(�t)t∈T ,K

)
. Then, Corollary 6 implies that for some

(ut)t∈T ∈ U, we have p ∈ NE
(
(ut)t∈T ,K

)
. Pick a sequence (pn) ∈ K1 × K2 × · · ·

such that pn → p. Fix a player t ∈ T . Since the function E (ut, ·) is continuous on

the compact space ∆, it is in fact uniformly continuous. Thus, the sequence γn
t :=

sup{
∣∣E (ut, (qt, p−t))− E

(
ut,

(
qt, p

n
−t

))∣∣ : qt ∈ ∆(Xt)} tends to 0 as n → ∞. It follows

that the sequence εnt := γn
t + |E (ut,p

n)− E (ut,p)| also tends to 0.

Next, we observe that since p belongs to NE
(
(ut)t∈T ,K

)
, for each t ∈ T, qt ∈ Kt and

n ∈ N we have E (ut,p
n) ≥ E

(
ut,

(
qt, p

n
−t

))
− εnt . As Kn

t ⊆ Kt for each t ∈ T and n ∈ N,

upon setting εn := max{εnt : t ∈ T}, we conclude that pn is an (εn,U+)-equilibrium for the

Kn-restricted game, for each n ∈ N. �

It should be noted that the “only if” part of Corollary 8 could also be proved by

combining Corollary 6 with the limit theorem of Fudenberg and Levine (1986) for games
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with complete preferences. However, the “if” part of Corollary 8 differs substantially from

the corresponding finding of Fudenberg and Levine, for it forces us to deal with utility

functions that vary with n.

The proof of Corollary 8 makes it transparent that pure strategy equilibria that can

be identified with the scalarization method satisfy an analogous continuity property. By

combining this observation with Corollary 7, we obtain a further characterization of pure

strategy equilibria that survive upon the introduction of mixed strategies:

Corollary 9. Let (�t)t∈T and (Ut)t∈T be as in Corollary 6. For each t ∈ T , let (Xn
t ) be a

sequence of subsets of Xt. Suppose that the sets Xn := Xn
1 ×· · ·×Xn

T converge to X in the

sense that for each x ∈ X, we have x = lim xn for a sequence (xn) ∈ X1×X2×· · ·. Then,
a strategy profile p belongs to KX ∩ NE

(
(�t)t∈T ,∆

)
if and only if there exist a sequence

(pn) ∈ KX1 ×KX2 × · · · and a sequence (εn) ∈ R
∞
+ such that: (i) pn → p; (ii) εn → 0;

and (iii) pn is an (εn,U)-equilibrium for the KXn-restricted game, for each n ∈ N. 46

Remark 8. The results of the present subsection would not hold if players’ preferences were

defined à la DMO. In particular, the approximation idea above would entail an additional

difficulty caused by the fact that a rich set of Aumann utilities that one may want to focus

on need not be compact.

We conclude with an example that illustrates the contents of Corollaries 8 and 9.

Example 4. Consider an infinitely repeated game, where A := A1 × · · · × AT is the

set of action profiles in the stage game. We suppose that At is finite and nonempty for

each player t. For every integer n > 1 and every t ∈ T, we let Fn
t denote the set of all

functions that map An−1 into At, and put F1
t := At. Thus, a pure strategy for player t is

a sequence xt := (x1
t , x

2
t , ...) ∈ F1

t × F2
t × · · ·. It is clear that (the product topology of)

Xt := F1
t × F2

t × · · · is compact and metrizable.

A pure strategy profile x := (x1, ..., xT ) ∈ X := X1 × · · · × XT induces an outcome

path a(x) := (an(x)) ∈ A∞ which is inductively defined by a1(x) := (x1
1, ..., x

1
T ) and

an(x) := (xn
1 (a

1(x), ..., an−1(x)) , ..., xn
T (a1(x), ..., an−1(x))) for n > 1.

Each player t has a strict preference relation �′
t on ∆ (A∞). This induces a strict

preference relation �t on ∆ (X) as follows: For every p, q in ∆ (X),

p �t q if and only if pa �′
t qa,

where ra(A
′) := r(a−1(A′)) for every A′ ∈ B(A∞) and r ∈ ∆(X). It is not difficult to

46As usual, KXn := {(δxt)t∈T : (xt)t∈T ∈ Xn} for each n.
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verify that a(·) is a continuous map from X into A∞. 47 Thus, ra is a well defined element

of ∆ (A∞) for every r ∈ ∆(X).

For each player t, assume that �′
t is an open-continuous strict preference relation on

∆ (A∞), and let V+,t ⊆ C(A∞) be a convex utility set for �′
t. Since v → v ◦ a is an affine

and continuous map from C(A∞) into C(X), the set Ut := {v◦a : v ∈ V+,t} ⊆ C(X) is also

convex and compact. Moreover, by changing variables, we can write
∫
A∞ vdra =

∫
X
v ◦adr

for any v ∈ C(A∞) and r ∈ ∆(X). By construction, it follows that�t is an open-continuous

strict preference relation on ∆ (X), and Ut is a convex utility set for �t.
48

Finally, fix a point (a1, ..., aT ) ∈ A and put Xn
t := {xt ∈ Xt : x

l
t ≡ at for every l ≥ n}

for each n and t. Then, the sets Xn := Xn
1 × · · · × Xn

T converge to X in the sense of

Corollary 9. Moreover, if we let Kn
t := {pt ∈ ∆(Xt) : pt(X

n
t ) = 1} for each n and t,

the sets Kn := Kn
1 × · · · × Kn

T converge to ∆ := ∆(X1) × · · · × ∆(XT ) in the sense of

Corollary 8. Hence, we can approximate bothNE
(
(�t)t∈T ,∆

)
andKX∩NE

(
(�t)t∈T ,∆

)
with (ε,U)-equilibria of the corresponding finite horizon games.

Appendix A. Omitted Proofs

Proof of Observation 1. If U and � satisfy (1) for every p, q in ∆(X), and if U consists

of �-increasing functions, then it readily follows that, for every p, q in ∆(X),

p � q if and only if Ep(u)− Eq(u) > 0 for every u ∈ U.

Thus, if U is a compact subset of C(X), then � must satisfy the open-continuity property

as we shall see in Appendix A1. Hence, the proof follows from Schmeidler’s (1971) theorem.

�

Proof of Observation 2. Part (i) of this observation is obvious. For part (ii), let

r ∈ ∆(X) be such that r({0}) = 0. To prove that r is �∧-maximal, take any q ∈ ∆(X)

with q 	= r. Then, there is a Borel set X0 ⊆ X such that r (X0) > q (X0).

First assume r ({1}) ≤ q ({1}). Then, as we also have r ({0}) ≤ q ({0}), it follows that
r (X0\{0, 1}) > q (X0\{0, 1}). Hence, by normality of countably additive measures on a

metric space, there exists a closed set F contained in X0\{0, 1} such that r(F ) > q(F ) (see

Aliprantis and Border, 1999, Theorem 17.24, p. 574).

47To prove continuity of a(·), it suffices to note that for each x ∈ X and n ∈ N, there exists a neighborhood
O of x such that y ∈ O implies ylt = xl

t for every t ∈ T and positive integer l ≤ n, so that al(y) = al(x) for
every such l.

48As a minor point, let us note that nontriviality of �t follows from surjectivity of r → ra. (In turn, that
this map is surjective can be proved by noting that {ra : r ∈ ∆(X)} is a closed, convex subset of ∆ (A∞)
which contains every degenerate lottery.)
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For each ε > 0, let Bε := {x ∈ X : |x− y| < ε for some y ∈ F ∪ {0}}. Note that by

Tietze extension theorem, there exists a function uε ∈ Û such that, for any x ∈ [0, 1],

uε(x) =

⎧⎪⎨
⎪⎩

0 if x = 0,

1 if x ∈ {1} ∪ (X\Bε) ,

2 if x ∈ F.

It is plain that, for every p ∈ ∆(X),

lim
ε→0

∫
Bε\F

uεdp = lim
ε→0

(
uε(0)p ({0}) +

∫
Bε\(F∪{0})

uεdp

)
= 0.

Hence,

lim
ε→0

Eq(uε) = lim
ε→0

∫
F∪(X\Bε)

uεdq = 2q(F ) + q (X\ (F ∪ {0})) ≤ q (F ) + 1,

lim
ε→0

Er(uε) = lim
ε→0

∫
F∪(X\Bε)

uεdr = 2r(F ) + r (X\ (F ∪ {0})) = r(F ) + 1.

It follows that Er(uε) > Eq(uε) for all sufficiently small ε.

Suppose now r({1}) > q({1}). For each ε ∈ (0, 1), pick any vε ∈ Û such that vε(x) = 0

for x ∈ [0, 1−ε]. Then, as vε(1) = 1 for every ε ∈ (0, 1), we obviously have limε→0Er(vε) =

r({1}) and limε→0Eq(vε) = q({1}), implying that Er(vε) > Eq(vε) for all sufficiently small

ε. This completes the proof of (ii), which obviously implies (iii) as well.

That the first conclusion in part (iv) follows from (ii) is shown in text. In turn, the

proof of antisymmetry of �∧ resembles the proof of part (ii), and hence, we omit it. �

Proof of Observation 3 is implicit in our discussion of Propositions 1 and 1’.

A.1. First Proof of Theorem 1

Throughout the remainder of this appendix, we will sometimes write ũ(η) instead of

Eη(u).

First, we need to show that if condition (i) of Theorem 1 holds for a compact set

U ⊆ C(X), then the open-continuity axiom must also hold. To this end, let U be such a set,

and take any two lotteries p, q with p � q. Continuity of the real function u → Ep(u)−Eq(u)

on C(X) implies that there is a positive number γ such that Ep(u) − Eq(u) > γ for

every u ∈ U . Moreover, since u → ũ is a continuous map from C(X) to C(∆(X)), from

compactness of U it follows that the set {ũ : u ∈ U} ⊆ C(∆(X)) is also compact. By

Arzelà-Ascoli theorem (see, e.g., Dunford and Schwartz, 1958, Theorem IV.6.7, p. 266),
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we thus conclude that there is a neighborhood N of p such that ũ(p′) − ũ(p) > −γ/2 for

every p′ ∈ N and u ∈ U . But for any such p′, we have ũ(p′) − ũ(q) > γ/2 for all u ∈ U ,

and hence, p′ � q by condition (i). Thus, the set {p ∈ ∆(X) : p � q} is open, and similarly,

so is the set {p ∈ ∆(X) : q � p}. This verifies that � satisfies the open-continuity axiom.

The remainder of the proof of the “if” part of the theorem is trivial.

To prove the “only if” part, let � be an open-continuous strict preference relation on

∆(X). Put C := {γ(p− q) : p � q, γ > 0} and let S stand for the span of ∆(X)−∆(X).

It is worth noting that, by Jordan decomposition theorem, we have S = {η ∈ ca(X) :

η(X) = 0}. The proof of the next claim is a routine exercise, and hence, omitted.

Claim 1. C is a convex cone such that for every p, q in ∆(X), we have p � q if and only

if p− q ∈ C.

For every positive real number λ, we denote by Bλ the closed λ-ball in S, that is

Bλ := {η ∈ S : ‖η‖ ≤ λ} where ‖·‖ is the total variation norm. The next claim will prove

useful in what follows.

Claim 2. For any λ > 0, the set Bλ ∩ C is relatively weak*-open in Bλ.

Proof. Since (ca(X), ‖·‖) is isometrically isomorphic to the topological dual of the sepa-

rable Banach space C(X), the weak*-topology of Bλ is metrizable (see, e.g., Dunford and

Schwartz, 1958, Theorem V.5.1, p. 426). Let σ stand for a compatible metric. Suppose by

contradiction that Bλ ∩ C is not open in Bλ. Then there exists a point µ ∈ Bλ ∩ C such

that, for every natural number n, we have σ(µ, µn) < 1/n for some µn ∈ Bλ\C. Note that

µ 	= 0 since � is irreflexive. So, by passing to a subsequence if necessary, we can assume

for every n that µn 	= 0, for the sequence (µn) converges to µ. Thus, for each n, by Jordan

decomposition theorem we can write µn = γn(pn − qn) for some mutually singular pn, qn in

∆(X) and γn > 0. By mutual singularity we have ‖pn − qn‖ = 2 for every n, and hence,

γn ≤ λ/2. Since ∆(X) is compact and (γn) is bounded, it follows that there is an increasing

self-map k → nk on N such that (γnk
), (pnk

) and (qnk
) are convergent subsequences. Let the

corresponding limits be γ, p and q, respectively. Since γnk
(pnk

− qnk
) = µnk

converges to µ

as k → ∞, clearly, we must have γ(p− q) = µ. It follows that γ > 0 and p− q = µ/γ ∈ C.
So, by Claim 1, we have p � q. Since � is an open subset of ∆(X)2 as we have shown in

Remark 1, by definitions of p and q we conclude that pnk
� qnk

for all large k, implying

that µnk
belongs to C, a contradiction.49 �

49The reader will notice in these arguments a few similarities with the proof of Claim 1 of DMO, which
shows that for any preorder �∗ on ∆(X) that satisfies their axioms, the set {γ(p− q) : p �∗ q, γ > 0} is
weak*-closed. The most important difference between the two exercises is that, Claim 1 of DMO implicitly
benefits from a version of Krein-Šmulian theorem which ensures that a convex subset K of S is weak*-
closed if K ∩ Bλ is weak*-closed for every λ > 0 (see Appendix A.2 below). In our case, the analogue of
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The focus of our first method of proof is the closure of �, which we denote by �∗. So,

for any two lotteries p, q, we have p �∗ q if and only if there exist two sequences (pn), (qn)

in ∆(X) such that p = lim pn, q = lim qn and pn � qn for every n. We also fix two lotteries

p•, q• with p• � q• and set η• := p• − q•. The following claim will allow us to benefit from

the findings of DMO.

Claim 3. �∗ is a closed preorder on ∆(X) such that, for every p, q, r in ∆(X) and

α ∈ (0, 1),

p �∗ q implies αp+ (1− α) r �∗ αq + (1− α) r. (13)

Proof. �∗ is closed by definition. Moreover, for every p ∈ ∆(X) and α ∈ (0, 1), we have

αp• + (1 − α)p � αq• + (1 − α)p by the independence axiom. Passing to limit as α → 0

yields p �∗ p. So, �∗ is reflexive.

To verify (13), take any lotteries p, q, r with p �∗ q and any α ∈ (0, 1). Then there exist

two sequences (pn), (qn) in ∆(X) such that p = lim pn, q = lim qn and pn � qn for every n.

Now, by the independence axiom, we have αpn + (1 − α)r � αqn + (1 − α)r for every n.

Since αpn + (1− α)r → αp + (1 − α)r and αqn + (1 − α)r → αq + (1− α)r as n → ∞, it

follows that αp+ (1− α)r �∗ αq + (1− α)r, as we seek.

When establishing transitivity of �∗ we will benefit from the following fact: For any

α ∈ (0, 1),

p �∗ q implies αp• + (1− α)p � αq• + (1− α)q. (14)

To prove (14), consider any such α, p, q, and let the sequences (pn), (qn) be as in the previous

paragraph. Put µ := p − q and µn := pn − qn for every n. Since ∆(X) is norm-bounded,

we can pick a number λ > 0 such that
{

1−α
α

(µ− µn) : n ∈ N
}
∪ {η•} ⊆ Bλ/2. By Claim 2,

the set Bλ ∩ C is open in Bλ. As η• ∈ Bλ ∩ C, it thus follows that there is a weak*-

open neighborhood W ⊆ ca(X) of the origin such that (η• +W ) ∩ Bλ ⊆ C. Moreover,

since µn → µ by definitions of p and q, for a sufficiently large n the point µn belongs to

µ− α
1−α

W , i.e., we have µn = µ− α
1−α

w for some w ∈ W . From the choice of λ it follows that

‖w‖ =
∥∥1−α

α
(µ− µn)

∥∥ ≤ λ/2 and ‖η• + w‖ ≤ λ. The latter inequality implies that η• + w

is in C. Since C is a convex set that also contains µn, we conclude that α(η
•+w)+(1−α)µn

this property does not hold; i.e., Claim 2 above does not imply that C is weak*-open in S. The reason is
that when X is infinite, there does not exist a nonempty weak*-open set in ca(X) that is norm-bounded.
Hence, there are unbounded nets in ca(X) that weak*-converge to the origin (as it is the case for any linear
topology which is coarser than the norm-topology).
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belongs to C as well. Now, we note that

α(η• + w) + (1− α)µn = α

(
η• +

1− α

α
(µ− µn)

)
+ (1− α)µn

= αη• + (1− α)µ

= (αp• + (1− α)p)− (αq• + (1− α)q) .

Thus, by Claim 1, we see that αp• + (1− α)p � αq• + (1− α)q, as we claimed.

Finally, to show that �∗ is transitive, consider lotteries p, q, r such that p �∗ q and

q �∗ r. Then, there exist two sequences (qn), (rn) in ∆(X) such that q = lim qn, r = lim rn

and qn � rn for every n. Moreover, for any fixed α ∈ (0, 1), we have αp• + (1 − α)p �
αq• + (1 − α)q by (14). Since αq• + (1 − α)qn → αq• + (1 − α)q, it follows from the

open-continuity axiom that αp• + (1 − α)p � αq• + (1 − α)qn for all sufficiently large n.

Furthermore, by the independence axiom, we have αq• + (1 − α)qn � αq• + (1 − α)rn for

every n. Transitivity of � therefore implies that αp• + (1 − α)p � αq• + (1 − α)rn for all

sufficiently large n. Passing to limit as n → ∞ gives αp• + (1 − α)p �∗ αq• + (1 − α)r.

Since �∗ is closed, passing to limit as α → 0 yields the desired conclusion: p �∗ r. �

By Claim 3, �∗ satisfies all axioms of DMO. Hence, C∗ := {γ(p− q) : p �∗ q, γ > 0} is

a weak*-closed set by Claim 1 of DMO. As C ⊆ C∗, it immediately follows that the algebraic

closure of C, which we denote by acl (C), is contained in C∗. Moreover, clearly, (14) and the

definition of C∗ imply the converse inclusion: C∗⊆ acl (C). Hence, we see that acl (C) = C∗

is a weak*-closed set. Driving this conclusion is, in fact, the main purpose of Claim 3 in

the present proof. Since Claim 2 obviously implies that C is algebraically open (relative to

S), the first proof of Theorem 1 will easily follow from the next claim which will be proved

momentarily.50

Claim 4. There exists a nonempty compact set U ⊆ C(X) such that:

(i) ũ(p•) = 1 and ũ(q•) = 0 for every u ∈ U ;

(ii) C∗ = {η ∈ S : ũ(η) ≥ 0 for every u ∈ U}.

We now show how the proof of Theorem 1 can be completed assuming Claim 4.

Claim 5. Given a set U as in Claim 4, for every p, q in ∆(X), we have p � q if and only

if ũ(p) > ũ(q) for every u ∈ U.

Proof. Consider any two lotteries p, q, and put µ := p− q. Suppose first that ũ(µ) > 0 for

50Though Claim 2 appears to be indispensable for our purposes, in Appendix A.2, we will be able to
give a shorter proof that does not make use of Claim 3. To this end, we will focus on openness of C with
respect to an alternate topology that is finer than weak*-topology but coarser than the algebraic topology.
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every u ∈ U . Then, as U is compact, there exists a number β > 0 such that ũ(µ) ≥ β for

every u ∈ U . By using boundedness of U and part (ii) of Claim 4 in an obvious way, we

therefore see that µ is in the algebraic interior of C∗. But, as we discussed before, the set

C∗ equals acl (C), and C is algebraically open. Thus, the algebraic interior of C∗ coincides

with C, and hence, µ belongs to C. This amounts to saying p � q, as we seek.

Conversely, suppose now that p � q and take any u ∈ U . As C is algebraically open

and µ ∈ C, it follows that µ − αη• ∈ C for some α > 0. By Claim 4(ii), we therefore have

ũ(µ− αη•) ≥ 0, i.e., ũ(µ) ≥ α. �

We conclude with the proof of Claim 4.

Proof of Claim 4. Let us define G := {u ∈ C(X) : ũ(η) ≥ 0 for every η ∈ C∗}, U :=

{u ∈ G : ũ(p•) = 1, ũ(q•) = 0} and C+ := {η ∈ S : ũ(η) ≥ 0 for every u ∈ U}. Note that

G is closed, and as a closed subset of G, the set U is also closed. Hence, by the Arzelà-

Ascoli theorem, to verify compactness of U it suffices to show that this set is bounded and

equicontinuous.

Since the weak*-topology is coarser than the norm-topology of ca(X), and since ∆(X)

is a norm-bounded set, applying the open-continuity axiom to the lotteries p•, q• yields an

α ∈ (0, 1), close enough to 1, such that p• � αq•+(1− α)∆(X) and αp•+(1− α)∆(X) �
q•. In particular, we have p• � αq• + (1− α) δx and αp• + (1− α) δx � q• for each x ∈ X.

We thus see by definition of U that 1
1−α

≥ u(x) ≥ −α
1−α

for every u ∈ U and x ∈ X. This

shows that U is bounded.

Now let x ∈ X and ε > 0. Pick an α ∈ (0, 1) such that α
1−α

< ε. Since αp•+(1− α) δx �
αq•+(1− α) δx, clearly, the open-continuity axiom implies that there is a neighborhoodO ⊆
X of x such that αp•+(1− α) δz � αq•+(1− α) δx and αp•+(1− α) δx � αq•+(1− α) δz

for every z ∈ O. It readily follows that |u(x)− u(z)| ≤ α
1−α

< ε for every z ∈ O and u ∈ U .

Hence, U is also equicontinuous, as required.

What remains to show is that U is nonempty and that C+ ⊆ C∗, for the converse

inclusion is trivial. To this end, we first note that since C∗ is a weak*-closed convex cone,

by standard separation and duality arguments, for every η ∈ S\C∗ we can find a function

u ∈ G such that ũ(η) < 0.

We now show that q•− p• does not belong to C∗. Since � is open in ∆(X)2, there exist

open subsets Np• , Nq• of ∆(X) such that (p•, q•) ∈ Np• ×Nq• ⊆�. From asymmetry of � it

follows that (Nq• ×Np•)∩ �= ∅. Since Nq• ×Np• is an open neighborhood of (q•, p•), we

conclude that (q•, p•) does not belong to the closure of �, i.e., it is not true that q• �∗ p•.

By Lemma 2 of DMO, this is equivalent to saying q• − p• /∈ C∗.

Hence, we have ũ0(q
• − p•) < 0 for some u0 ∈ G. Then v0 :=

1
ũ0(p•−q•) (u0 − ũ0(q

•)1X)

also belongs to G. Moreover, as ṽ0(p
•) = 1 and ṽ0(q

•) = 0, the set U contains v0, and is
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nonempty.

Finally, to show that C+ ⊆ C∗, let η ∈ S\C∗ and pick any u ∈ G such that ũ(η) < 0.

Fix a sufficiently small α > 0 which satisfies ũ(η) + αũ0(η) < 0. Notice that u1 := u+ αu0

belongs to G. Moreover, ũ1(q
• − p•) < 0, for ũ(q• − p•) ≤ 0 by definition of G. It follows

that v1 := 1
ũ1(p•−q•) (u1 − ũ1(q

•)1X) belongs to G as well. In fact, v1 is an element of U

such that ṽ1(η) =
ũ1(η)

ũ1(p•−q•) < 0. Hence, η /∈ C+, as we seek. �

Next, we will present a shorter proof of Theorem 1 that benefits from some classical

results in functional analysis instead of Claim 3. We believe, however, that Claim 3 may

be of independent interest as it uncovers useful facts on the structure of open-continuous

strict preference relations.

A.2. Second Proof of Theorem 1

The bounded weak*-topology on ca(X), which we denote by τ , is the finest topology

that coincides with the weak*-topology on every positive multiple of the unit ball of ca(X);

that is, on sets of the form B◦
λ := {η ∈ ca(X) : ‖η‖ ≤ λ} for λ > 0. Thus, a set O ⊆ ca(X)

is τ -open if and only if O ∩ B◦
λ is relatively weak*-open in B◦

λ for every λ > 0, and a

set K ⊆ ca(X) is τ -closed if and only if K ∩ B◦
λ is weak*-closed for every λ > 0. It is a

straightforward exercise to show that restricting τ to S gives rise to analogous rules: A set

O ⊆ S is relatively τ -open in S if and only if O ∩ Bλ is relatively weak*-open in Bλ for

every λ > 0, and a set K ⊆ S is τ -closed if and only if K ∩ Bλ is weak*-closed for every

λ > 0. 51

It is known that τ is a locally convex linear topology, and a linear functional on ca(X)

is τ -continuous if and only if it is weak*-continuous. These observations lead to Krein-

Šmulian theorem: A convex subset of ca(X) is τ -closed if and only if it is weak*-closed.52

Thus, given an open-continuous strict preference relation �, the τ -closure of C coincides

with its weak*-closure, cl (C).
Moreover, without making use of Claim 3, we can modify Claim 4 by writing cl (C)

instead of C∗. The only difference in the proof of this modified version is the verification

of the claim q• − p• := −η• /∈ cl (C). To prove this point, we first note that C is τ -

open (in S) by Claim 2, and hence, the set C−η•
2
is a τ -open neighborhood of the origin.

Thus, −η• −
(
C−η•

2

)
is a τ -open neighborhood of −η•. This set does not intersect C, for

otherwise we would have −η• −
(
µ1−η•

2

)
= µ2 for some µ1, µ2 in C, and this would imply

51Of course, weak*-closedness of S and B◦
λ play an implicit role in these assertions. (In fact, as is

well-known, B◦
λ is weak*-compact by the Banach-Alaoglu theorem.)

52These results actually apply on the topological dual of any Banach space. For a detailed discussion,
see Dunford and Schwartz (1957, Section V.5), in particular Corollary V.5.5, Theorems V.5.6 and V.5.7.

38



−η• = 2 (µ1 + µ2) ∈ C, i.e., q• � p•, a contradiction to asymmetry of �. Since we have

found a τ -open neighborhood of −η• that does not intersect C, we can conclude that −η•

does not belong to the τ -closure of C which coincides with cl (C). Hence, without using

Claim 3, we proved that:

Claim 4’. There exists a nonempty compact set U ⊆ C(X) such that:

(i) ũ(p•) = 1 and ũ(q•) = 0 for every u ∈ U ;

(ii) cl(C) = {η ∈ S : ũ(η) ≥ 0 for every u ∈ U}.

Now we complete the proof by modifying Claim 5 accordingly. Given a set U as in

Claim 4’, let the lotteries p, q and the number β > 0 be as in the proof of Claim 5; that is,

assume ũ(p−q) ≥ β for every u ∈ U . Now pick any α ∈ (0, β). We will show that µ := p−q

belongs to the τ -interior of cl (C) (relative to S). To this end, first note that µ+ (C −αη•)

is a τ -neighborhood of µ, and any element η of this set is of the form η = µ + (µ1 − αη•)

for some µ1 ∈ C. From the properties of U , it thus follows that ũ(η) ≥ β − α > 0 for every

η ∈ µ+(C−αη•) and u ∈ U . Applying part (ii) of Claim 4’ then yields µ+(C−αη•) ⊆ cl (C).
Hence, µ belongs to the τ -interior of cl (C), as we argued. Since C is a τ -open convex set,

the τ -interior of the τ -closure of C equals C. Thus, in fact, we have µ ∈ C. The remainder

of the proof of Claim 5 applies as is.

A.3. Proof of Theorem 2

The “if” part of Theorem 2 is trivial. For the “only if” part, let U and V be (p•, q•)-

normalized utility sets for an open-continuous strict preference relation �. We first need

to show that, for every p, q in ∆(X),

ũ(p) ≥ ũ(q) ∀u ∈ U imply ṽ(p) ≥ ṽ(q) ∀v ∈ V .

For each α ∈ (0, 1), by definition of U the former set of inequalities imply αp•+(1− α) p �
αq•+(1− α) q, and hence, ṽ (αp• + (1− α) p) > ṽ (αq• + (1− α) q) for v ∈ V , by definition

of V . Passing to limit as α → 0 yields the desired conclusion: ṽ (p) ≥ ṽ (q) for every v ∈ V .

By the proof of the uniqueness result of DMO, it thus follows that V is contained in

cl (cone (U) + {β1X : β ∈ R}) where cone (U) ⊆ C(X) is the smallest convex cone that

contains U . Clearly, we can write cone (U) =
⋃

γ>0γ co (U). Hence, for each v ∈ V , there

exist real sequences (βn), (γn) and a sequence (un) in co (U) such that γnun + βn1X → v.

Since convergence in sup-norm implies weak-convergence, and since ũn(q
•) = 0 for every

n, we then have lim βn = lim βn1̃X(q
•) = ṽ(q•) := 0. It follows that γnun → v, and hence,

lim γn = lim γnũn(p
•) = ṽ(p•) := 1. These two observations, in turn, imply un → v. Thus,

V ⊆ co (U), and we similarly have U ⊆ co (V ) so that co (U) = co (V ).
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A.4. Proof of Theorem 3

Since the other implication can easily be verified, we shall show here that (i) implies

(ii). Fix a preorder � on ∆(X) that satisfies II and SAC. Also assume that � is an open-

continuous strict preference relation, and let U be a utility set for �. To verify (4), pick

any pair of lotteries p, q. As � is nontrivial, there exists another pair r, w in ∆(X) with

r � w.

Suppose first that p ∼ q. Fix any u ∈ U . Then, for any α ∈ (0, 1), by the independence

axiom αp+(1−α)r � αp+(1−α)w, and αp+(1−α)w ∼ αq+(1−α)w by II. Transitivity

of � therefore implies that αp+(1−α)r � αq+(1−α)w for every α ∈ (0, 1). By definition

of U , we thus have ũ (αp+ (1− α)r) > ũ (αq + (1− α)w) for every α ∈ (0, 1). Passing

to limit as α → 1 yields ũ (p) ≥ ũ (q). Similarly, we also have ũ (p) ≤ ũ (q). Hence, we

conclude that ũ (p) = ũ (q) for every u ∈ U .

Conversely, assume now that ũ (p) = ũ (q) for every u ∈ U . Then, since ũ (r) > ũ (w) ,

we have ũ (αp+ (1− α)r) > ũ (αq + (1− α)w) for every u ∈ U and α ∈ (0, 1). That

is, αp + (1 − α)r � αq + (1 − α)w for every α ∈ (0, 1). Symmetrically, we also have

αq + (1− α)r � αp+ (1− α)w for every α ∈ (0, 1). Thus, SAC implies p ∼ q, as required.

A.5. Proof of Lemma 1

To prove the “only if” part, assume G� := {(t, p, q) ∈ T × ∆(X)2 : p �t q} belongs

to Σ ⊗ B (∆(X)2). First, we note that for each (relatively) open subset N of ∆(X)2,

we have {t ∈ T : cl (�t) ∩ N 	= ∅} = {t ∈ T : �t ∩N 	= ∅}, and the latter set equals

projT [G� ∩ (T ×N )] := {t ∈ T : (t, p, q) ∈ G� ∩ (T × N ) for some (p, q) ∈ ∆(X)2}. As

∆(X)2 is a separable metric space and (T,Σ, �) is complete, it follows from the projection

theorem that {t ∈ T : cl (�t)∩N 	= ∅} belongs to Σ for every open N ⊆ ∆(X)2 (Aliprantis

and Border, 1999, Theorem 17.24, p. 574). That is, t ⇒ cl (�t) is a weakly measurable

(nonempty valued) correspondence. Noting that ∆(X)2 is also complete as a metric space,

we can therefore conclude by Castaing’s representation theorem that there exists a sequence

of Σ-B (∆(X)2) measurable functions t → (pnt , q
n
t ) (n ∈ N) such that, for each t ∈ T ,

cl (�t) = cl
(
{(p1t , q1t ), (p2t , q2t ), ...}

)
(15)

(Aliprantis and Border, 1999, Corollary 17.14, p. 568).

We shall now show that

GU =
⋂∞

n=1
Θn ∩ (T × {u ∈ C(X): u(b) = 1, u(0) = 0}) , (16)

40



where Θn := {(t, u) ∈ T ×C(X): ũ(pnt − qnt ) ≥ 0} for each n ∈ N. That GU is contained in

the right side of (16) is a simple consequence of definitions. To prove the converse inclusion,

let (t, v) belong to the right side of (16). From the proof of Theorem 2, it is clear that

for any p, q in ∆(X), whenever ũ(p − q) ≥ 0 for every u ∈ U+,t, we have (p, q) ∈ cl (�t).

But since ṽ(pnt − qnt ) ≥ 0 for each n ∈ N, by (15), we also have ṽ(p − q) ≥ 0 for every

(p, q) ∈ cl (�t). Upon putting together these two observations, it follows that ṽ(p− q) ≥ 0

whenever ũ(p−q) ≥ 0 for every u ∈ U+,t. Hence, as in the proof of Theorem 2, we conclude

that v belongs to U+,t. This proves (16).

Now fix a natural number n, and note that Θn = Υ−1 ([0,∞)) where Υ : T×C(X) → R

is defined by Υ (t, u) :=
∫
X
ud(pnt − qnt ). Since t → (pnt , q

n
t ) is a measurable map from T

into ∆(X)2, and since (u, p, q) →
∫
X
ud(p− q) is a continuous real map on C(X)×∆(X)2,

it is a routine exercise to verify that Υ is a Σ⊗B (C(X))-B (R) measurable function (see,

e.g., Aliprantis and Border, 1999, Lemmas 4.50 and 4.51, p. 151). Hence, Θn belongs to

Σ ⊗ B (C(X)). As {u ∈ C(X): u(b) = 1, u(0) = 0} is closed, in view of arbitrariness of

n, it follows from (16) that GU belongs to Σ ⊗ B (C(X)) as a countable intersection of

members of Σ⊗B (C(X)).

Conversely, assume now that GU ∈ Σ⊗B (C(X)). Then, applying Castaing’s represen-

tation theorem to the correspondence t ⇒ U+,t yields a sequence of Σ-B (C(X)) measurable

functions t → un
t (n ∈ N) such that, for each t ∈ T ,

U+,t = cl
(
{u1

t , u
2
t , ...}

)
.

Since U+,t is a (compact) utility set for �t it obviously follows that, for each t ∈ T and p, q

in ∆(X), we have p �t q if and only if there exists a k ∈ N such that
∫
X
un
t d(p− q) ≥ 1/k

for every n ∈ N. In other words, we have

G� =
∞⋃
k=1

∞⋂
n=1

{
(t, p, q) ∈ T ×∆(X)2:

∫
X

un
t d(p− q) ≥ 1/k

}
.

Since t → un
t is a measurable map from T into C(X), as in the first part of the

proof it easily follows that the set
{
(t, p, q) ∈ T ×∆(X)2:

∫
X
un
t d(p− q) ≥ 1/k

}
belongs to

Σ⊗B (∆(X)2) for each k and n. As Σ⊗B (∆(X)2) is closed under countable intersections

and unions, we obtain the desired conclusion: G� ∈ Σ⊗B (∆(X)2).

Appendix B. A DMO Type Representation with a Compact set of Utility

Functions

Consider the following axiom imposed on the asymmetric part of a preorder �∗ on
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∆(X).

Compatibility with Strong Preference (CWSP). There exist p•, q• in ∆(X) such that

for each r ∈ ∆(X) and α ∈ (0, 1], we have N1 �∗ αq• + (1− α)r and αp• + (1− α)r �∗ N2

for a neighborhood N1 of αp• + (1− α)r and a neighborhood N2 of αq• + (1− α)r.

Intuitively, CWSP simply says that the open-continuity property holds on a pair of

compound lotteries ρ1, ρ2 whenever ρ1 is obtained from ρ2 by shifting a positive weight

from a “bad” lottery q• to a “good” lottery p•. It is also clear that the term “compatibility

with strong preference” refers to the obvious normative content of the open-continuity

property.

The following DMO type representation theorem is a side payoff of our main findings.

Theorem B. Let X be a compact metric space. A binary relation �∗ on ∆(X) is a closed

preorder that satisfies CWSP and the independence property (13) if, and only if, there exists

a nonempty compact set U ⊆ C(X) such that:

(i) For every p, q in ∆(X), we have p �∗ q if and only if Ep(u) ≥ Eq(u) for every u ∈ U.

(ii) Ep•(u) > Eq•(u) for every u ∈ U and some p•, q• in ∆(X).

In view of our previous discussions, the “if” part of Theorem B is obvious. Moreover, a

brief examination of the proof of Claim 4 suffices to establish the “only if” part.53 Needless

to say, by normalizing the set U as in text, one also obtains a uniqueness result that is

analogous to Theorem 2.
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