Generic hydrophobic residues are sufficient to promote aggregation of the Alzheimer's Abeta42 peptide

Woojin Kim, and Michael H. Hecht

PNAS 2006;103;15824-15829; originally published online Oct 12, 2006;
doi:10.1073/pnas.0605629103

This information is current as of October 2006.
Generic hydrophobic residues are sufficient to promote aggregation of the Alzheimer’s Aβ42 peptide

Woojin Kim and Michael H. Hecht*

Department of Chemistry, Princeton University, Princeton, NJ 08544

Edited by Robert T. Sauer, Massachusetts Institute of Technology, Cambridge, MA, and approved August 28, 2006 (received for review July 7, 2006)

One hundred years ago, Alois Alzheimer observed a relationship between cognitive impairment and the presence of plaque in the brains of patients suffering from the disease that bears his name. The plaque was subsequently shown to be composed primarily of a 42-residue peptide called amyloid β (Aβ) 42. Despite the importance of Aβ42 aggregation in the molecular etiology of Alzheimer’s disease, the amino acid sequence determinants of this process have yet to be elucidated. Although stretches of hydrophobic residues in the C-terminal half of Aβ42 have been implicated, the mechanism by which these residues promote aggregation remains unclear. In particular, it is not known whether the side chains of these hydrophobic residues mediate specific interactions that direct self-assembly or, alternatively, whether hydrophobicity per se at these positions is sufficient to promote aggregation. To distinguish between these two possibilities, we substituted 12 hydrophobic residues in the C-terminal half of Aβ42 with random nonpolar residues. The mutant sequences were screened by using a fusion of Aβ42 to GFP. Because aggregation of Aβ42 prevents folding of the GFP reporter, this screen readily distinguishes aggregating from nonaggregating variants of Aβ42. Application of the screen demonstrated that, despite the presence of 8–12 mutations, all of the sequences aggregated. To confirm these results, several of the mutant sequences were prepared as synthetic peptides and shown to form amyloid fibrils similar to those of WT Aβ42. These findings indicate that hydrophobic stretches in the sequence of Aβ42, rather than specific side chains, are sufficient to promote aggregation.

amyloid fibrils | GFP fusion | NTN codon | protein misfolding | binary code

Protein misfolding and aggregation are associated with a number of human diseases, including Alzheimer’s disease, prion encephalopathies, Huntington’s disease, and type II diabetes (1–4). In each of these diseases, a particular protein or peptide aggregates into insoluble amyloid fibrils. Although the sequences of the proteins differ dramatically from one disease to another, the structures of their aggregated forms are similar: All of them form fibrillar structures dominated by β-sheet secondary structure (5).

Although globular proteins not associated with misfolding diseases can be driven to form amyloid-like structures under appropriate experimental conditions (6, 7), it is clear that sequences associated with misfolding diseases have unusually high propensities to aggregate. Because the propensity and rate of aggregation can tip the balance between normal protein turnover and aggregation-induced pathology, there are strong motivations to understand the amino acid sequence determinants that cause aggregation.

In the case of Alzheimer’s disease (AD), the aggregating sequence is the Alzheimer’s peptide, amyloid β (Aβ). According to the “amyloid cascade” hypothesis, aggregated Aβ initiates a complex, multistep cascade that ultimately leads to neurodegenerative disease (8). The structure and oligomeric state of the toxic aggregate has not been fully elucidated and is a subject of intense investigation. Nonetheless, it is clear that aggregation of Aβ into some form of multimeric species (ranging from small oligomers to large fibrils) produces toxic species that lead to AD (9–12).

Our studies and those of other researchers suggest that hydrophobic stretches in the central and C-terminal parts of Aβ42 are responsible for aggregation and fibrillogenesis (13–15). In contrast, the N-terminal region (residues 1–16) of Aβ42, which is mostly polar, does not appear to promote aggregation (13, 15, 16).

Although it is clear that the central and C-terminal hydrophobic stretches of Aβ42 promote aggregation, the roles of the particular side chains in these stretches remain obscure. We consider two possibilities: (i) The side chains of these hydrophobic residues mediate specific interactions that direct the self-assembly of Aβ42. (ii) Hydrophobicity per se at these positions promotes aggregation, and the exact identities of the nonpolar side chains are unimportant.

Support for the first possibility (that particular nonpolar side chains promote aggregation) can be drawn from crystal structures of model amyloidoigenic peptides, determined recently by Eisenberg and coworkers (17). These structures reveal highly ordered “steric zippers” comprising well packed structures with specific side-chain interactions. Support for the second possibility (that generic hydrophobicity at key positions in the sequence is sufficient to promote aggregation) comes from our work on protein design, which showed that a “binary code” specifying the patterning of polar and hydrophobic residues, but not the exact identities of these residues, is sufficient to design libraries of proteins de novo. By carefully controlling the binary patterning (but not the identities) of hydrophobic residues, we were able to design de novo proteins that favored either well folded globular structures or amyloid-like fibrils (18–21). If similar forces control the aggregation of naturally occurring amyloid proteins, then the generic hydrophobicity of the central and C-terminal stretches, rather than specific side chains in these sequences, may suffice to promote aggregation of Aβ42.

To distinguish between these two possibilities, we constructed and characterized a library of mutants in which 12 hydrophobic residues in the central and C-terminal stretches of Aβ42 were replaced by a stochastic mixture of the nonpolar residues leucine, isoleucine, valine, phenylalanine, and methionine. The phenotypes of the mutants were screened by using an artificial genetic system based on fusions of Aβ42 to GFP (14, 22, 23). This screen readily distinguishes mutants that prevent aggregation from those that aggregate like WT Aβ42. Escherichia coli cells expressing fusions of WT Aβ42 to GFP do not fluoresce, because rapid aggregation of Aβ42 causes the entire fusion to misfold and aggregate before GFP can form its native fluorescent structure. The appearance of green versus white colonies facilitates an unbiased assessment of the sequence determinants of Aβ42 aggregation. [The Aβ42–GFP fusion has also been used as a high-throughput screen for compounds that inhibit aggregation (24).]

Author contributions: W.K. and M.H.H. designed research; W.K. performed research; W.K. and M.H.H. analyzed data; and W.K. and M.H.H. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS direct submission.

Abbreviations: Aβi, amyloid βi; GMS, green mutant 6; ThT, thioflavin T.

*To whom correspondence should be addressed. E-mail: hecht@princeton.edu.

© 2006 by The National Academy of Sciences of the USA
In this report, we show that none of the randomized hydrophobic mutants produce green fluorescent fusions, thereby demonstrating that, despite the presence of 8–12 nonpolar→nonpolar substitutions, all of these Aβ42 variants aggregate. Several of the mutant sequences were also studied in the context of the 42-residue synthetic peptide. Biophysical studies of these peptides showed that they aggregate into fibrils, thus confirming the results observed with the Aβ42–GFP fusions and demonstrating that hydrophobic stretches in the C-terminal half of Aβ42, rather than specific side-chain packing, are sufficient to promote aggregation.

Results

Screening a Library of Hydrophobic Mutants in Aβ42. To investigate whether specific hydrophobic side chains in the C-terminal half of Aβ42 play an essential role in mediating aggregation, we constructed a library of mutant Aβ42 genes in which random hydrophobic amino acids were incorporated at positions 17–20, 31–32, and 34–36, and 39–41. The mutant genes were constructed by using the degenerate NTN codon, which encodes Met, Val, Phe, Leu, and Ile. Previous studies demonstrated that the WT Aβ42 nonpolar mutants showed low levels of fluorescence. To ensure that the nonfluorescent phenotypes of mutant Aβ42 were due to misfolding rather than poor expression, we tested the expression levels of the fusions. SDS/PAGE analysis of misfold into insoluble aggregates. To assess the quantity of misfolded Aβ42–GFP fusions, we measured the fluorescence of liquid cultures expressing these sequences. Fig. 2 compares the fluorescence of cultures expressing the mutant Aβ42–GFP fusions with those expressing either WT or GM6 GFP fusions. All of the nonpolar→nonpolar mutants showed low levels of fluorescence. Thus, the mutant forms of Aβ42, like WT Aβ42, cause the Aβ42–GFP fusion to misfold. These results indicate that hydrophobic amino acids at the mutated positions support aggregation of Aβ42, irrespective of the identity of the nonpolar side chain. To ensure that the nonfluorescent phenotypes of mutant Aβ42–GFP fusions were due to misfolding rather than poor expression, we tested the expression levels of the fusions.

Fig. 1. Amino acid sequences of variants of Aβ42 containing randomized nonpolar side chains. WT Aβ42 is shown at the top, and the soluble control, GM6, is shown at the bottom. Polar and nonpolar residues are colored red and yellow, respectively. Mutated nonpolar residues are colored gray. Glycine and proline are colored blue and green, respectively. The number of amino acid substitutions is shown to the right of each sequence.

Randomized Hydrophobic Mutants of Aβ42 Cause GFP Fusions to Misfold into Insoluble Aggregates.

To assess the quantity of misfolded Aβ42–GFP fusions, we measured the fluorescence of liquid cultures expressing these sequences. Fig. 2 compares the fluorescence of cultures expressing the mutant Aβ42–GFP fusions with those expressing either WT or GM6 GFP fusions. All of the nonpolar→nonpolar mutants showed low levels of fluorescence. Thus, the mutant forms of Aβ42, like WT Aβ42, cause the Aβ42–GFP fusion to misfold. These results indicate that hydrophobic amino acids at the mutated positions support aggregation of Aβ42, irrespective of the identity of the nonpolar side chain. To ensure that the nonfluorescent phenotypes of mutant Aβ42–GFP fusions were due to misfolding rather than poor expression, we tested the expression levels of the fusions. SDS/PAGE analysis of
whole-cell lysates confirmed that mutant versions of the Aβ42–GFP fusions expressed at the same high levels as WT Aβ42–GFP fusions. Several examples are shown in Fig. 3A. Despite these high levels of expression, GFP fusions to the randomized hydrophobic variants of Aβ42 do not fluoresce.

These findings suggest that the variants of Aβ42, like WT Aβ42, cause the entire fusion protein to misfold into insoluble aggregates. To confirm this interpretation, we assayed the amount of protein in the soluble fractions of the cell lysates. As shown in Fig. 3B, GFP fusions to randomized hydrophobic variants or to WT Aβ42 are insoluble and not detected in the soluble fraction of lysates of the overexpressing cells. Only the soluble control GM6 (rightmost lane in Fig. 6B) yielded a soluble GFP fusion protein.

Hydrophobic Variants of Synthetic Aβ42 Peptide Form Insoluble Aggregates. The experiments described above were performed on Aβ42–GFP fusions expressed in E. coli. It seems reasonable to expect that the effects of mutations in Aβ42 on the solubility of the fusion protein would mirror the effects of these same mutations on the biologically relevant 42-residue peptide in isolation. However, because the Aβ42 sequence (4 kDa) is only a small portion of the entire Aβ42–GFP fusion protein (28 kDa), this expectation must be verified explicitly. To confirm that our findings with Aβ42–GFP fusions apply to isolated Aβ42 peptides, we studied the aggregation properties of 42-residue peptides prepared by solid-phase synthesis.

Five sequences were chosen for peptide synthesis and detailed characterization: NoPhe, NoMet, 12Mut, GM6, and WT Aβ42. NoPhe and NoMet are sequences that have no phenylalanines or methionines, respectively, in the central and C-terminal hydrophobic regions. These sequences were chosen because several studies have focused on the importance of Phe or Met residues in Aβ aggregation and amyloidogenesis (25, 26). 12Mut was chosen because it contains amino acid substitutions at all 12 of the targeted residues. GM6 and WT are controls for soluble and aggregating sequences, respectively.

To assess aggregation, each peptide was prepared as a 10 μM solution in 50 mM NaH2PO4 and 100 mM NaCl (pH 7.3–7.4) and incubated at 37°C under gently agitated conditions. After overnight incubation, insoluble aggregates were removed by centrifugation at 100,000 × g, and soluble material in the supernatant was quantified by RP-HPLC. As shown in Fig. 4, only the control peptide GM6 (Ser-19/Pro-34) yielded a significant peak after 10 h of incubation. This peak, at 28 min, corresponds to soluble monomeric GM6 peptide. In contrast, WT Aβ42 and the hydrophobic mutants showed small or negligible peaks. Thus, in agreement with the GFP fusion results, the synthetic peptides of NoPhe, NoMet, and 12Mut resemble WT Aβ42 in their tendency to form insoluble aggregates.

Hydrophobic Variants of Synthetic Aβ42 Peptide Form Amyloid. As shown above, the randomized hydrophobic variants cause aggregation, both in the context of the GFP fusion expressed in E. coli and in the 42-residue peptide prepared synthetically. Aggregative behavior in the GFP fluorescence assay does not prove that the material forms amyloid. Indeed, the type of aggregate formed by the Aβ42–GFP fusions expressed in E. coli is not known. Likewise, the insolvency of the synthetic peptides (Fig. 4) does not necessarily indicate amyloid formation. To assess whether this insoluble material is amyloid rather than amorphous aggregates, we monitored binding of thioflavin T (ThT). This dye is known to bind to a variety of amyloids, including those formed by insulin, transthyrelin, and Aβ42; yet it does not bind to monomeric or small oligomeric complexes of these peptides and proteins (27).

Binding of ThT was monitored for each of the five synthetic peptides. Each peptide was dissolved to a final concentration of 20 μM in a buffer containing 50 mM NaH2PO4 and 100 mM NaCl (pH 7.3–7.4). Samples were gently agitated at 37°C for 5 h. ThT was then added, and binding was assayed by measuring the fluorescence of the ThT complex at 490 nm. As shown in Fig. 5, NoPhe, NoMet, and 12Mut form ThT-staining amyloid to an extent similar to WT Aβ42. These peptides assemble into amyloid despite the presence of 9–12
amino acid substitutions in the 42-residue sequence. In contrast, the soluble control, GM6, which contains only two substitutions, hardly forms any ThT-staining material.

The rate of amyloid formation was also monitored. We used two different experimental protocols that are known to produce amyloid with very different kinetic rates (28). Under agitated conditions, Aβ42 is known to form amyloid rapidly, whereas under quiescent conditions, amyloidogenesis is much slower. As shown in Fig. 6A, under agitated conditions, amyloid formation by WT Aβ42 increases rapidly and reaches a plateau after ~70 min. NoMet and 12Mut form amyloid at approximately one-third to one-half the rate of WT. NoPhe has a somewhat longer lag time and appears to have an overall rate approximately one-fourth that of WT Aβ42. The soluble control, GM6, shows dramatically slower kinetics: Even at long time points, GM6 forms very little ThT-staining material.

Under quiescent conditions, amyloid formation is significantly slower and occurs only after several days of incubation. As shown in Fig. 6B, WT Aβ42, 12Mut, NoMet, and NoPhe all form amyloid over the course of several days. 12Mut is slightly faster than WT, whereas NoPhe is slightly slower (see Discussion). The soluble control, GM6, does not form amyloid at all, even after 2 weeks.

Visualization of Amyloid Fibrils by EM. To determine whether the hydrophobic mutants form fibrils similar to those formed by WT Aβ42, we allowed the 42-residue synthetic peptides to aggregate under quiescent conditions and visualized the resulting structures by EM. Samples were imaged after 1, 3, 7, 14, 21, and 28 days of incubation. Fig. 7 shows the fibril morphology of WT Aβ42 and the three hydrophobic variants. All of the hydrophobic mutants formed abundant fibrils, whereas GM6 produced few fibrils, if any. Among the hydrophobic mutants, some differences in morphology can be observed: WT Aβ42 and NoPhe form long fibrils, whereas NoMet and 12Mut form shorter fibrils. The different lengths presumably result from slightly different kinetics of nucleation and elongation (see Discussion). Nonetheless, it is clear from these images that, despite the presence of 9–12 side-chain replacements, the hydrophobic mutants readily assemble into amyloid fibrils.

Discussion An extensive range of genetic and biochemical studies support the amyloid cascade hypothesis, which posits that accumulation of aggregated Aβ peptide initiates a multistep cascade that ultimately leads to Alzheimer’s disease. The aggregation of Aβ42, like the
principles apply to the aggregation of Aβ chains, at specified locations in a sequence can suffice (at least in hydrophobic residues is more important than the exact identities of onstrated that hydrophobicity specifies arbitrary nonpolar residues in the hydrophobic core dem-
proteins were shown to form well ordered structures consistent with the design (20) (A. Go, S. Kim, J. Baum, and M.H.H, unpublished data). Similarly, in the current work on Aβ42, the fact that each of the nonpolar→nonpolar mutant peptides can assemble into a fibril (Fig. 7) indicates that, although each peptide uses different nonpolar residues, all of them can form ordered structures. Our results demonstrate that there are many ways to achieve ordered structures and that many different amino acid sequences are compatible with a particular folded or aggregated structure.

Although our results demonstrate that particular hydrophobic side chains are not required to promote Aβ aggregation and amyloidogenesis, some of the mutated sequences aggregate with slightly altered kinetics (Fig. 6). In particular, the NoPhe mutant, which was slightly more soluble than the other variants (Fig. 4), aggregated somewhat slower than either WT Aβ42 or the other nonpolar→nonpolar variants. Gazit and Azriel (25, 35) have pro-

folding of globular proteins, is thought to be driven primarily by the hydrophobic effect. For globular proteins, removal of hydrophobic side chains from contact with aqueous solvent produces folded structures with the nonpolar residues buried in the interior (29, 30). For Aβ42, the sequestration of hydrophobic side chains promotes aggregation into oligomers, and ultimately into amyloid fibrils, with the nonpolar side chains buried in intra- and intermolecular inter-
faces (31, 32).

For globular proteins, the role of the hydrophobic effect has been tested by numerous experimental and theoretical studies (18, 20, 21, 30, 33). A very stringent test of the importance of the hydrophobic effect in globular proteins was its use as the sole feature for the design of proteins de novo. We reported previously the design of combinatorial libraries of proteins based on the premise that folded structures could be achieved by requiring only that surface positions be occupied by polar side chains and buried positions be occupied by nonpolar side chains (18, 20). We used a binary code to construct collections of proteins wherein all surface positions were encoded by the degenerate DNA codon VAN, which encodes Lys, His, Glu, Gln, Asp, and Asn, and all buried positions were encoded by the degenerate DNA codon NTN, which encodes Met, Leu, Ile, Val, and Phe (V represents A, G, or C; N represents A, G, C, or T). The binary patterned proteins were expressed, purified, and characterized. Two high-resolution structures were determined, and the proteins were shown to form well ordered structures consistent with the design (20) (A. Go, S. Kim, J. Baum, and M.H.H, unpublished data). Our finding that well folded globular proteins can be obtained from a design strategy that uses a stochastic process to specify arbitrary nonpolar residues in the hydrophobic core demonstrated that hydrophobicity per se, rather than particular side chains, at specified locations in a sequence can suffice (at least in some cases) to encode native-like globular proteins.

In this work, we used a similar approach to test whether the same principles apply to the aggregation of Aβ42. As was the case in our work on globular protein design, we used the NTN degenerate codon to randomize the hydrophobic residues that are presumed to direct the assembly of the structure. Our results in the current study with Aβ42 mirror our results with the design of globular proteins. In both cases, the expected structure was obtained despite random-
ization of most of the nonpolar side chains.

Both for the designed globular proteins described previously and for the mutants of Aβ42 described here, the positioning of the hydrophobic residues is more important than the exact identities of the hydrophobic side chains. For the designed proteins, we demon-
strated the importance of positioning by designing sets of se-
quencies that had similar compositions of polar (P) and nonpolar (N) residues but differed in the positioning of these residues. Sequences with the pattern PNPVPN, which approximates the structural repeat of an amphiphilic α-helix, formed α-helical struc-
tures, whereas those with the pattern PNPVPN, which matches the repeat of amphiphilic β-strands, formed β-sheet structures (18, 19). Thus, isocompositional sequences with different polar/ nonpolar periodicities formed dramatically different structures. Similarly, for Aβ42, the positioning of hydrophobic residues is the major determinant of structure: Generic hydrophobic side chains at the positions marked in yellow (or gray) in Fig. 1 promote fibroli-
genesis; however, the WT sequence synthesized backwards (Aβ42-
1), which has the same composition but different hydrophobic positioning, does not form fibrils (34).

It is important to emphasize that our results, for both designed globular proteins and mutants of Aβ42, do not imply that side-chain packing is unimportant. Quite the contrary, the well ordered structures (as compared with molten globules) that we observed for our designed four-helix bundles require that side chains adapt unique rotomers and form well defined interresidue contacts (20) (A. Go, S. Kim, J. Baum, and M.H.H, unpublished data). Similarly, the soluble control, GM6 (Phe-19-Ser and Leu-34-Pro), rarely produces any fibril-

Fig. 7. EM of amyloid fibrils. Peptides at a concentration 20 μM were incubated at 37°C under quiescent conditions. After 21 days, samples were stained with uranyl acetate and imaged. WT Aβ42 and NoPhe produce long fibrils, whereas NoMet and 12Mut produce an abundance of short fibrils. Under these conditions, the soluble control, GM6 (Phe-19-Ser and Leu-34-Pro), rarely produces any fibrilar material (only two short fibrils were observed in this 3-week image).
In conclusion, the properties of randomized nonpolar—nonpolar mutants in Aβ42, characterized in the context of GFP fusions and as synthetic 42-residue peptides, demonstrate that particular nonpolar side-chains in the C-terminal half of Aβ42 are not required for aggregation and amyloidogenesis. Randomized nonpolar side-chains at all 12 positions also promote aggregation. Although some minor differences in kinetics and fibril morphology were observed, we nonetheless conclude that hydrophobicity per se at these positions, rather than side-chain identity, is sufficient to promote Aβ42 aggregation.

Materials and Methods

Synthesis of Gene Libraries. Four oligonucleotides (IDT, Coralville, IA) were annealed to synthesize a library of genes encoding random hydrophobic amino acids in positions 17–20, 31–32, 34–36, and 39–41 of Aβ42. The sequences of these oligonucleotides are as follows: oligo-1, 5'-biotin-AGT CGT CAT ATG GAT GCG GAA TTG CGC CAT GAT TCT GGC TAT GAA GTG CAT CAT CAG; oligo-2, 5'-GCC GCC TTT GTG AGA GCC CAC ATC TGC CGG SAH SAH SAH TTT CTT ATG ATG CAC TTC; oligo-3, 5'-TGC CGC GCC DTS DTS DTS GCC DTS DTS DTS GCC GGC DTS DTS DTS GCC GCC TGC TCC TGA GTA; oligo-4, 5'-biotin-TAC TGA GCC TGC. Italicized bases are complementary between oligo-1 and oligo-2, oligo-2 and oligo-3, and oligo-3 and oligo-4. H represents a mixture of A, C, and T in the ratio of 2:1:2. D represents a mixture of A, G, and T in the ratio of 2:1:2. S represents a mixture of G and C in the ratio of 1:1. The ratios of nucleotides were chosen to favor an equal representation of the five nonpolar residues leucine, isoleucine, valine, phenylalanine, and methionine.

Oligonucleotides 1 and 2 were annealed, and second-strand synthesis was accomplished by using Klenow enzyme (Promega, Madison, WI) at 37°C for 14 h. In a separate test tube, oligonucleotides 3 and 4 were annealed, and second-strand synthesis was accomplished similarly. Finally, the complete genes were synthesized by using a thermocycler (Easycycler; Ericomp, San Diego, Madison, WI) at 37°C for 14 h. In a separate test tube, oligonucleotides 1 and 2 were annealed, and second-strand synthesis was accomplished similarly. Finally, the complete genes were synthesized by using a thermocycler (EasyCycler; Erco, San Diego, CA). The genes were double-digested by using BamHI and NdeI (New England Biolabs, Ipswich, MA) and purified away from single-digested or undigested genes by using a biotin–streptavidin interaction (Pierce, Rockford, IL). Purified double-digested inserts were fused to the N terminus of the GFP gene [separated by a 12-residue linker (14)] in the pET28 vector (Novagen, San Diego, CA) and expressed in E. coli as described in refs. 14 and 22.

Screening the Library. BL21(DE3) cells (Stratagene, La Jolla, CA) containing Aβ42–GFP fusion constructs were plated onto nitrocellulose paper (Millipore, Billerica, MA) on LB plates supplemented with kanamycin (50 μg/ml). After overnight incubation, nitrocellulose papers were transferred to LB plates supplemented with kanamycin (50 μg/ml) and iso-propyl β-D-thiogalactoside (1 mM) to induce protein expression. Quantitative fluorescence of each mutant culture was measured as described by Wurth et al. (14).

Peptide Purification. Crude peptides were purchased from the Keck Institute at Yale University (New Haven, CT) and purified by using a C4 reverse-phase column. Solvent gradients were run at 65°C using solvent A (95% water/5% acetonitrile/0.1% TFA) and solvent B (50% acetonitrile/50% water/0.1% TFA). Molecular weights of the purified peptides were confirmed by using mass spectrometry, and purity was checked by using an analytical RP-HPLC C18 column (Vydac, Columbia, MD). Purified peptides were treated with TFA to remove preexisting aggregates (36).

Assessment of Peptide Aggregation. Peptides were dissolved to give a final concentration of 10 μM in 50 mM NaH2PO4/100 mM NaCl/0.02% NaN3, pH 7.3–7.4. Each sample was incubated at 37°C under gently agitated conditions. After incubation, samples were centrifuged at 100,000 × g for 30 min to remove insoluble materials, and soluble peptides in the supernatant were quantified by analytical RP-HPLC.

ThT Assay. Peptides were dissolved in 300 μl of DMSO and diluted with 6 ml of 8 mM NaOH (20 μM final peptide concentration). After centrifugation at 40,000 × g for 30 min, 5.0 μl of supernatant was taken, and 300 μl of concentrated PBS buffer was added to the supernatant (final concentration: 50 mM NaH2PO4/100 mM NaCl/0.02% NaN3, pH 7.3–7.4). Samples were incubated at 37°C either with agitation or under quiescent conditions. At various time points, 500 μl of sample was mixed with 2.4 ml of a solution of ThT (7 μM ThT/50 mM glycine-NaOH, pH 8.5), and fluorescence was measured at 490 nm (excitation at 450 nm).

EM. Solutions were prepared as described above at peptide concentrations of 10, 20, or 50 μM. Samples were incubated at 37°C under quiescent conditions for 1, 3, 7, 14, 21, and 28 days. After the incubation, Formvar carbon-coated grids were floated on a drop of each sample for 2 min, washed twice with distilled water, and then stained for 2 min with 1% uranyl acetate. Samples were imaged by using a 912ab electron microscope (Zeiss, Thornwood, NY).

We thank Margaret Bisher for assistance with EM and Janet Crawford for peptide synthesis.