
Fun with Algorithms
(by Brett Sherman)

Algorithm A

Use:To test for the consistency of a set of sentences containing only propositional
logical vocabulary (i.e. no quantifiers; only& ,∨,→, etc.).

Algorithm: For any set S of sentences containing only propositional logical vocab-
ulary, try to assign truth-values to all of the elementary sentences that make up the
sentences in S in such a way as to make all of the sentences in S true. If there is
such an assignment, then the sentences in S are consistent. If not, then they are
inconsistent.

Note: In propositional logic, the elementary sentences are of the formP,Q,R, etc.
In predicate logic, the elementary sentences are of the formFa, Fb,Ga,Gb, etc.

Example:Test for the consistency of the following two sentences:

Fa→ −(Gb ∨ Fb), Ga& − Fb

Elementary sentencePossible assignment of truth-values
Fa F
Ga T
Fb F
Gb F

Since there is a possible assignment (in fact, there are several), the two sentences
are consistent.

Algorithm B

Use: To test for the consistency of a set of simple monadic sentences (note: a
sentence is simple monadic just in case the main operator of the sentence is a
quantifier and it doesn’t contain any other quantifiers or names within the scope of
the main quantifier).

Algorithm: (1) Take each sentence beginning with an existential quantifier and
give an instance of the sentence such that each sentence contains a different arbi-
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trary name. (2) Then take each sentence beginning with a universal quantifier and
produce an instance of the quantifier for each name used in step (1). If there are no
sentences beginning with existential quantifiers, then you need only one instance of
each universal sentence. (3) Take the list of instances and plug that set of sentences
into Algorithm A. If those sentences are consistent then the set of simple monadic
sentences is consistent. If not, then they aren’t.

Example:Test for the consistency of the following three sentences:

(∃x)(Fx&Gx), (∃x)(Gx ∨Hx), (x)(Fx→ Hx)

Step (1): instantiate each existential sentence using a different name:

Fa&Ga, Gb ∨Hb

Step (2): instantiate each universal sentence using all of the names from Step (1):

Fa→ Ha, Fb→ Hb

Step (3): plug the new list of instances into Algorithm A.

Elementary sentenceTruth-assignment
Fa T
Ga T
Ha T
Fb T
Gb T
Hb T

Since there is an interpretation that makes all of the instances true, then the three
simple monadic sentences are consistent.

Bonus: You can build an interpretation that makes the simple monadic sentences
true just from the information in Step (3). First, for each name used in the list of
elementary sentences, put an object in the domain. In the above example, the only
names used are ’a’ and ’b’, so we only need two objects in the domain. So we’ll let
the domain ={1, 2}. Second, assign each name to one of the objects in the domain.
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So we’ll say:

a→ 1, b→ 2

Finally, to determine the extension of the predicates, just look at the truth-value of
the elementary sentences. If a given sentence is true, then put the object named
into the extension of the predicate used in the sentence. So, for example, if Fa
is false, then leave 1 out of the extension of F. In the above example, since every
elementary sentence is true, the extensions would look like this:

Ext(F ) = {1, 2} Ext(G) = {1, 2} Ext(H) = {1, 2}

You can verify that this interpretation—the specification of the domain, the assign-
ment of names to objects, and the specification of the extensions of predicates—
will make the original set of simple monadic sentences true.

Algorithm C

Use: To test for the consistency of pure monadic sentences (note: a pure monadic
sentence is a sentence that is a truth-functional combination of simple monadic
sentences).

Algorithm: (1) Take your pure monadic sentences and conjoin them into one giant
sentence of the formP&Q&R, etc. (2) Treating the simple monadic sentences as
elementary, put the entire giant sentence into Disjunctive Normal Form. (3) Drive
in any negations that are on the outside of quantifiers. (4) You’ve now got a big
disjunction of conjunctions—that is, a sentence of the form(P&Q)∨ (R&S), etc,
where each sentence letter is a simple monadic sentence. Take each disjunct one at
a time and plug the simple monadic sentences into Algorithm B. If any one disjunct
is consistent, then the whole giant sentence is consistent, and the original set of pure
monadic sentences is consistent. So if the first disjunct is consistent, you’re done.
If not, you have to move to the next one. If none of them are consistent, then the
whole thing is inconsistent.

Example:Test for the consistency of the following two sentences:

(x)(Fx) ∨ (∃x)(Gx), −(x)(Fx→ Gx) → (x)(−Fx)
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Step (1): Conjoin the sentences:

((x)(Fx) ∨ (∃x)(Gx))&(−(x)(Fx→ Gx) → (x)(−Fx))

Step (2): To put this into DNF, I’ll first assign each simple monadic sentence an
elementary sentence letter:

(P ∨Q)&(−R→ S)

Now I’ll put this into DNF:

(P ∨Q)&(R ∨ S)

((P ∨Q)&R) ∨ ((P ∨Q) &S)

(P&R) ∨ (Q&R) ∨ (P &S) ∨ (Q&S)

Now I’ll substitute the simple monadic sentences back in:

((x)(Fx)&(x)(Fx→ Gx)) ∨ ((Ex)(Gx)&(x)(Fx→ Gx))
∨((x)(Fx)&− (x)(−Fx)) ∨ ((Ex)(Gx) & (x)(−Fx))

Step (3): Drive in any negations outside of quantifiers:

((x)(Fx)&(x)(Fx→ Gx)) ∨ ((∃x)(Gx)&(x)(Fx→ Gx))
∨((x)(Fx)&(Ex)(Fx)) ∨ ((∃x)(Gx)&(x)(−Fx))

Step (4): Plug in each disjunct into Algorithm B until you get a winner.

So we’ll first test for the consistency of the following two sentences:

(x)(Fx), (x)(Fx→ Gx)

There are no existential sentences, so we only need one name to instantiate these:

Fa, Fa→ Ga
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And if we plug this list into Algorithm A, we can easily see that it is consistent by
making bothFa andGa true. So the first disjunct is consistent, and so the entire
disjunction is consistent. Therefore, the two pure monadic sentences are consistent.

Testing for Validity

An argument from premisesφ1, . . . , φn to conclusionψ is valid iff the sentences
φ1, . . . , φn,−ψ are inconsistent. So to determine whether an argument from premises
φ1, . . . , φn to conclusionψ is valid, just make a list of sentencesφ1, . . . , φn,−ψ.
Drive in any negations. Look to see whether you’ve got simple monadic sentences
or pure monadic sentences, and test for the consistency of the set using the appro-
priate algorithm.

If the sentences are consistent, then the original argument is invalid

If the sentences are inconsistent, then the original argument is valid.
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