Homework 2.

1. Prove that the following arguments are valid. You may use only the following rules: MPP, MTT, DN, &I, &E, ∨I, the Rule of Assumptions (A), and Conditional Proof (CP). [None of these proofs requires Reductio ad Absurdum. You will get no points for a proof that uses RAA.] *You must list dependency numbers for each line of your proof.*

(a) (1)
$$(D \& E) \to -F$$

$$(2) \quad D \to E \qquad // D \to -F$$

(b) (1)
$$E \rightarrow (F \rightarrow G)$$

(2)
$$H \rightarrow (G \rightarrow I)$$

(3)
$$(F \rightarrow I) \rightarrow (H \rightarrow J)$$
 // $(E \& H) \rightarrow J$

(c) (1)
$$-(A \& B) \rightarrow -(C \lor D)$$
 // $C \rightarrow A$

(d) (1)
$$-(P \vee Q)$$
 // $-P$

(e) (1)
$$-P$$
 $// P \rightarrow Q$

(f) Extra Credit

$$(1) \quad P \to -P \qquad // -P$$

2. Give an informal counterexample to the following invalid argument form.

(1)
$$P \rightarrow Q$$
 // $Q \rightarrow P$

3. Is the following argument valid or invalid? If it is valid, prove it. If it is invalid, give an informal counterexample.

(1)
$$(P \to R) \lor (Q \to R)$$
 $//(P \lor Q) \to R$

- 4. Prove that the following arguments are valid. You may use any of the Stage 1 rules of inference plus the Rule of Assumptions (A) and \vee -Elimination (\vee E). You must list dependency numbers for each line of your proof.
 - (a) (1) $R \vee S$

 - (2) $-P \rightarrow -R$ (3) $S \rightarrow Q$ // $Q \lor P$
 - (b) (1) $P \vee Q$
 - (2) $P \vee R$ $// P \vee (Q \& R)$