Homework 3.

1. Prove that the following arguments are valid. You may use any of the Stage 1 rules of inference (MPP, MTT, DN, &I, &E, ∨I), plus the Rule of Assumptions (A) and Reductio ad Absurdum (RAA).

(a) (1)
$$-(P \& Q) \qquad // -P \lor -Q$$

(b) (1)
$$-P \rightarrow Q$$
 // $P \lor Q$

2. Prove that the following arguments are valid. You may use any of the rules of inference that we have learned.

(a) (1)
$$(P \to Q) \lor (P \to R)$$
 // $P \to (Q \lor R)$

(b) (1)
$$(P \to Q) \to Q$$
 // $P \lor Q$

(c) (1)
$$-P \lor Q$$
 // $P \to Q$

3. Prove the following theorem. You may use of any the rules of inference that we have learned.

$$// \qquad (P \to Q) \lor (Q \to P)$$

4. Write out a full truth table following sentence. Highlight in some way (e.g., draw a circle around) the column under the major operator of the sentence.

$$-(P \lor R) \& (-Q \to (P \& R))$$

- 5. Determine whether the following arguments are valid. If an argument isn't valid, give a truth-assignment that witnesses this fact.
 - (a) (1) $(P \rightarrow Q) \lor (Q \rightarrow R)$ (2) $-R \rightarrow -(P \& Q)$ // $Q \rightarrow -P$

(b) (1)
$$(P \lor Q) \to (R \lor S)$$

(2) $P \leftrightarrow -(R \& S)$
(3) $Q \leftrightarrow -(P \& R)$ // $(S \& P) \to -(P \lor R)$

6. Determine whether each of the following sentences is consistent. If a sentence is consistent, give an assignment of truth values to its elementary sentences relative to which the sentence is true.

(a)
$$(P \lor -Q) \to (P \leftrightarrow (Q \& R))$$

(b) $(-P \lor (-Q \to R)) \to ((P \& R) \to -Q)$

7. For each of the following pairs of sentences, determine whether the first sentence implies the second. If the implication fails to hold, give a truth-assignment that witnesses this fact.

(a)
$$(P \& Q) \leftrightarrow (Q \& R)$$
 $P \leftrightarrow Q$
(b) $P \leftrightarrow (Q \lor R)$ $-P \rightarrow (Q \leftrightarrow R)$

- 8. Show that for any sentences ϕ, ψ , the sentence $-(\phi \rightarrow \psi)$ is logically equivalent to the sentence $\phi \& -\psi$.
- 9. Is logical implication symmetric? That is, if ϕ implies ψ then does ψ imply ϕ ? Explain your answer.