
The predicate calculus is complete∗

Hans Halvorson

The first thing we need to do is to precisify the inference rules UI and EE. To this end,
we will use A(c) to denote a sentence containing the name c, and we will use ∀vA(v) to
denote the sentence that results from replacing all occurrences of c in A(c) with v and then
putting the quantifier ∀v on the front. (We also require that the variable v did not already
occur in A(c).) We use a similar convention for ∃vA(v).

Universal Introduction (UI)

Γ ` A(c)
Γ ` ∀vA(v)

Provided that “c” does not occur in Γ.

Existential Elimination (EE)

Γ ` ∃vA(v) ∆, A(c) ` B
Γ,∆ ` B

Provided that “c” does not occur in Γ,∆ or B.

One would like to know that these rules are sound, i.e., they take good proofs to good
proofs. Let’s show soundness for UI: Suppose that Γ ` A(c) is good, i.e. Γ |= A(c). Now let
M be an interpretation that makes all sentences in Γ true. We claim thatM makes ∀vA(v)
true. Indeed, for any element a in the domain ofM, we could modify the interpretationM
by assigning the name c to the object a. Call this modified interpretation M′. Then M′

still satisfies Γ since the name c doesn’t occur in any of the sentences in Γ. Since Γ |= A(c),
the sentence A(c) is true in M′; that is, a ∈ ExtM′(A(v)). Since c doesn’t occur in A(v),
ExtM(A(v)) = ExtM′(A(v)). Therefore, a ∈ ExtM(A(v)). Since a was an arbitrary element
of the domain ofM, ∀vA(v) is true inM. SinceM was an arbitrary interpretation satisfying
Γ, it follows that Γ |= ∀vA(v).

Exercise. Show that the rule EE is sound.

∗Version 0.2, revised May 3, 2012. Please send suggestions and corrections to: hhalvors@princeton.edu
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The second thing we need to do is to precisify the notion of a sentence of predicate logic.
Suppose that we have a fixed family R of predicate symbols, and a fixed family C of constant
symbols. Then we define the set Σ of sentences inductively as follows:

1. Base case: If R is an n-ary relation symbol from R, and c1, . . . , cn are constant symbols
from C, then Rc1, . . . , cn is a sentence.

2. Inductive cases (∧,∨,→,¬) If A and B are sentences, then so are A∧B,A∨B,A→ B,
and ¬A.

3. Inductive case (∀,∃) If A(c) is a sentence that contains a constant symbol c, and if v
does not occur in A(c), then ∀vA(v) and ∃vA(v) are sentences.

OK, now we are ready to start the proof of the completeness theorem.

Theorem (Completeness of the Predicate Calculus). Let A1, . . . , An, B be arbitrary predicate
logic sentences. If A1, . . . , An |= B then A1, . . . , An ` B.

First, as in the case of propositional logic, it would suffice to prove the following main
lemma:

Main Lemma. Let A be a predicate logic sentence. If A 6` P ∧ ¬P , then A is consistent,
i.e. there is an interpretation that makes A true.

How then should we prove this Main Lemma? In propositional logic, we first showed
that the sentence A is provably equivalent to a sentence Ad in disjunctive normal form; then
we proved the Main Lemma for sentences in disjunctive normal form. For predicate logic,
not every sentence is equivalent to one in disjunctive normal form; but there is another nice,
manageable form called “prenex normal form.”

Definition. We say that a sentence is in prenex normal form just in case all of its quantifiers
occur outside of the scope of its truth-functional connectives. (If such a sentence has any
quantifiers, then they occur up front, and have scope to the end of the sentence.)

We are going to show that every sentence is equivalent to one in prenex normal form.
For this, let’s recall the ways that we can move quantifiers out to the front of a sentence.

Lemma (Swoosh Equivalences). The following equivalences are provable in our system.

` Q1xFx ∧Q2yGy ↔ Q1xQ2y(Fx ∧Gy),

` Q1xFx ∨Q2yGy ↔ Q1xQ2y(Fx ∨Gy),

` Q1xFx→ Q2yGy ↔ Q1xQ2y(Fx→ Gy),

where Q1 and Q2 are arbitrary quantifiers (either ∀ or ∃), and Q is the opposite of the
quantifier Q.
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Proof. These equivalences are standard proofs in predicate logic. If you haven’t seen them
before, then it would be a good exercise to prove them yourself.

Lemma (Prenex Normal Form Lemma). Every sentence A is provably equivalent to a sen-
tence in prenex normal form.

Proof. By induction on the construction of sentences.

Base case: A sentence of the form Rc1, . . . , cn is already in prenex normal form.

Inductive case ¬: Use the quantifier-negation equivalences.

Inductive cases ∧,∨,→: The inductive cases for all of the binary connectives depend on
the fact that for any two sentences A and B, there is a sentence B′ provably equivalent to B
such that B′ shares no variables in common with A; and the (provable) swoosh equivalences
allow us to bring quantifiers to the front of A◦B′, where ◦ is either ∧,∨ or→. For example,
if

A = Q1x1 · · ·QnxnF (x1, . . . , xn),

and
B′ = Qn+1xn+1 · · ·Qn+mxn+mG(xn+1, . . . , xn+m),

where the variables x1, . . . , xn+m are all distinct, then

A ∧B ≡ A ∧B′ ≡ Q1x1 · · ·QnxnQn+1xn+1 · · ·Qn+mxn+m(F ∧G)(x1, . . . , xn+m),

and the latter sentence is in prenex normal form.

Inductive case ∃: Suppose that A(c) is provably equivalent to a prenex sentence B. We
show that ∃vA(v) is provably equivalent to a prenex sentence. We split the argument into
cases: either B contains c or it doesn’t. In the former case, write B = B(c). Then A(c) `
B(c) gives A(c) ` ∃vB(v) by EI, and since ∃vB(v) doesn’t contain the constant symbol c,
∃vA(v) ` ∃vB(v) by EE. Similarly, ∃vB(v) ` ∃vA(v). Hence ∃vA(v) is equivalent to the
prenex sentence ∃vB(v). In the other case (c not contained in B) we have ∃vA(v) ` B by
EE, and B ` ∃vA(v) by EI. Thus, ∃vA(v) is provably equivalent to the prenex sentence B.

Inductive case ∀: Exercise.

Since any predicate logic sentence is equivalent to one in prenex normal form, complete-
ness would follow from the following version of the Main Lemma.

Main Lemma. Let R be a sentence in prenex normal form. If R 6` P ∧ ¬P , then R is
consistent, i.e. there is an interpretation that makes R true.

The idea behind the proof is that if we tried to prove P ∧ ¬P from R but failed, then
in the process we would generate enough non-quantified sentences to tell us exactly what a
universe in which R is true must look like. More specifically, suppose that we wanted to show
that R does not describe a possible universe. Then we would try to use R to derive the fact
that some individual c has a property F , and also to derive the fact that c has the property
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¬F . Or we would try to show that R implies both Scd and ¬Scd for two individuals c and
d.

Since R might be prefixed by many quantifiers, we would use a combination of UI and
the Rule of Assumptions (intending to apply EE) to extract its specific consequences. For
example, R is of the form ∀1v1 · · ·QnxnA(v1, . . . , vn), we might start by deriving the in-
stance Q2v2 · · ·Qnv(n)A(c1, v2, . . . , vn) for some constant c1. If, on the other hand, R =
∃1v1 · · ·QnvnA(v1, . . . , vn), then we might assume the instance Q2v2 · · ·Qnv(n)A(c1, v2, . . . , vn),
where c1 is a freshly chosen name (so as not to get a contradiction where none is really implied
by R).

We systematize this idea by constructing two sequences Γ0,Γ1, . . . and ∆0,∆1, . . . , where
each Γi and ∆j consists of a finite list of sentences. The intuitive idea behind this construction
is to generate longer and longer proofs, starting with the proof R ` R. The sentences in
Γi will be assumptions (they go on the left hand side of `) and the sentences in ∆j will be
conclusions (they go on the right hand side of `).

Stage 0: Let ∆0 = {R} and let Γ0 = {R}.

Stage n: Suppose that sets Γ0, . . . ,Γn−1 and ∆0, . . . ,∆n−1 (all of which consist of a finite
number of sentences) have been constructed. We then build Γn as follows: for each existential
sentence ∃vA(v) in ∆n−1, choose the first constant c in {c1, c2, . . . } that does not occur in
any sentence previously constructed, and add A(c) to Γn. We build ∆n as follows: for each
universal sentence ∀vA(v) in ∆0, . . . ,∆n−1, and for each constant c that does previously
occur in a constructed sentence, add A(c) to ∆n.

Notice the following fact about the sets of sentences we have constructed.

Lemma. If Γ0, . . . ,Γn,∆0, . . .∆n−1 ` B, where B is a sentence that does not contain any
constant symbols, then Γ0, . . . ,Γn−1,∆0, . . . ,∆n−1 ` B.

Proof. Let Γ = Γ0, . . . ,Γn−1 and let ∆ = ∆0, . . . ,∆n−1. Then the claim to be proven is:

Γ,∆,Γn ` B =⇒ Γ,∆ ` B.

Recall that Γn consists of a finite number of sentences, each of which is an instance of some
existential sentence in ∆n−1. So, we may write A1(d1), . . . , Am(dm) for the sentences in Γn,
and ∃v1A1(v1), . . . ,∃vmAm(vm) for their counterparts in ∆n−1. We assume then that

Γ,∆, A1(d1), . . . , Am(dm) ` B.

We may also assume that the sentences Ai(di) are numbered by their order of introduction;
thus, by stipulation, the constant di is not equal to dj for j < i, nor does di occur in any of
the sentences in Γ or ∆. Thus EE converts a proof Γ,∆, A1(d1), . . . , Am(dm) ` B to a proof

Γ,∆, A1(d1), . . . , Am−1(dm−1),∃vmAm(vm) ` B.

Repeating this process for each of the sentences Ai(di), there is a proof

Γ,∆,∃v1A(v1), . . . ,∃vmA(vm) ` B.

Since each of the sentences ∃viA(vi) is in ∆n−1, and hence in ∆, it follows that Γ,∆ ` B
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Lemma. Let B be a sentence that does not contain any constant symbols. If

Γ0, . . . ,Γn,∆0, . . . ,∆n ` B,

then R ` B.

Proof. Suppose that there is a proof

Γ0, . . . ,Γn,∆0, . . . ,∆n ` B.

Since each sentence in ∆n follows from a sentence in ∆0, . . . ,∆n−1 by UE, there is a proof

Γ0, . . . ,Γn,∆0, . . . ,∆n−1 ` B.

By the previous Lemma,
Γ0, . . . ,Γn−1,∆0, . . . ,∆n−1 ` B.

Now repeating the previous two steps, we arrive eventually at

Γ0,∆0 ` B.

But Γ0 = ∆0 = {R}. Therefore R ` B.

It follows immediately from the previous lemma that if R 6` P ∧ ¬P , then for all num-
bers n,

Γ0, . . . ,Γn,∆0, . . . ,∆n 6` P ∧ ¬P.

Of course, if there is no proof of P∧¬P from a set of sentences, then there is no proof of P∧¬P
from a smaller set of sentences. So if Θn is the set of sentences in Γ0, . . . ,Γn,∆0, . . . ,∆n that
contain no quantifiers, then R 6` P ∧ ¬P implies that Θn 6` P ∧ ¬P . By the completeness
of the propositional calculus, Θn is truth-functionally consistent. We want now to conclude
that the entire set

⋃∞
i=1 Θi is consistent (and so we can build a universe out of it!). That

claim is true, but not obviously so — we need to prove it.

Theorem (Compactness of Propositional Logic). Let Θ0,Θ1, . . . be finite sets of sentences
without quantifiers such that Θ0 ⊆ Θ1 ⊆ Θ2 ⊆ · · · . If each Θi is truth-functionally consistent,
then

⋃∞
i=1 Θi is truth-functionally consistent.

Proof. For each i, let Si be the set of truth valuations that make all sentences in Θi true.
By assumption, each Si is non-empty; and clearly S0 ⊇ S1 ⊇ S2 ⊇ · · · . We now define
inductively a sequence ε0, ε1, ε2, . . . of truth values with the following feature:

(?) For each i and j in N, there is a v ∈ Sj such that v(Pi) = εi,

which will ensure that the truth valuation v(Pi) = εi satisfies
⋃

j Θj.

Base case (i = 0) We first define ε0 such that for each j ∈ N, there is a v ∈ Sj such that
v(P0) = ε0. Now, either for all j, there is v ∈ Sj such that v(P0) = F , or there is a j such
that for all v ∈ Sj, v(P0) = T . In the first case, let ε0 = F . In the second case, let ε0 = T .
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In the second case, for each k ≥ j, all truth valuations v in Sk assign T to P0. In either case,
then, for all j, there is a v ∈ Sj such that v(P0) = ε0.

Inductive step (i = n + 1) Suppose that ε0, . . . , εn have been defined such that: (?) for
each i = 1, . . . , n and for each j ∈ N, there is a v ∈ Sj such that v(Pi) = εi. We now define
εn so that (?) is also true for i = 0, 1, . . . , n + 1. For each j ∈ N, let

Tj = Sj ∩ {v : v(Pi) = εi, for i = 1, . . . , n}.

That is, a truth valuation v is in Tj just in case it satisfies Θj and v(Pi) = εi for i = 1, . . . , n.
Since (?) is true for ε0, . . . , εn, each Tj is non-empty; and clearly T0 ⊇ T1 ⊇ T2 · · · . If for all
j ∈ N, there is v ∈ Tj such that v(Pn+1) = F , then let εn+1 = F . If there is a j ∈ N such
that for all v ∈ Tj, v(Pn+1) = T , then let εn+1 = T . As before, in this second case, all Sj

will contain a v such that v(Pn+1) = T = εn+1. Thus, (?) is true for i = 0, 1, . . . , n+ 1. This
completes the construction of the sequence ε0, ε1, . . . , and we have verified that (?) is true
for each i ∈ N.

Now define a truth valuation v by setting v(Pi) = εi for each atomic sentence Pi. We
claim that v(A) = T for all A ∈

⋃
i Θi. Indeed, if A ∈

⋃
i Θi, then A ∈ Θk, for some

finite k. Let {P0, . . . , Pm} contain all the atomic sentences in A. By (?), there is w ∈ Sk

such that w(Pi) = εi for i = 0, 1, . . . ,m. Moreover, since A ∈ Θk and w ∈ Sk, w(A) = T .
But v and w assign the same truth values to the atomic sentences occurring in A, hence
v(A) = w(A) = T .

With the compactness theorem (for propositional logic) in hand, we can now show that
there is an interpretationM in which R is true. Let v be a truth-valuation that assigns T to
each sentence in

⋃
i Θi, and define a predicate logic interpretation M by taking the domain

of quantification to consist of constant symbols that occur in
⋃

i Θi, and define the extension
of a predicate symbol S by

〈d1, . . . , dn〉 ∈ ExtM(S) iff v(Sd1, . . . , dn) = T.

To finish the argument, we must now show that R is true in M. To do so, we argue by
induction. Let Γ = (

⋃
i Γi) ∪ (

⋃
j ∆j). Obviously M makes every sentence in Γ with zero

quantifiers true. We show that ifM makes every sentence in Γ with n quantifiers true, then
it makes every sentence in Γ with n + 1 quantifiers true.

So let A be a sentence in Γ with n + 1 quantifiers. Let i be the stage at which A first
appears. If A is universal, then writing A = ∀vB(v), every sentence of the form B(c) with c a
constant occurring in Γ, will eventually be generated in Γ. Since B(c) has only n-quantifiers,
it is true inM. Thus, B(c) is true for every c in the domain of quantification; hence ∀vB(v)
is true inM. If, on the other hand, A is existential, then A = ∃vB(v), and B(c) is generated
for some constant c. By assumption,M makes B(c) true, and so it makes ∃vB(v) true. Since
R has a finite number of quantifiers, M makes R true, as was to be shown.
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