PHI 340 Handout

September 29, 2005

Lemma 1. If $X \subseteq Y$ and ω is a valuation that satisfies Y, then ω also satisfies X.

This is, um, obvious. But it's not an axiom; so if it's true, we should be able to prove it.

Proof. Suppose that $\mathcal{X} \subseteq \mathcal{Y}$, and that ω satisfies \mathcal{Y} . The latter statement means: ω satisfies every sentence in \mathcal{Y} . Let A be an arbitrary sentence in \mathcal{X} . Since $\mathcal{X} \subseteq \mathcal{Y}$, A is also in \mathcal{Y} . Thus, ω satisfies A. Since A was an arbitrary sentence of \mathcal{X} , ω satisfies every sentence in \mathcal{X} ; i.e. ω satisfies \mathcal{X} .

Recall that we have defined " $\mathcal{X} \models A$ " to mean: any valuation that satisfies \mathcal{X} (i.e. satisfies all sentences in \mathcal{X}) also satisfies A.

Lemma 2. If
$$X \subseteq \mathcal{Y}$$
 and $X \models A$ then $\mathcal{Y} \models A$.

Sketch of proof. We're trying to prove a conditional; so assume the antecedent, and try to derive the consequent. The antecedent is the conjunction of the following two statements:

- (A1) $\mathcal{X} \subseteq \mathcal{Y}$.
- (A2) $\mathcal{X} \models A$.

The consequent is the following statement:

(C)
$$\mathcal{Y} \models A$$
.

If we plug in the definitions of all of the relevant terms, we have:

- (A1) $\forall B(B \in \mathcal{X} \Rightarrow B \in \mathcal{Y}).$
- (A2) $\forall \omega(\omega \text{ satisfies } \mathcal{X} \Rightarrow \omega \text{ satisfies } A).$
- (C) $\forall \omega(\omega \text{ satisfies } \mathcal{Y} \Rightarrow \omega \text{ satisfies } A).$

The consequent (C) is a universal statement (about valuations). So, we fix an arbitrary valuation ω , and we try to prove the instantiated statement:

 ω satisfies $\mathcal{Y} \Rightarrow \omega$ satisfies A.

So, again, assume the antecedent and try to prove the consequent. The antecedent means that ω satisfies every sentence in \mathcal{Y} . Since $\mathcal{X} \subseteq \mathcal{Y}$, ω satisfies every sentence in \mathcal{X} . Since $\mathcal{X} \models A$, ω satisfies A. ETC . . .

[Note: I have slipped into the practice — abjured in PHI 201 — of using the same symbol " ω " both for a variable and for an arbitrary name. But this abuse is justified by the need to avoid notation inflation.]

Definition. If \mathcal{X} is a set of sentences, then $Cn(\mathcal{X}) = \{A : X \models A\}$.

Definition. Let \mathcal{X} be a set of sentences. We say that \mathcal{X} is a *deductive* system if $\mathcal{X} = Cn(\mathcal{X})$.

Proposition 1. If $X \subseteq \mathcal{Y}$ then $Cn(X) \subseteq Cn(\mathcal{Y})$.

Sketch of proof. Suppose that $\mathcal{X} \subseteq \mathcal{Y}$. Let A be an arbitrary sentence in $Cn(\mathcal{X})$. By definition, $A \in \{B : X \models B\}$, i.e. $X \models A$. By the previous lemma, $\mathcal{Y} \models A$. Thus, $A \in Cn(\mathcal{Y})$. Since A was an arbitrary element of $Cn(\mathcal{X})$, we have $Cn(\mathcal{X}) \subseteq Cn(\mathcal{Y})$.