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BETH’S THEOREM AND
CRAIG’S THEOREM

Beth’s theorem is a central result about definability of
non-logical symbols in classical first-order theories. It
states that a symbol P is implicitly defined by a theory
T if and only if an explicit definition of P in terms of
some other expressions of the theory T can be deduced
from the theory 1. Intuitively, the symbol P is implicitly
defined by T if, given the extension of these other
symbols, T fixes the extension of the symbol P uniquely.
In a precise statement of Beth’s theorem this will be
replaced by a condition on the models of T. An explicit
definition of a predicate symbol states necessary and
sufficient conditions: for example, if P is a one-place
predicate symbol, an explicit definition is a sentence of
the form (x)(Px = ¢(x)), where ¢(x) is a formula with
[ree variable x in which P does not occur. Thus, Beth's
theorem says something about the expressive power of
first-order logic: there is a balance between the syntax
(the deducibility of an explicit definition) and the
semantics (across models of T the extension of P is
uniquely determined by the extension of other symbols ).

Beth’s definability theorem follows immediately from
Craig’s interpolation theorem. For first-order logic with
identity, Craig’s theorem says that if ¢ is deducible
from, there is an interpolant 0, a sentence whose non-
logical symbols are common to ¢ and , such that 0 is
deducible from s, while ¢ is deducible from 0. Craig’s
theorem and Beth's theorem also hold for a number of
non-classical logics, such as intuitionistic first-order
logic and classical second-order logic, but fail for other
logics, such as logics with expressions of infinite length.

1 The axiomatic method

2 Beth’s theorem and Craig’s interpolation theorem
3 Further developments and applications
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1 The axiomatic method

Questions concerning the definabilit

arose within the development of the fogmglf ai(imceP!s
method by late nineteenth- and twentiethhczmauc
mathematicians such as Moritz Pasch Giumufy
Peano, David Hilbert and Alfred Tarski? Whaieppc
apart the formal axiomatic method from >ets
axiomatic thinking of, say, Euclid’s geom,
the primitive terms occurring in the

uninterpreted and the axioms devoid of a
and that the rules of reasoning have
completely explicit and formal. The axioms stat

purely formal relationships between the terms Thic
suffices for t'he purpose of deducing theorems fro'm th:
axioms by rigorous reasoniqg. The development of the
formal axiomatic method is the culmination of the
movement to rigorize mathematics started in the early
nineteenth century by mathematicians such as Cauchy
and Bolzano. But these earlier efforts were directed
chiefly towards ontology, for example, cleansing the
language of analysis of visual images and reference 1o
movement — and a mathematical theory still had
subject matter, albeit abstract. In the formal axiomatic
method the subject matter is provided from the outside
by an interpretation of the primitive terms of the
theory. One and the same theory may be open to
radically diverse interpretations.

A perspicuous system of axioms requires under the
formal axiomatic method the independence of each
axiom from the others: a dependent axiom can be
dropped without loss of content. Peano developed a
method to prove independence: give an interpretation
of the primitive terms which makes the one axiom
false and the others true. This now common method
is the formalization of an earlier idea of Eugenio
Beltrami who felt that the so-called non-Euclidean
geometry of Lobachevskii lacked a ‘real foundation’.
that is a foundation in actual physical space. In 1868
Beltrami offered an interpretation of this geometry in
terms of the acceptable Euclidean geometry: Loba-
chevskian ‘geometry’ could be understood as being
about a special kind of line (a geodesic) in a special
kind of plane (a surface with constant negative
curvature) in Euclidean space. But Beltrami’s project
was one of meaning and he did not have the
consistency of non-Euclidean geometry in mind nor
was he concerned with the independence of Euclid’s
parallel axiom. In fact, only two years 1ater, the
French mathematician Guillaume Hotiel pointed out
that Beltrami’s construction showed the i.ndependencc
of the parallel axiom: while the other axioms are true
for all planes, the parallel axiom holds only in planes
of zero curvature (see Scanlan 1988). _

Another idea from the pre-formal period was

the earlier
€try is thap
axioms are
Ty meaning;
been made
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absorbed by the formal axiomatic method through
the work of the Italian mathematician Alessandro
padoa, a close collaborator of Peano. Padoa was
concerned with the defl.nablhty of concepts. He
ointed out that there exists a parallel between, on
the one hand, the methodological concepts of being
an axiom and being derivable as a theorem and, on
the other hand, concepts from the theory of defini-
ion: the notion of primitive term correspondg to the
potion of being an axiom, and the notion of
Jefinability corresponds to the notion of deducibility.
A perspicuous system of axioms thgrefore also
requires the independence of the primitive concepts
used in the axioms. Padoa was thus led to ask in 1900
whether there could be a method to prove indepen-
dence of concepts, just as Peano’s method had shown
independence of axioms.

Early in the nineteenth century the French math-
ematician Jose Diez Gergonne had suggested the
contrasting terms ‘explicit’ and ‘implicit’ as regards
definition (Gergonne 1918-19). Gergonne’s distinc-
tion was suggested by the difference, in algebra,
between a set of solved equations, which gives as it
were explicit definitions of the unknowns, and a set of
unsolved equations which is strong enough to deter-
mine a unique solution for the unknowns. Gergonne
characterizes implicit definitions as ‘phrases that
make us understand one of the words that occur in
it through the known meaning of the other words’.
Analogously to the algebraic case, Gergonne requires
that the number of unknown words should be equal
to the number of phrases that together implicitly
define them. Completely forgotten by the end of the
nineteenth century it was Giovanni Vacca, an
assistant of Peano, who around 1896 gave a short
account of Gergonne’s paper on definitions. Padoa’s
paper (1901), read at the First International Congress
of Philosophy in Paris, is clearly motivated by
Gergonne’s work. To prove the independence of a
concept from the other concepts occurring in a theory
Padoa proposed a new method: find a true inter-
pretation of the theory, considered as an abstract
system, that remains a true interpretation when solely
the meaning of that concept is changed. Thus, though
l?adoa did not refer to Gergonne or use the term
‘implicit definition’, his so-called ‘two-model method’
establishes that a term is not implicitly defined by a
theory in the sense of Gergonne.

Since Padoa did not indicate how to construct the
two models it may be better to speak of the ‘Padoa
criterion” for undefinability. Padoa claimed without
further proof that his criterion was both necessary and
sufficient for the explicit undefinability of a given
Concept by means of the other concepts in a given
theory. Sufficiency is clear: if an explicit definition

were to be implied by the theory two such models
could not exist since the truth of the explicit definition
would force the uniqueness of the interpretation of the
explicitly defined term given an interpretation of the
other terms. But necessity is not obvious. Does the
absence of two such models guarantee that an explicit
definition exists and is derivable? With hindsight this
question could not have been answered at that time for
it requires a more careful specification of the under-
lying logical system than was available to Padoa.

Alfred Tarski (1935) answered the question affir-
matively for a modification of the ramified theory of
types of Whitehead and Russell’s Principia Mathema-
tica (see THEORY OF TYPES). His proof was a rather
straightforward derivation within the system, since
the meta-claim that Padoa’s two models do not exist
can be expressed in the language of type theory.

2 Beth’s theorem and Craig’s interpolation theorem

In 1953 the Dutch philosopher and logician Evert
Beth proved the necessity of Padoa’s criterion for
first-order or elementary logic. Beth showed that if no
explicit definition of a term can be deduced from a
theory, two models of the theory exist that differ only
in the interpretation of the term in question. More-
over, in his so-called semantic tableau method, Beth
found the means to construct systematically, in the
absence of definability, the two models required by
Padoa’s criterion, albeit often through an infinite
process, while a closed tableau makes it possible to
find an explicit definition of the term in question (see
NATURAL DEDUCTION, TABLEAU AND SEQUENT
SYSTEMS §4). Beth thus took away some of the
concerns of the American mathematician Oswald
Veblen who had remarked in 1902 that what Padoa
proposed ‘seems hardly adequate’ when the issue was
to replace an axiomatic system by one with indepen-
dent axioms and independent terms, since he gave no
method to find the two models and thus prove
independence, or to construct the explicit definition,
in the case of dependency.

Let L be a first-order language and P an arbitrary
non-logical constant not in L. Let L{P) denote the
language obtained by adding P to L. To simplify our
notation we will assume that P is a one-place
predicate symbol. If 7 is an arbitrary theory in the
language L, then T(P) will be a theory in the
language L(P). Deducibility in first-order logic will
be denoted by ‘. An interpretation or model M for
L specifies extensions in a domain D for all the non-
logical constants of L (see MODEL THEORY). If Misa
model of L, a model of L(P) will be denoted by
(M, X), where X is a subset of the domain D of M.
Thus P is here interpreted as the subset X.
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We will now define the notions of explicit and
implicit definability. T(P) is said to define P explicitly
if there is a formula ¢(x) of L such that
T(P)F (x)(Px=¢(x)). If P is not a one-place
predicate symbol, this definition can be modified in
the obvious way. Furthermore, let T be the set of first-
order consequences of T(P) in the language L, in
which P does nor occur. Then T'(P) is said to define P
implicitly when, for every model M of T, there is
exactly one expansion (M, X) of M which is a model
of T'(P).

‘Beth’s definability theorem’ for first-order logic
states that a theory T'(P) defines a term P implicitly if
and only if T(P) defines P explicitly. Beth’s original
proof of 1956 uses a modification of Gentzen’s
‘extended Hauptsatz’, which shows that, in first-order
logic, every proof can be carried out without any
detours. Nowadays Beth’s theorem is usually proved
to be a direct implication of Craig’s interpolation
theorem.

‘Craig’s interpolation theorem’ for first-order logic
with identity says that if a sentence ¥ of first-order
logic entails a sentence 6 there is an ‘interpolant’, a
sentence ¢ in the vocabulary common to 8 and y, that
entails 0 and is entailed by . William Craig originally
proved this theorem as a lemma to be used in
obtaining a simpler proof of Beth’s theorem (Craig
1957). Since then, however, the result has come to
stand on its own.

We will now sketch a proof that Craig’s theorem
implies Beth’s theorem. Since first-order logic is
complete, implicit definability, a model-theoretic
condition, is equivalent to the following deducibility
condition, which is in fact Beth’s original definition of
(implicit) definability. Let P’ be a one-place predicate
not in L and distinct from P, and let T(P') be the
theory in L(P') obtained by replacing P by P’ in T(P)
wherever it occurs. Then P is implicitly defined by
T(P) if and only if T(P)UT(P)F (x)(Px=Px).
Assume now that this condition holds, and that T'(P)
is a finite set of sentences, or, rather, one big
conjunction of axioms, and similarly for T(P'). So
we can write 7(P) & T(P') - (x)(Px = P'x). But then
also T(P)& Pct (T(P')— P'c), where ¢ is a new
individual constant not in L. By Craig’s theorem there
is an interpolant ¢(c) such that T(P) & Pct ¢(c)
and ¢(c) - (T(P") — P'c). Since P’ does not occur in
¢(c) it is also true that ¢(c)t (T(P) — Pc). Thus
T(P)+ (Pc= ¢(c)). Since ¢ does not occur in T(P),
we also have T'(P)F (x)(Px = ¢(x)). This completes
the proof that if T(P) defines P implicitly, then 7T'(P)
defines P explicitly. The other direction of Beth’s
theorem follows independently of Craig’s theorem.
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3 Further developments and applications

Again., let T be the set of ﬁrst-prder consequences of
T(P) in the language L. We said that T(P) define
implicitly when for every model M of T thereS'P
exactly one expansion (M,X) which is 5 mode] lsr
T(P). In Padoa’s method two models (M, x) aod
(M, X") of T(P) are exhibited. Another way whi‘;h
implicit definability can be violated is if there is
model of T that cannot in any way be expanded to a
model of the full T(P). Karel de Bouvére (195923
studied this so-called one-model method tq show
undefinability of addition and multiplicatiop in
number theory. In the philosophy of science literature
this is called a failure of Ramsey eliminability of the
term.

Not to be confused with the above concept of
definability of a term in a theory is the concept of
definability of a set in a model which, for Tarskj
belongs to semantic definability rather than to thé
formal definability involved in Padoa’s question since
now we have a fixed model for an interpreted
language. Given a model M of L, a subset X of jig
domain D is definable in the model M if there is a
formula of L with one free variable ¢(x) such tha
(x)(Px = ¢(x)) is true in (M, X), where P is inter-
preted as X. Obviously, if P is explicitly definable in
T(P) and if (M,X) is a model of T(P), then X is
definable in M. Moreover, the concept of definability
in a model can be iterated, whereas definability of a
term in a theory cannot since a set of terms is not
itself a term of the language.

We say that the predicate P is definable in a model
(M, X) of T(P) if an explicit definition of P holds in
(M,X). Different models of T(P) may satisfy
different, non-equivalent definitions. But a theorem
proven by Lars Svenonius in 1959 shows that if P is
definable in every model (M, X) of T(P) then each
model (M,X) of T(P) satisfies one of a finite list of
definitions. That is, T(P) implies a (finite) disjunction
of explicit definitions of P. This property is called
‘explicit definability up to disjunction’ or ‘piecewis¢
definability’.

In model theory the concept of ‘a logic’ is defined
and logics for which Craig’s interpolation theorem
hold are said to have the Craig or interpolation
property; similarly for the Beth property. Any usual
logic with the Craig property has the Beth property.
but the latter has been shown to be weaker.

See also: DEFINITION; GEOMETRY, PHILOSOPHICAL
ISSUES IN; LOGICAL AND MATHEMATICAL TERMS,
GLOSSARY OF
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