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Theoretical Equivalence and the Semantic View of Theories 

 

 

Abstract 

 

Halvorson (2012) argues through a series of examples and a general result 

due to Myers (1997) that the “semantic view” of theories has no available 

account of formal theoretical equivalence. De Bouvere (1963) provides 

criteria overlooked in Halvorson’s paper that are immune to his 

counterexamples and to the theorem he cites. Those criteria accord with a 

modest version of the semantic view, sometimes assumed in Halvorson’s 

arguments, that rejects some of van Fraassen’sapparent claims while retaining 

the core of Patrick Suppes’ proposal (1967). I do not endorse any version of 

the semantic view of theories. 
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1. Introduction  

 

Halvorson (2012) argues that the “semantic view” of theories, (Suppes, 

1967;van Fraassen, 1980), has, and can have, no account of theoretical 

equivalence—indeed, it “fails miserably”to be amenable to any such account. 

He considers three model theoretic criteria for theoretical equivalence—

identity, equicardinality of model classes, and 1-1 onto mapping of models of 

one class to isomorphic models of the other class. He produces 

counterexamples to each of them, and claims the three possibilities exhaust 

the plausible alternatives. I have no brief for the semantic view, but whatever 

its faults, Halvorson’s objections on this score need not be among them. The 

reasons reveal aspects of the semantic view that some of its advocates appear 

to have contradicted or at least chosen not to display, and suggest that, 

despite the rhetoric of its advocates, in important respects a tenable version of 

the semantic view is not much different from the “syntactic” view that, 

whatever more it may be, a theory is something that is said in a language. 

 

Halvorson also criticizes van Fraassen’s claims that for philosophical purposes 

model theory has more explanatory resources than logical syntax, but I shall 

not be concerned with those comments.  Halvorson’s broader point is that the 

rhetoric of the semantic view regrettably eschews the full resources of logic 

and mathematics that are needed to understand the properties of theories, 

and I agree, but I will not elaborate.  My argument is entirely with his claim 
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that no plausible account of the structural equivalence of theories is available 

to the semantic view that defeats his criticisms.  Such an account has been 

available for almost half a century. 

 

2. Syntax and the Semantic View of Theories 

 

Halvorson’s strategy is to examine three model theoretic mappings that might 

correspond to interdefinability relations of syntactical objects--sentences or 

formulae--and finding that all three succumb to his counterexamples, infers 

that no account of theoretical equivalence is possible on the semantic view of 

theories. I will dispute Halvorson’s contention that his counterexamples refute 

all possible accounts of theoretical equivalence compatible with the semantic 

view, but, first, two lacunae in his argument need to be addressed, gaps that 

might be thought to invalidate his argument (and mine) without the necessity 

of considering the details of his examples or offering an alternative to his 

three possible criteria for theoretical equivalence. I think one of the gaps can 

be filled, and the other is sufficiently vague that it is worth considering 

Halvorson’s arguments without trying fully to fill the hole. 

 

First, it can be objected that Halvorson’ strategy begs the question against the 

semantic view. The objection goes like this: Many of Halvorson’s examples are 

model classes characterized as the models of a first-order theory in the 

ordinary linguistic sense of “theory,”and he requires that different 

formulations of the same theory be “interdefinable” by a mutual 

interpretability relation. But according to the semantic view a theory just is a 
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class of relational structures, and therefore interdefinability relations among 

syntactical objectsare irrelevant.  

 

That is not among my objections to Halvorson’s arguments because I think the 

objection is quite wrong, obviously wrong, for the following reasons: On the 

semantic view, to present a theory is to specify a class of relational structures. 

That can only be done through a description, in a language, of the class of 

structures. 

 

Patrick Suppes (1967), for example, says that a theory is a set theoretic 

predicate, and a predicate is something linguistic.  Van Fraassenseems to take 

exception: “The impact of Suppes’ innovation is lost if models 

are defined, as in many standard logic texts, to be partially linguistic 

entities, each yoked to a particular syntax. In my terminology here the 

models are mathematical structures, called models of a given theory only by 

virtue of belonging to the class defined to be the models of the theory” (1989, 

366).Other writers (e.g., Lloyd, 1984), perhaps influenced by van Fraassen, 

suggest that model classes are directly given with the use of a language.What 

they, and van Fraassen,unlike Suppes, say cannot be taken entirely 

seriouslybecause it yields a conception of theories that makes them ineffable 

and their characterization magical. Newton, Einstein, Schrodinger, etc., had no 

way of specifying the class of relational structures they intended except 

indirectly as those structures satisfying their theoretical claims.  Nor do we 

today.  The “yoke” to language may be neglected, but it remains. 

 

To be at all plausible, the semantic view must distinguish between the content 
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of a theory—its class of models—and the means of characterizing that class—

the theory expressed in some language. That specification is only possible if 

predicates in the language denote specific relations in each model for the 

theory—otherwise the very notion of a theory—even construed as a complex 

predicate—specifying the class of models it is true of or satisfied by makes no 

sense. Advocates of the semantic viewimplicitly agree ingiving examples 

implying that the models constituting the content of a theory are described by 

open formulae or equations, oftenwith the qualifying conditions of the usual 

formulations of the theory removed. Thus Lloyd (1984) describes population 

genetics models by various sets of equations, and van Fraassen describes 

theories as given by dynamic laws among variables ranging in value over 

some “state space,” so that, for example, the models of Newtonian 

gravitational theory are described as the solutions to the dynamical equations 

, eliminating “force” between the second law of motion and the gravitational 

force law, with the third law as a constraint.Equations are sentences or 

formulas in a language. (If the models were construed to be relational 

structures that satisfy claims with qualifiers such as “If all forces are 

gravitational…” or “If all non-gravitational forces cancel….”, or with the 

corresponding suppositions, the model structures would have to be more 

elaborate than van Fraassen proposes, but my point would remain.) 

 

The space of models of, say, Newtonian theory cannot be directly indicated by 

pointing, or looking in a magic closet, or through a magical looking class. Van 

Fraassen may be slippery, but he is not silly. Like it or not, on the semantic 

view language and logical syntax are indispensable tools for the presentation 

of theoretical content, and that being so, there is no reason why proposed 
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syntactical equivalence relations corresponding to model theoretic 

equivalence relations should not be considered, and no reason why the fact 

that relations in different models are co-denoted by the same expression in a 

language should not be taken into account. It is a familiar point that one and 

the same theory can be specified in different languages, and we expect some 

interdefinabilityrelations between the sentences of the theory in two or more 

such presentations. Halvorson is correct in assuming that what the semantic 

view requires is an account of theoretical equivalence in which 

interdefinability relations between linguistic presentations of theories are 

somehow accommodated by relations among models or classes of models of 

the theories, and vice versa.  It’s just that Halvorson has the 

wronginterdefinability relations and the wrong model theoretic relations. 

 

A tenable semantic view, as I construe it, also requires that there is a model 

theoretic relation that establishes a common content to different 

presentations of a theory in different languages. Invariance over alternative 

linguistic presentations is of course not the same as having no suppositions 

about relations between structures and languages; it is not the same as being 

entirely a-lingual. It is a weaker requirement, but one that I will argue can be 

met. Ideally, equivalences characterized by interdefinability of languages and 

theories would perfectly correspond with the appropriate model theoretic 

equivalences, and I will argue that that, too, can be satisfied. 

 

A second objection to Halvorson’s argument is that he does not consider 

observational constraints. At least on van Fraassen’s version of the semantic 

view, an equivalence relation among theories ought to preserve observational 
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equivalence: the equivalent theories should make the same observational 

claims. Two theories might be equivalent by the kinds of structural relations 

among models that Halvorson considers, or others, but nonetheless be 

inequivalent because they make different observational claims, or because the 

observational fragments of their models are distinct. According to van 

Fraassen (2006), what counts as observational adequacy of a theory for a 

body of data is that a “data model” can be “embedded” in a model of the 

theory.  I am not sure what a “data model” is, for example whether it is a 

collection of instances of relations or values of a function, or whether it is a 

general relation—e.g., a collection of records of the positions of a planet 

versus an orbit for the planet. No matter: to take but one of Halvorson’s 

criteria for equivalence, isomorphism, if two models are isomorphic then any 

relational structure (i.e., any “data model”) than can be isomorphically 

embedded in one can be isomorphicallyembedded in the other. It would seem 

therefore than some purely formal model theoretic equivalence relation 

shouldbe necessary and sufficient for observational equivalence on the 

semantic view of theories. Even if some further invariance were required—for 

example, if substructures of all modelswere somehow designated as 

“observational,” (although that, too, could only be specified in a language) and 

relations among model classes sufficient for theoretical equivalence had also 

to map “observational substructures” to isomorphic “observational 

substructures”--a formal equivalence relation of some kind between model 

classes would be at least necessary for theoretical equivalence. 

 

 

3. Isomorphisms and Objections 
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Halvorson offers three possible criteria of equivalence, identity of model sets, 

equicardinality of model sets, and 1-1 correspondence of isomorphic models, 

of which only the last is minimally plausible: two sets of models are equivalent 

if and only if there is a bijection taking models to isomorphic models. Without 

defining “isomorphism,” Halvorson gives two examples to show that his 

isomorphism criterion makes inequivalent theories equivalent, an example to 

show that it leaves equivalent theories inequivalent, and a general argument. 

Other examples show that identity and equicardinality proposals would make 

obviously inequivalent theories equivalent. Since these latter criteria 

arepatently in disagreement with the criteria for theoretical equivalence I will 

describe,I will ignore them and the examples addressed to them. 

 

Halvorson’s first isomorphism example reveals a fundamental ambiguity in 

the notion of “isomorphism.”That argument is as follows: 

 

“Let L(T) be the language with a countable infinity of 1-place predicate 

symbols P1; P2; P3;…and let T have a single axiom =1x(x = x) [there is exactly 

one thing]. Let L(T0) be the language with a countable infinity of 1-place 

predicate symbols Q0;Q1;Q2…, and let T0 have axioms =1x(x = x) as well as 

Q0x ->  Qi x for each i in N. 

 

“…every model of T is isomorphic to a model of T0 and vice versa. Indeed, a 

model of T has a domain with one object that has a countable infinity of 

monadic properties, and model of T0 also has a domain with one object that 

has a countable infinity of monadic properties. Therefore, T and T0 are 
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equivalent according to [the isomorphism] criterion... And yet, T and T0 are 

intuitively inequivalent. We might reason as follows: the first theory tells us 

nothing about the relations between the predicates; but the second theory 

stipulates a non-trivial relation between one of the predicates and the rest of 

them. Again, our intuition is backed up by the syntactic account of 

equivalence: the theories T and T0 are not definitionally equivalent....” 

 

Halvorson does not define what he means by “isomorphism,” and that turns 

out to be crucial. In footnote 5 of his paper he claims that there is no notion of 

isomorphism between models of different theories, which seems flatly to 

contradict the argument he gives above. Since I cannot make his text 

consistent, I will defend the argument rather than the footnote and offer an 

interpretation of “isomorphism” that makes sense of the quoted text. I take it 

from the example that his idea is something like this: M1 = <D1; Q0…>, M2 = < 

D2; P0…>, where the Qs and Ps are relations of any orders, are isomorphic if 

and only if there is a 1-1 map f from D1 onto D2 and a 1 -1 map g from the Q’s 

onto the P’s taking each n-order relation to an n-order relation, and for all nth 

order Q and all d1..dn in D1, (f(d1),...,f(dn))g(Q)if and only (d1…, dn)Q., and (to 

be redundant) inversely. Halvorson might have had in mind a relation that is 

in some respects more general than this, for example allowing appropriate 

expansions by new relations of models in various model classes. I cannot tell 

from his text.  But in any case the notion of isomorphism Halvorson uses in the 

example is purely structural—any nth order relation can be mapped to any 

other nth order relation.Thus, in his example, if M1 is a relational structure for 

the P language of his example in which all P properties hold except P0, and M2 

is a structure in which all P properties hold except P1, Halverson would count 
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(indeed have to count) as an isomorphism the map that interchanges P0 to P1 

and leaves all other P properties unchanged.  That P0 is the interpretation of 

the predicate P0 and P1 the interpretation of the predicate P1 is ignored by the 

isomorphism. The relations become merely placeholders. That is a natural 

enough notion of isomorphism but it is not the standard notion of model 

theory, and, I claim, since Halvorson is considering mappings for relational 

structures for definite languages, it is the standard notion that is appropriate 

for the semantic view and the one that the semantic view must adopt if it is to 

allow a theory to be presented at all. 

 

The more restricted notion of model isomorphism standard in model theory 

requires that isomorphic relational structures be elementarily equivalent, and 

so the maps Halvorson to which refers in his exampleare not always model 

isomorphisms. More exactly, let L be a first order language, and M1, M2 be 

relational structures for L. An isomorphism between M1, and M2 is a 1-1 map f 

of the domain of M1 onto the domain of M2 such that for each nth order M1 

relation R1, and nth order relation R2, that are respectively interpretationsin 

M1 and M2of a predicate R in L, and for each a1, …,an elements of the domain of 

M1,<a1, …, an>R1if and only if <f(ai)…f(an)>R2. For brevity I will sometimes 

refer to the notion of isomorphism I impute to Halvorson as “H-isomorphism” 

and the standard model theoretic notion as “M-isomorphism.” 

 

Although Halvorson’s example assumes the model classes he considers are 

generalized elementary i.e., the class of all models of a first-order theory in the 

language of the theory, the sense of isomorphism I impute to Halvorson’s 
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example is more general than that. It presumes no syntactic structure, no 

language, whereas the more restricted notion of isomorphism implies that 

each class of structures considered for equivalence is generalized elementary 

and isomorphism preserves elementary equivalence. On the one side, in his 

notion of isomorphismHalvorson has taken very strictly untenable claims that 

theories are entirely language free; on the other side,he presumes that 

theories include sentences that must be intertranslatable for theoretical 

equivalence. Some of his examples turn on that misfit. Halvorson’s 

examplesare reasons that advocates of the semantic view had better want the 

more restricted model theoretic notion of isomorphism, and had better ‘fess 

up to the linguistic requirements of their view. They can do so, I think, without 

surrendering the claim that the content of a theory is its model class, but van 

Fraassen’sphrasing, quoted above, of what a theory must be cannot be 

sustained.  

 

How can M-isomorphism be used to explicate the equivalence of theories in 

different languages, and how can that be done purely model theoretically?  It 

is done through the notions of common definitional extensions and common 

definitional expansions. A definitional extension of a language L by a new 

predicate R is a formula R(x) <->(x) in the language L + R  of L extended with 

R, where x is a vector of variables and no other variables occur free in the 

formula, and (x) is a well-formed formula of L. Common definitional 

extensions are mutual interpretations, but not all mutual interpretations are 

common definitional extensions.A definitional expansion by relation R of a 

model M of a theory T with language LT enriches (or, in other terminology, 

expands) M with R to form a structure for the language LT+R satisfying a 
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definition extension of LT by R.  A definitional expansion by R of the class of 

models of T expands each model of T by R forming an expanded class of 

models such that there is a definition of R (in terms of LT) in LT+ Rthat is 

satisfied by all models in the expanded class. Another way of putting the idea 

is coalescence:  two theories T, T’ in disjoint languages are coalescent if and 

only if their model classes can each be expanded to a class of relational 

structures for LT’ U T so that every M-isomorphism of a T model extends 

uniquely to an M-isomorphism of an expanded structure, and every M 

isomorphism of a T’ model extends uniquely to an M-isomorphism of an 

expanded structure, and the expanded model classes are identical. Now, two 

theories in disjoint non-logical vocabularies can be said to be formally 

equivalent if and only if they have a common definitional extension, or if there 

model classes have a common definitional expansion, or are coalescent. It 

turns out that these alternative criteria for equivalence are equivalent. The 

formalization and proof are due to de Bouvere. (1965). And so, we have, as 

advertised, an account of the formal aspects of theoretical equivalence that 

perfectly matches interdefinability with model theoretic relations and can be 

accommodated by a tenable version of the semantic view of theories. 

 

Back to Halvorson’s example. Consider two models, M1and M2, one in which P1 

and only P1 does not hold of the unique individual in the M1 domain, and 

another from his example in which P2 and only P2 does not hold of the unique 

individual in the M2domain, and a third model M3 in which Q0 and only Q0 does 

not hold of the unique individual in M3. Each of the first two models is H-

isomorphic to the third, mapping Q0 respectively to P1 and to P2. But since 

compositions of H-isomorphisms are H-isomorphisms,the map taking P1 to Q0 
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composed with the map taking Q0 to P2 should be an H-isomorphism of M1 and 

M2.  ButM1 and M2 are not even elementarily equivalent.  Halvorson’s argument 

is thus invalid for M-isomorphism.  

 

Since T has no-non-logical consequences, by Beth’s theorem so will any 

definitional extension of T, so no definition of Q predicates in terms of P 

predicates can entail the non-logical truths Q0(x) -> Qi(x). So T0 cannot be a 

consequence of a definitional extension of T. So the theories have no common 

definitional extension, and their model spaces are, by de Bouvere’s theorem, 

not coalescent. 

 

Halvorson’s second example is the case of theories with no finite models that 

arecategorical in every infinite cardinality.  

 

“For this example, we recall that there is a pair of first-order theories T and 

T0each of which is k categorical for all infinite k, but they are not definitionally 

equivalent to each other. By categoricity, for each cardinal k, both T and 

T0have a unique model (up to isomorphism) with domain of size k. Thus, there 

is an invertible mapping that pairs the size-k model of T with the size-k model 

of T0… for each cardinal number k, T has a 

unique model of cardinality k and T0 has a unique model of cardinality 

k. Therefore, for each model m of T there is a model m0 of T0 and a 

bijection (isomorphism of sets) . Thus, every model of T is isomorphic to a 

model of T0…even though they fail to be definitionally equivalent.” 

 

Halvorson’s conclusion fails with M-isomorphism. It is possible for two 
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theories categorical in power to fail to have coalescent model classes or 

common definitional extensions or expansions. For example, relations of a 

countable model of theory 2imposed by expansion on a countable model of 

theory 1 may not bepreserved by the (uncountable) infinityof automorphisms 

of the modelof theory 1 (see Ehrenfeucht, 1966). 

 

To show that the H-isomorphism condition is too strong, treating equivalent 

theories as inequivalent, Halvorson gives the following example: 

 

“Example: Boolean Algebras. Let B be the class of complete atomic 

Boolean algebras (CABAs); that is, an element B of B is a Boolean algebra such 

that each subset S B has a least upper bound ∨(S) and such that each 

element b B is a join b = ∨bi, where the biare atoms in B. Now let S be the 

class of sets.  

 

“What does the semantic view say about the relation between the theoriesB 

and S?...an arbitrary set S cannot be equipped withoperations that make it a 

Boolean algebra; for example, there is no Booleanalgebra whose underlying 

set has cardinality 3. Thus, there are structuresin the class S that are not 

isomorphic to any structure in the classB…I claim, however, that the “theory of 

sets” is equivalent to the “theoryof complete atomic Boolean algebras.” 

Indeed, to each set S, we canassociate a CABA, namely, its power set F(S) with 

the operations of union,intersection, and complement. Furthermore, the set 

G(F(S)) of atoms ofF(S) is naturally isomorphic (as a set) to S. In the opposite 

direction, toeach CABA B we can assign a set, namely, the set G(B) of its atoms, 

andit follows that B is isomorphic (as a Boolean algebra) to F(G(B)). 
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Tosummarize, there is a pair of mappings F :S ->B and G : B ->S that areinverse 

to each other, up to isomorphism.” 

 

It is difficult to know what to make of this argument because it changes the 

game.By Stone’s famous theorem, a set theoretic object—a field of sets--can be 

defined from a Boolean algebra, but onlyusing set theoretic operations that 

are not Boolean operations, and for atomic algebras that object will be (or be 

isomorphic to) an object—a power set—that can be defined in a model of set 

theory as Halvorson says. In the example, he has not expanded the Boolean 

algebras by using only Boolean relations—he has used set theoretic relations 

in addition. In a model of set theory he has considered a set theoretic object 

and considered only isomorphism between that object and anobject 

constructed via set theory—the power set of the set of atoms--from the 

Boolean algebra. He has shownonly that there is an embedding of an set 

theoretic expansion of the Boolean model in a model of set theory. No mutual 

translation of all set theoretic statements into the language of Boolean algebra 

is on offer, let alone a common definitional extension.  Halvorson’s conclusion, 

that set theory and the theory of complete, atomic Boolean algebra are the 

same theory, does not seem to follow at all. 

 

The example does suggest that definability questions might be considered in 

the context of higher order logics that have some set theoretic expressivity 

without explicit set-theoretic axioms. Perhaps Halvorson’s argument could be 

reformulated in that way, but it does not seem promising. On the one hand, 

Beth’s theorem holds for second order logic with Henkin’s semantics. De 

Bouvere’s theorem is a consequence of Beth’s theorem for first-order logic, 
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and one expects that a similar result holds for second-order Henkin logic, 

although I know of no proof. On the other hand, if the logic is unformalizable 

second-order logic, models can only be distinguished up to isomorphism by 

the cardinalities of their domains.  

 

Halverson’s general argument is as follows: 

 

“Proposition. A definitional equivalence of theories does not necessarilyentail 

that these theories have isomorphic models. In particular,there are first-order 

theories T and T’ and a definitional equivalence. F: T -> T’. Furthermore, for 

any definitional equivalence, F: T ->T’,there is a model m’ of T_ such that the 

cardinality of m’ is not equalto the cardinality of F*(m ) [F* is the 

contravariant model map induced by F from models of T’ to models of T.] 

Proof. Let T be the empty theory formulated in a language with a 

single binary predicate R. Let T’  be the empty theory formulated in 

a language with a single ternary predicate S. Myers (1997) proves 

that there is a definitional equivalence consisting of maps F : T -> T’ 

andG: T’ ->T. 

 

“Now we prove that there is no definitional equivalence F :T -> T’  

such that for all models n of T, T’,  Card(n) = Card(F*(n)) for all models n of T’. 

For this, we only need the simple fact that definitional equivalences are 

conservative with respect to isomorphisms between models; that is, ifF*(n) = 

F*(n’) then n = n’. Now let A be the set of isomorphismclasses of models mof T’ 

such that Card(n) = 2. Let B be the set ofisomorphism classes of models m of T 

such that Card(m) = 2. ClearlyB is a finite set that is larger than A. By 
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conservativeness, F*(B) is 

larger than A; hence, there is an nB such that F*(n) [is not] A. But 

thenCard(n) =2 and Card(F*(n)) [is not] = 2. QED.” 

 

It is correct that the two isomorphism classesHalvorson considers (the 

difference between H-isomorphism and M-isomorphism does not matter 

here) have different cardinalities. The example also shows that the two sets of 

models—all models of a binary relation and all the models of a ternary 

relation—trivially are not coalescent since the cardinalities are different for 

isomorphism classes of models of the respective empty theories whose 

domains are equicardinal.There is no pair of definitional extensions of ternary 

predicate T(x, y, z) from formulas in terms of binary predicate B(u, w) (where 

u, w may be any of x, y, z) and of B(x,y) from formulas in terms of T(u, w, v) 

(where u, w, v may be either of x, y) that, added to the respective empty 

theories results in logically equivalent theories. If there were, then since both 

the binary and the ternary theories are empty, every first order theory with 

only a ternary primitive predicate would have a common definitional 

extension with a theory with only a binary primitive predicate,but Robinson 

(1959) shows that elementary first-order Euclidean and hyperbolic 

geometries, expressible with a ternary primitive, cannot be expressed 

equivalently with a single binary primitive. 

 

Myersuses a notion of interdefinability, “isomorphic interpretability,” that is 

distinct fromhaving a common definitional extension or coalescent model sets, 

but includes these as a special case, and, as Halvorson argues, is also distinct 

from H-isomorphic bijections of the model classes.The empty theory of the 
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binary relation and the empty theory of the ternary relation are interpretively 

isomorphic in that every binary structure can be paired with a ternary 

structure (for simplicity, on the same domain), and conversely in such a way 

that the collection of such structures is the elementary class of an 

axiomatizable theory and such that every (M) isomorphism of the binary 

reductof a model in the class determines an isomorphism of the ternary 

reduct and conversely. There are maps from the binary language to the 

ternary language, and conversely, but as noted they do not determine a 

common definitional extension. Interpretive isomorphism guarantees that 

many important properties of theories are shared, but Myers remarks that 

some meta-mathematical properties one might think necessary for 

equivalence are not preserved by interpretive isomorphism, for example: 

having a one-element model;being logically equivalent to a theory whose 

axioms are equations; having a universal axiomatization (every substructure 

of a model of the theory is a model of the theory); and closure with respect to 

unions of chains of models. (I do not know of proofs that all of these 

properties are shared by theories with a common definitional extension, but I 

conjecture they are.) 

 

Halvorson asserts that theoretical equivalence is a collective, or global 

property of the set of models of the theories, and that seems correct. Both 

coalescence and interpretive isomorphism are global in the sense that they 

require a quantification over all models of each theory and more than the 

existence of a 1- 1 map taking models to H-isomorphs. Interpretive 

isomorphism offers an account of theoretical equivalence that the semantic 

view of theories could conceivably adopt: given that the semantic view must 
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allow syntactic structures as the means of presentation of scientific theories, I 

suppose it can allow the existence of syntactic structures (e. g., the 

axiomatizability required for interpretive isomorphism) as part of the means 

of defining or establishing theoretical equivalence. But then again, perhaps 

those advocates should have misgivings both because, as Myers proves, the 

empty theory of the binary relation is interpretively isomorphic to the empty 

theory of any n-ary relation, n greater than 2, and because, if, as I have 

suggested, the syntax of their model descriptions is in terms of equations, 

interpretive isomorphism does not preserve the property that a theory can be 

expressed in equational form.  

 

4. Conclusion 

 

Halvorson’s fundamental viewpoint is that the restrictionson mathematical 

analysis that advocates of the semantic view wish to impose would deny to 

investigators the full resources of logic and mathematics that are needed to 

understand the properties of theories, and I agree. For example, the 

differences betweencommon definitional extensions and interpretive 

isomorphisms seems worth exploring , and there may be other interesting, 

alternative candidates for formal theoretical equivalence. Halvorson 

concludes with a hopeful reference to recent work in category theory for the 

promise of a deeper account of theoretical equivalence and perhaps other 

relations of methodological interest.  I cannot, and would not, refute a hope, 

and I leave its development to him with good wishes but with this caveat: on 

the one hand, his arguments thus far do not show that a tenable version of the 

semantic view of theories has no available account of theoretical equivalence; 
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on the other hand, the accountof theoretical equivalence that best fits the 

semantic view provides no grounds for insisting on a purely model theoretic 

conception of scientific theories utterly free of the fetters of language--a view 

untenable on its face the moment one considers how the space of models of a 

theory can possibly be indicated.  And I think the second hand is the 

conclusion that should be drawn from Halvorson’s discussion of theoretical 

equivalence. 
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