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Abstract In 1894 Pierre Curie announced what has come to be known as
Curie�s Principle: the asymmetry of e¤ects must be found in their causes.
In the same publication Curie discussed a key feature of what later came
to be known as spontaneous symmetry breaking: the phenomena generally
do not exhibit the symmetries of the laws that govern them. Philosophers
have long been interested in the meaning and status of Curie�s Principle.
Only comparatively recently have they begun to delve into the mysteries of
spontaneous symmetry breaking. The present paper aims to advance the dis-
cussion of both of these twin topics by tracing their interaction in classical
physics, ordinary quantum mechanics, and quantum �eld theory. The fea-
tures of spontaneous symmetry that are peculiar to quantum �eld theory have
received scant attention in the philosophical literature. These features are
highlighted here, along with a explanation of why Curie�s Principle, though
valid in quantum �eld theory, is nearly vacuous in that context.

1. Introduction

The statement of what is now called Curie�s Principle was announced in 1894
by Pierre Curie:

(CP) When certain e¤ects show a certain asymmetry, this asym-
metry must be found in the causes which gave rise to it (Curie
1894, p. 401).1

This principle is vague enough to allow some commentators to see in it pro-
found truth while others see only falsity (compare Chalmers 1970; Radicati
1987; van Fraassen 1991, pp. 23-24; and Ismael 1997). I will give a formu-
lation of (CP) that makes it virtually analytic. Nevertheless, I claim, the
principle so understood is useful in guiding the search for explanations of
observed asymmetries.
Some commentators credit Curie (1894) with recognizing the importance

of the phenomena that lie at the the roots of the concept of spontaneous
symmetry breaking (see, for example, Cao 1997, p. 281). If this attribution

1



is correct it would seem to create an irony for other commentators who take
spontaneous symmetry breaking to undermine Curie�s Principle (see Radicati
1987). Part of the di¢ culty here is due to the facts that there is no canonical
de�nition of spontaneous symmetry breaking and that this notion is used in
di¤erent ways in di¤erent contexts. At least three di¤erent strands to the
discussion of this concept can be distinguished.
The �rst and, perhaps, most fundamental strand leads to cases where

there is a symmetry of the equations of motion or �eld equations of a system
that is not a symmetry of a state of the system that is of special physical
signi�cance.2 Without the quali�er �of special physical signi�cance,�3 cases
of spontaneous symmetry breaking would be all too easy to �nd. That a
law of motion/�eld equation obeys a symmetry principle�say, time rever-
sal invariance or invariance under spatial rotations�does not imply that a
particular solution, or a particular state belonging to the solution, exhibits
the symmetry at issue. Indeed, the solutions states exhibiting the symme-
try at issue may be the exception rather than the rule. For example, Ein-
stein�s gravitational �eld equations are time reversal invariant, but the set of
Friedman-Walker-Robertson cosmological solutions that are time symmetric
about some time slice are of �measure zero� (see Castagnino et al. 2003).
And one would guess that a similar �measure zero� result would hold for
rotationally symmetric states in a classical or quantum theory with laws of
motion that are invariant under spatial rotations. I take it that this is the
kind of point Curie was making when he wrote that �it is asymmetry that
creates phenomena� (Curie 1894, p. 400).4 But if it is true that the sym-
metries so beloved by physicists are typically broken by the phenomena we
actually observe, one can wonder about the warrant for setting such store
by these symmetries (see Kosso 2000). This issue will not be treated here
since my focus is on issues in the foundations of physics rather than on the
epistemology and methodology of science. What cannot be avoided here is
the issue of how to give content to the quali�cation �of special physical sig-
ni�cance,� since without a speci�cation of content �spontaneous symmetry
breaking�does not point to any de�nite set of phenomena requiring special
treatment. While the physics literature on spontaneous symmetry breaking
does not show unanimity, the focus tends to be on ground states, or vac-
uum states, or equilibrium states at a de�nite temperature, states which one
might expect should exhibit a symmetry of the basic physical laws governing
them.5 This leads to the second strand of the discussion.
It is often said that cases of spontaneous symmetry breaking involve de-
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generacy of the ground state or the vacuum state. Such assertions are prima
facie puzzling because they are intended to apply not only to classical physics
but to ordinary quantum mechanics (QM) and quantum �eld theory (QFT)
as well; but in the latter instances it is typically the case that the ground
state, if it exists, is unique. The resolution of this apparent conundrum is
simple but far-reaching. In QFT vacuum degeneracy is indeed a key feature
of spontaneous symmetry breaking; but the relevant sense of degeneracy is
radically di¤erent from that encountered in ordinary QM because it involves
the existence of many unitarily inequivalent representations of the canon-
ical commutation relations, within each of which resides a unique vacuum
state. What sets spontaneous symmetry breaking in QFT apart from other
commonplace example of spontaneous symmetry breaking is the fact that a
symmetry of the laws of motion is not unitarily implementable�a feature that
implies but is not implied by the the failure of the vacuum state to exhibit
the symmetry. One of the main purposes of the present paper is to illumi-
nate this novel feature which is largely untouched by the extant philosophical
literature on spontaneous symmetry breaking.6

A third strand of spontaneous symmetry breaking makes further contact
with Curie�s Principle by adding a temporal dimension. It is sometimes said
that spontaneous symmetry breaking concerns cases where an asymmetry
emerges �spontaneously�in the sense that the breaking is sudden and seem-
ingly without any precipitating asymmetric cause, e.g. a symmetric rod is
subjected to an increasingly large symmetric load until it suddenly buckles
asymmetrically. Such cases are in prima facie con�ict with Curie�s Principle.
But if I am right about the status of this Principle, the cases in question
cannot be counterexamples; rather, the principle tells us that there is more
to such cases than �rst meets the eye, and it tells us where to look for the
something more.
For better or for worse, the discussions of Curie�s Principle and sponta-

neous symmetry breaking have become entangled with one another. My aim
is to use the interaction of these topics to help to illuminate the important
features of each of them. The paper is organized as follows. Section 2 provides
my preferred way of understanding Curie�s Principle. Section 3 considers a
toy example of spontaneous symmetry breaking in classical physics. The sine
qua non feature of spontaneous symmetry breaking�the failure of a symme-
try of the laws of motion/�eld equations to be a symmetry of a physically
signi�cant state�can hold for the ground state in classical mechanics and (in
a radically di¤erent sense) for the vacuum state in QFT. Section 4 explains
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why the analogue of this situation does not hold in ordinary QM. Section 5
introduces what most textbook presentations take to be the de�ning feature
of spontaneous symmetry breaking in QFT�the existence of a symmetry of
the Lagrangian that is not unitarily implementable. Section 6 uses the alge-
braic formulation of QFT to show that this seemingly mysterious situation is
not only not mysterious but a mathematically straightforward commonplace.
The discovery of spontaneous symmetry breaking in physics is then seen as
the discovery that important physical systems instantiate this mathematical
commonplace. Section 7 shows that a strengthened version of Curie�s Prin-
ciple is valid in QFT. At the same time it also indicates why the Principle is
nearly vacuous in QFT. Section 8 takes up the fate of spontaneous symmetry
breaking in the Higgs mechanism used to generate the masses of elementary
particles while �nessing an embarrassing consequence of symmetry breaking.
Section 9 raises questions about the status of an (alleged) idealization used
to generate spontaneous symmetry breaking in QFT. Concluding remarks
are contained in Section 10.

2. A formulation of Curie�s Principle

For present purposes7 I propose to construe Curie�s Principle as a conditional,
asserting that if

(CP1) the laws of motion/�eld equations governing the system
are deterministic

(CP2) the laws of motion/�eld equations governing the system
are invariant under a symmetry transformation

(CP3) the initial state of the system is invariant under said sym-
metry

then

(CP4) the �nal state of the system is also invariant under said
symmetry

Suppose for the moment that we understand determinism to mean that for
any pair of evolutions allowed by the laws of motion/�eld equations, same-
ness of initial states implies sameness of �nal states. And suppose that for
the moment we understand the invariance of laws of motion/�eld equations
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to mean that if an initial state is evolved for any chosen �t to produce a
�nal state and then the symmetry operation is applied to the �nal state,
the resulting state is the same as obtained by �rst applying the symmetry
operation to the initial state and then evolving the resulting state for the
same �t. Then it follows (as the reader can easily verify) that if the initial
state is invariant under the said symmetry operation, so is the evolved state.
Of course, the appearance of analyticity of the proposed version of Curie�s
Principle may be an illusion fostered by the vagueness necessitated by the
generality of the level of discussion. So it is important that in instances where
the relevant concepts of determinism and invariance are made precise, the
proposed version of Curie�s Principle is demonstrable. This I claim to be the
case, and concrete example will be provided below.
Despite its analyticity, Curie�s Principle is useful whenever we are in the

market for a causal explanation of an asymmetry in some state of interest.
The Principle tells us that the asymmetry is due to one (or more) of three
factors: either the initial state is asymmetric; or the laws of motion/�eld
equations do not respect the symmetry; or else determinism fails in a way
that allows an asymmetry to creep in. Typically, it is the �rst and least
interesting of these possibilities that in fact obtains. If the initial state does
not exhibit any discernible asymmetry, the Principle assures us that there is a
relevant asymmetry below the threshold of observability. And if a discernible
asymmetry appears suddenly, then the Principle tells us that the initially
indiscernible asymmetry was rapidly ampli�ed so as to pass the threshold of
observability. Before considering concrete examples of such phenomena, it
will be helpful to introduce some apparatus that will get heavy usage here.
For the large majority of theories of modern physics, the equations of mo-

tion/�eld equations are derivable from an action principle: the dynamically
possible motions are those that extremize the action A =

R
L(u;u(n);x)dx;

these motions satisfy (generalized) Euler-Lagrange equations. The Lagrangian
L has been written as a function of the independent variables x, the depen-
dent variables u, and the derivatives u(n), up to some order n, of the depen-
dent variables with respect to the independent variables. A group G whose
elements are mappings g : (u;x)!(u0;x0) is said to constitute a variational
symmetry if (roughly speaking) it leaves the action A invariant. A varia-
tional symmetry is necessarily a symmetry of the Euler-Lagrange equations
that follow from the action principle, i.e. it carries solutions to solutions.8 If
G is a �nite parameter Lie group, Noether�s �rst theorem shows that a vari-
ational symmetry implies the existence of conserved currents (see Section
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5 for an example).9 A variational symmetry which yields unit Jacobian for
the transformation of the independent variables x produces strict numerical
invariance of the action. All of the examples of symmetries considered below
satisfy this condition. For such cases I will use the standard (but impre-
cise) terminology in the physics literature and speak of a symmetry of the
Lagrangian.
Specializing for sake of concreteness to the case of classical mechanics,

the dependent variables are the con�guration variables q, and the one inde-
pendent variable is time t. If the Lagrangian L(q; _q;t), _q := dq=dt, is non-
singular in the sense that the determinant of the Hessian Hij := @2L=@ _qi@ _qj
does not vanish, then the initial conditions (q(0); _q(0)) pick out a unique
solution to the Euler-Lagrange equations. Thus, (CP1) is secured. If the
symmetry at issue is a symmetry of the Lagrangian, then (CP2) is secured.
Thus, Curie�s Principle implies that if the initial state (q(0); _q(0)) is invari-
ant under the said symmetry, then so is any later state (q(t); _q(t)), t > 0,
in the unique solution picked out by the initial data. When the Lagrangian
is singular, arbitrary functions of t show up in the Euler-Lagrange equa-
tions and determinism apparently breaks down. A standard move for such
cases is to maintain determinism by discovering �gauge freedom�in the state
description (see Section 8).

3. Spontaneous symmetry breaking in classical physics

Greenberger (1978) has provided a toy model that neatly illustrates the seem-
ingly spontaneous appearance of an asymmetry in a classical system. A bead,
subject to the force of gravity, slides frictionlessly on a hoop that is rotating
about its vertical diameter with an angular velocity 
 (see Fig. 1). The
Lagrangian for the bead is

L1 =
1

2
m(R2 _�2 + 
2R2 sin2 �)�mgR(1� cos�) (1)

=
1

2
mR2 _�2 � Veff (
)

Veff (
) := mgR

�
(1� cos�)� 1

2


2R

g
sin2 �

�
where m is the mass of the bead, R is the radius of the hoop, and � is the
angular displacement of the bead. The Lagrangian L1 is invariant under
the transformation � ! �0 = ��. When the angular velocity of the hoop
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is below the critical value 
c :=
p
g=R there is a unique minimum of the

e¤ective potential Veff (
) at � = 0 (see Fig. 2a) and, thus, a unique ground
state of the system. But above 
c, Veff (
) develops two local minima at
�nite � = ��o (see Fig. 2b) and, thus, there are two asymmetric ground
states. Furthermore, � = 0 becomes an unstable point. So when 
 > 
c
we do not expect to see the bead remain at the bottom of the hoop but
rather expect to see it slide up one side of the hoop or other, resulting in a
�-non-symmetric state.
In fact, however, if the initial state is exactly symmetric��(0) = 0 and

_�(0) = 0�then cranking up the angular velocity from a value less than 
c to
a value greater than 
c will not result in an asymmetric state�the bead will
stay at the bottom of the hoop. To break the symmetry some asymmetry
is required. The most natural thing is to postulate an ensemble of small
departures from the initially symmetric state, with the statistical distribu-
tion of states in the ensemble adjusted appropriately to explain the actually
observed frequency with which the bead goes up the +� side vs. the �� side.
Thus far the toy model of symmetry breaking treats the angular veloc-

ity 
 of the hoop as an exogenous variable under the control some external
mechanism. But nothing prevents us from adding another term to the La-
grangian so as to obtain a deterministic dynamics for 
 as well as �. As
long as the total Lagrangian respects the � ! �� symmetry�as can easily
be arranged�we obtain a fully self-contained, deterministic story of why the
bead went up one one side of the hoop rather than the other.
The change of shape in the potential from that in Fig. 2a to that in Fig.

2b is analogous to what happens in a phase transition. Properly speaking
such terminology is applied to collective phenomena where the concepts of
temperature T and entropy S are given a meaning, and the relevant change
of shape is that of the free energy F = U � TS, where U is the internal
energy of the system. However, the limited goal here is to describe features
of spontaneous symmetry breaking in fundamental theories where the basic
variables do not include T and S.10 Extending by analogy the term phase
transition to the present cases, the point becomes that phase transitions pro-
duce spontaneous symmetry breaking in the sense of the rapid emergence
of a discernible asymmetry. But, at the risk of belaboring what should be
obvious, phase transitions are not needed to secure the core features of spon-
taneous symmetry breaking�the failure of states of special interest to re�ect
symmetries of the equations of motion, the degeneracy of grounds states, etc.
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4. Curie�s Principle and spontaneous symmetry breaking in ordi-
nary QM

In cases where an application of my preferred form of Curie�s Principle is
valid, a violation of (CP4) in the form of a �nal state that does not respect the
symmetry at issue requires a violation of one or more of (CP1)-(CP3). A vio-
lation of (CP1)�the assumption of a deterministic evolution�is contemplated
in accounts of the quantum measurement process which envision a momen-
tary interruption of the deterministic Schrödinger dynamics by a �collapse�
of the state vector into an eigenstate of the observable being measured.11

Such a collapse assuredly can produce a transition from a symmetric initial
state to an asymmetric �nal state since a symmetric superposition can be
built out of asymmetric states. Fortunately, there is no need here to purse
this matter into the morass of the quantum measurement problem since, as
will be argued in Section 6, measurement collapse cannot produce the key fea-
tures of spontaneous symmetry breaking in QFT; in particular, a symmetric
vacuum state cannot be built as a superposition of degenerate, asymmetric
vacuum states. It would be a worthwhile project to develop a statistical form
of Curie�s Principle that could apply in cases where strict determinism fails
but statistical determinism holds, but such a project is beyond the scope of
this paper.12

The core sense of spontaneous symmetry breaking�the failure of a state
of special interest to exhibit a symmetry of the equations of motion�can,
of course, occur without the help of measurement collapse. But it is worth
pointing out that the degeneracy of the ground state is absent in the quantum
mechanical treatment of simple one-dimensional systems that are analogous
to the bead-and-hoop model. (A quantum system is said to have a ground
state just in case the energy spectrum is at least partially discrete and there
is a lowest energy eigenvalue.) Consider, for example, a particle con�ned
to one spatial dimension and moving in an external potential V (q). The
Lagrangian has the form L2 = 1

2
m _q2 � V (q). Suppose that V (q) is di¤eren-

tiable and bounded from below and that V (q) ! +1 as q ! �1. Then
when the system is quantized it is found that�regardless of whether or not
V (q) has local minima away from 0�not only is the lowest energy eigenvalue
nondegenerate, but the entire energy eigenvalue spectrum is discrete and
non-degenerate. Furthermore, if the potential is symmetric about the origin
(analogously to the e¤ective potential in Fig. 2b), i.e. V (q) = V (�q), and
thus q ! �q is a symmetry of L2, then the eigenfunctions jEi of energy have
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a de�nite parity, i.e. P̂ jEi = �jEi where P̂ is the parity operator. Thus,
hEjq̂jEi = hEj � q � jEi = hEjP̂�1q̂P̂ jEi = hEj � q̂jEi, which means that
hEjq̂jEi = 0 and, a fortiori, the expectation value of q̂ in the ground state is
0.
The non-degeneracy of the ground state holds quite generally in QM. For

instance, if the Hamiltonian operator has the form ��+ V (q), with V con-
tinuous and bounded below, and is essentially self-adjoint, then the ground
state, if it exists, is unique up to phase (see Glimm and Ja¤e 1987, Sec. 3.3).
Nor can ordinary QM display degeneracy of the ground state in the sense we
are about to encounter in QFT since unitarily inequivalent representations
of the canonical commutation relations cannot arise for systems with a �nite
number of degrees of freedom. The precise statement of this result is given
in the Stone-von Neumann theorem.13 It is the breakdown of this theorem
for systems with an in�nite number of degrees of freedom that makes the
existence of unitarily inequivalent representations a characteristic feature of
QFT.

5. Spontaneous symmetry breaking in QFT

If one thinks of the vacuum as a state of �nothingness,� then it is di¢ cult
to imagine how the vacuum can fail to share a symmetry of the Lagrangian
or the Hamiltonian. But once physicists�imagination was expanded to en-
compass this possibility, they began to see spontaneous symmetry breaking
all over the map, from condensed matter physics to cosmology and much in
between. Only simple toy models will be considered here. Although these
models lack realism, they serve to isolate some of the key features of spon-
taneous symmetry breaking in QFT that appear in the much more compli-
cated models and they nicely illustrate the foundations issues of interest to
philosophers.14

A standard example used to illustrate the de�ning feature of spontaneous
symmetry breaking in QFT involves a zero mass scalar �eld ' on Minkowski
spacetime.15 The Lagrangian is L3 = 1

2
@�'@

�', which is invariant under
the transformations of the �eld ' ! '0 = ' + �, where @�� = 0. As a
result of the equation of motion �' = 0 the current j� := @�' obeys the
conservation law @�j

� = 0. Now suppose that when the �eld is quantized,
there is a state j0i that is identi�ed as the vacuum state and that this state
is invariant under spatial translations.16 And suppose for reductio that there
is a self-adjoint operator Q̂ associated with the global charge Q :=

R
j0d3x,

where the �0�indicates the time component and where the integration is taken
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over all space. If it existed Q̂ would be the generator of a one-parameter
group of unitary operators Û(�) := exp(i�Q̂) implementing the symmetry
'̂! '̂0 = '̂ + � for the quantized �eld. From the invariance of the vacuum
state under spacetime translations, whose generators are the four-momenta
P̂ �, and from [P̂ �; Q̂] = 0, it follows that

h0j|̂0(x)Q̂j0i = h0j exp(�P̂ � � x)|̂0(0) exp(+P̂ � � x)Q̂j0i (2)

= h0j|̂0(0)Q̂j0i

Thus, the norm-square of the total charge operator Q̂ in the vacuum state is

h0jQ̂Q̂j0i =
Z
h0j|̂0(x)Q̂j0id3x (3)

=

Z
h0j|̂0(0)Q̂j0id3x

It follows that h0jQ̂Q̂j0i =1 unless Q̂j0i = 0. The latter cannot hold, for if
it did it would follow that Û(�)j0i = j0i, resulting in h0jÛ(�)'̂Û�1(�)j0i =
h0j'̂j0i. But also h0jÛ(�)'̂Û�1(�)j0i = h0j'̂ + �j0i = h0j'̂j0i + �, which
together require � = 0. There still remains the possibility that Q̂ is de�ned
on some dense domain of the Hilbert space that does not include the vac-
uum state. The gap is is �lled by Streater (1965) where it is shown that
the non-existence of a unitary Û(�) follows from the facts that the vacuum
state is the unique Poincaré invariant state and that, if it exists, Û(�) com-
mutes with Poincaré transformations. But the above calculation is important
because it shows that a frequently used characterization of spontaneous sym-
metry breaking is, at best, heuristic. This characterization uses the condition
Q̂j0i 6= 0 or the consequence that h0j'̂0j0i 6= 0, where '̂0 := [Q̂; '̂]. Strictly
speaking, these equations are not meaningful since j0i is not in the domain
of Q̂.17

The upshot is that the symmetry '! '0 = '+� of the Lagrangian is not
represented by a one-parameter (�) group of unitary operators, contrary to
the usual experience with continuous symmetries in QM.18 In the following
section this consequence will be recast in the algebraic formulation of QFT,
and it will be shown that the symmetry ' ! '0 = ' + � connects unitarily
inequivalent representations of the algebra of �eld observables, each with its
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own vacuum state�this is the precise sense in which spontaneous symmetry
breaking in QFT involves degeneracy of the vacuum. But before turning to
that discussion there are a few more points that need to be made with the
help of the current apparatus.
The symmetry ' ! '0 = ' + � of the Lagrangian L3 is referred to as

�internal�since it concerns the transformation of the dependent variables of
the action. It is also called �global�because � does not depend on the space-
time variables. The invariance of the Lagrangian under such transformations
invokes Noether�s �rst theorem, which implies that if the global symmetries
form a �nite parameter Lie group then there is an associated �proper�con-
servation law in which a current is conserved as a consequence of the laws of
motion�as is exempli�ed in the above model. There are other examples where
the symmetry transformations are �local�in that they involve arbitrary func-
tions of the independent variables. These examples invoke Noether�s second
theorem which implies that the Euler-Lagrange equations are not indepen-
dent and, thus, that there is an apparent violation of determinism.19 The
implications of such cases for Curie�s Principle and spontaneous symmetry
breaking will be taken up in Section 8.
Suppose now that the above model is expanded to include a potential

term, giving the modi�ed Lagrangian L03 = 1
2
@�'@

�' � V ('). If V (') is
not a constant function, L03 will not be invariant under the continuous trans-
formations ' ! '0 = ' + � with @�� = 0. If , however, V (') is an even
function of ', then L03 is invariant under the discrete inversion transforma-
tion I : ' ! '0 = �'. But since Noether�s theorems do not apply to
such symmetries, the above argument for the non-unitary implementabil-
ity of the symmetry is hamstrung. Attempts to �ll the gap with heuris-
tic considerations of the following kind can be found at several places in
the physics literature. Suppose that the potential V (') has a shape simi-
lar to that of Fig. 2b. Then the classical �eld equation that results from
L03 has solutions ' = �v 6= 0 corresponding to the local minima of V (').
This is taken to suggest that the vacuum expectation value of the quantized
�eld '̂ will not be zero but will have one of the two values �v (see Gold-
stone 1961, 162). If the suggestion is accepted, then it cannot be the case
that the inversion symmetry I is implemented by a unitary operator Û(I)
and that the vacuum is invariant (up to phase) under Û(I). For otherwise
v = h0j'̂j0i = h0jÛ�1(I)'̂Û(I)j0i = h0j � '̂j0i = �v, contradicting the
assumption that v 6= 0.20
The upshot of this heuristic argument is not quite the full sense of the
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spontaneous breaking of the inversion symmetry since the contradiction can
be escaped by holding onto the unitary implementability of the inversion
symmetry and rejecting the invariance of the vacuum under this symmetry.
The latter alternative does capture one feature of spontaneous break down
of symmetry�namely, the symmetry of the vacuum is lower than the sym-
metry of the Lagrangian�but this is not the full o¢ cial sense of spontaneous
symmetry breaking for QFT. In any case, the heuristics being employed are
problematical, as can be illustrated by the example from Section 3 of the par-
ticle moving in one spatial dimension under the in�uence of a potential V (q)
with V (q) = V (�q). If V (q) has a shape similar to that of Fig. 2b, then the
classical equations of motion have solutions with q = �const corresponding
to the local minima of V (q). But when this system is quantized the ground
state (or any energy eigenstate) is non-degenerate, and the expectation value
of the ��eld�q̂ in the ground state (or any energy eigenstate) is 0. Of course,
one knows from the beginning that systems in ordinary QM cannot exhibit
full spontaneous breaking. So perhaps the analogical reasoning going from
the classical �eld to the quantum �eld is valid while its counterpart going
from the classical particle to its quantization in ordinary QM is not. But one
would like more than a perhaps.
In sum, while it may be the case that discrete symmetries are spontaneously

broken, a convincing argument for the case is lacking.

6. Spontaneous symmetry breaking in algebraic QFT21

For many physicists the algebraic formulation of QFT o¤ers little aside from
pedantry. True or not, the pedantry is helpful to philosophers seeking to
understand interpretational issues. What makes the algebraic apparatus es-
pecially helpful in the present context is that it makes pellucid the features
of QFT that are concerned with the existence of unitarily inequivalent rep-
resentations of the canonical commutation relations (CCR), a phenomenon
that cannot occur in the ordinary QM of systems with a �nite number of
degrees of freedom. It is a common mantra in QFT that the choice of a
representation of the CCR depends on the dynamics (�Haag�s theorem�)22.
Spontaneous symmetry breaking in QFT is concerned with cases where the
dynamics does not determine the representation in the sense that inequiva-
lent representations exist for the same dynamics. Thus, a full understanding
of spontaneous symmetry breaking in QFT cannot be gained by beavering
away within any one representation of the CCR�as was done in the preced-
ing section�but must take into account structural features of QFT that cut
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across di¤erent representations. It is exactly these structural features which
the algebraic approach is designed to illuminate, and any other approach
which does o¤er this illumination will be adequate for present purposes.
In the algebraic approach a quantum system is described by C�-algebra

A and a state ! speci�ed by a positive linear functional on A.23 Think of
A as encoding the the structure of (bounded) observables of a system that
is common to all Hilbert space representations, whether they are unitarily
equivalent or not, and think of ! as assigning expectation values to the
elements of A. This can be made more precise as follows. A representation
(H; �) of A consists of a separable Hilbert spaceH and a structure preserving
map � : A ! B(H) of A into the algebra of bounded operators B(H) on H.
A fundamental theorem due to Gelfand, Naimark, and Segal (GNS) shows
that any state ! on A determines a representation (H!; �!) of A and a vector
j	!i 2 H!, such that !(A) = h	!j�!(A)j	!i for all A 2 A; and further,
the vector j	!i is cyclic, i.e. �!(A)j	!i is a dense subset of H!. The GNS
triple (H!; �!; j	!i) is unique up to unitary equivalence. An algebraic state
is said to be mixed if it can be written as a non-trivial convex combination
�!1 + (1� �)!2, 0 < � < 0, !1 6= !2; otherwise the state is said to be pure.
A basic property of GNS representations is that a state ! is pure i¤ its GNS
representation is irreducible.
In this setting, a symmetry of the system is speci�ed by an automorphism

of A. An automorphism � of A can also be viewed as acting on states; viz.,
given a state ! on A, � produces a new state c�! := ! � �. If there is a
state ! of some special physical signi�cance�such as a vacuum state�that is
not �-invariant, i.e. c�! 6= !, then one might say that the symmetry � is
spontaneously broken in the state !. However, physicists typically reserve
this label for cases where � is not unitarily implementable in the state !. That
� is unitarily implementable in the state ! means that on the Hilbert space
H! of the GNS representation determined by ! there is a unitary operator
Û such that �!(�(A)) = Û�!(A)Û

�1 for all A 2 A. It is easy to see (and, in
fact, follows from Lemma 1 below) that if � is not unitarily implementable
with respect to the state ! then the symmetry � is broken in the state !; but
the converse is not necessarily true�unitary implementability with respect to
! does not imply that ! is �-invariant.
This characterization allows one to see how and in what sense spontaneous

symmetry breaking in QFT involves vacuum degeneracy. Say that two states
! and !0 on A are spatially equivalent (! � !0) i¤ their respective GNS
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representations (H!; �!) and (H!0 ; �!0) are unitarily equivalent, i.e. there is
a isomorphism E : H! ! H!0 such that �!0(A) = E�!(A)E

�1 for all A 2 A.
The question now becomes, under what conditions arec�! and ! and spatially
equivalent? The answer is given by

Lemma 1. An automorphism � of A is unitarily implementable
in state ! i¤c�! � !.

It follows that if the automorphism � is not unitarily implementable with
respect to the state !, then c�! and ! are not spatially equivalent. And
if the Hilbert spaces of the GNS representations determined by c�! and !
possess vacuum states, then there is a �degeneracy of the vacuum�in that
the vacuum state vectors corresponding to c�! and ! belong to unitarily
inequivalent representations of the algebra of observables. This, of course, is
compatible with the uniqueness of the vacuum in the sense that within each
of the GNS representations there is only one (up to phase) vector satisfying
the conditions taken to characterize the vacuum.
Consider again the model of the previous section with Lagrangian L3 =

1
2
@�'@

�', i.e. the massless Klein-Gordon �eld. The Weyl algebra AL3 is a
C�-algebra that codes in algebraic form the Weyl form of the CCR.24 Let
�� be an automorphism of AL3 induced by a symmetry ' ! '0 = ' + � of
the Lagrangian L3, and let � be an automorphism induced by the Poincaré
symmetry that is characteristic of the free �eld vacuum. Since �� and �
commute, if the state ! is �-invariant, so is !� := d��!; and if in addition
�� is not unitarily implementable with respect to !, then ! and !� are �-
invariant states whose GNS representations are unitarily inequivalent. In
this way Streater (1965) demonstrated that for each value of �, there is a
Poincaré invariant state !� with positive energy, and for � 6= �0, !�0 and !�
determine unitarily inequivalent representations of the Weyl algebra AL3.
Since the di¤erence between automorphisms that are and are not unitarily

implementable may seem abstruse, it is important to note that it can be given
operational signi�cance. For any automorphism � of A and any pure state !
on A the following inequality holds for any A 2 A: 0 � j!(A)� !(�(A))j �
2jjAjj.25 When � is unitarily implementable with respect to ! the upper
bound becomes jjAjj. But when � is not unitarily implementable with respect
to ! there is a self-adjoint element X 2 A such that jjXjj = 1 and such that
the upper bound saturates, with the upshot is that j!(X) � !(�(X))j = 2
(see Fabri et al. 1967). Thus, as Fabri et al. (1967) comment, when a
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symmetry � is spontaneously broken in state ! in the sense that � is not
unitarily implementable with respect to !, then � is never broken �just a
little bit� for all observables but is maximally broken with respect to some
observable. And further, the experimental detection of the breaking does not
require measuring instruments of exquisite accuracy�anything better than
50% accuracy su¢ ces.
In ordinary QM or QFT a judicious choice of coe¢ cients can produce a

symmetric superposition from asymmetric states. However, if �symmetric�
and �asymmetric� are understood in the senses of spontaneous symmetry
breaking, this trick cannot be used to produce a symmetric vacuum state
from a linear superposition of the asymmetric �degenerate�vacuum states.
If one tries to think of the di¤erent degenerate vacuum states as belonging
to the same Hilbert space, then these states must lie in di¤erent �superse-
lection sectors� between which a meaningful superposition is impossible.26

By the same token, measurement collapse of a superposition cannot produce
an asymmetric vacuum state from a symmetric one. In the algebraic for-
mulation the point can be made with the help of the concept of disjointness
of states. The folium F(!) of a state ! on a C�-algebra A is the set of all
states that can be expressed as density matrices on the Hilbert space of the
GNS representation of A determined by !. The states !1 and !2 are said
to be disjoint i¤ F(!1) \ F(!2) = ;. Disjointness has two equivalent charac-
terizations. First, !1 and !2 are disjoint i¤ the GNS representation �!1+!2
determined by !1 + !2 is the direct sum of the GNS representations �!1 and
�!2 determined by !1 and !2, i.e. �!1+!2 = �!1 � �!2, H!1+!2 = H!1 �H!2

and j	!1+!2i = j	!1i� j	!2i, where as usual (�!;H!; j	!i) is the GNS triple
associated with !. Second, !1 and !2 are disjoint i¤ there is a projection
operator P̂ 2 �!1+!2(A)0 such that !1(A) = h	!1+!2jP̂ �!1+!2(A)j	!1+!2i
and !2(A) = h	!1+!2j(Î � P̂ )�!1+!2(A)j	!1+!2i for all A 2 A.27 The point
then is that for pure algebraic states, spatial inequivalence is coextensive
with disjointness. For mixed states the story is a bit more complicated. Al-
gebraic states !1 and !2 are said to be quasi-spatially equivalent just in case
F(!1) = F(!2), which is the same as saying that the states are spatially
equivalent up to multiplicity (see Bratteli and Robinson 1987, p. 80). For
pure states, whose GNS representations are irreducible, quasi-spatial equiv-
alence and spatial equivalence coincide. As for mixed states, whose GNS
representations are reducible, spatial equivalence up to multiplicity is the
appropriate substitute for spatial equivalence. Mixed states can fail to be
quasi-spatially equivalent without being disjoint. But the most important
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type of mixed states encountered in physical applications are factor states28

which are either disjoint are quasi-spatially equivalent.
Finally, in preparation for the discussion in Section 8 below, a few words

about the notion of spontaneous symmetry breaking for gauge symmetries
are in order. The algebraic approach provides a sense for this notion that
is exactly parallel to that for spontaneous symmetry breaking for non-gauge
symmetries; namely, the automorphism � corresponding to the gauge sym-
metry is not unitarily implementable with respect to some state ! of interest
and, consequently, ! � � 6= !. But if the root notion of a gauge transfor-
mation is that of a transformation that connects di¤erent descriptions of the
same physical state, it follows that whereas Nature can break a non-gauge
symmetry � by choosing a �-non-symmetric state, She cannot break a gauge
symmetry in the same fashion. We, not Nature, break the gauge symmetry
by choosing a particular gauge condition. Consequently the automorphism �
induced by the gauge symmetry must be construed as acting on a �eld alge-
bra F � A that is larger than the algebra A of genuine, gauge independent
observables since otherwise ! � � and ! would be genuinely di¤erent states.

7. Curie�s Principle in algebraic QFT

Now let us turn to the status and the usefulness of Curie�s Principle in QFT. If
the �Heisenberg dynamics�from time to to t1 is given by an automorphism �
of the algebra of observablesA, then ! ! c�! := !�� gives the corresponding
�Schrödinger dynamics�from time to to t1, and vice versa. Curie�s Principle
has a straightforward implementation in the algebraic setting: it says that if
the dynamics from time to to t1 is given by an automorphism � [(CP1)], if
� is invariant under � (i.e. ����1 = �) [(CP2)], and if the initial state !o
is �-invariant [(CP3)], then the evolved state !1 := d�!o is also �-invariant
[(CP4)]. As with its classical counterpart, this version of Curie�s Principle is
a necessary truth (see Prop. 2 in the Appendix).
If the initial state !o is �-invariant then, trivially, � is unitarily imple-

mentable in state !o; and by Curie�s Principle, if the dynamics � is �-
invariant, then the evolved state !1 := d�!o is also �-invariant and again,
trivially, � is unitarily implementable in the evolved state.
Suppose then that the initial state !o is not �-symmetric. It is still pos-

sible that � is unitarily implementable in !o, in which case call !o semi-�-
symmetric. Is it possible in addition that the semi-�-symmetric initial state
!o evolves to a state !1 := d�!o that fails to be semi-�-symmetric? Not if
the dynamical automorphism � is �-symmetric. That is the content of the
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following lemma, which may be thought of as an extension of the basic form
of Curie�s Principle.

Lemma 2. Suppose that the automorphism � of A is unitarily
implementable with respect to an initial state !o, and also that
the dynamical automorphism � is �-invariant in that ����1 = �.
Then � is unitarily implementable with respect to the evolved
state d�!o.

Note that Lemma 2 does not require that the dynamical automorphism � be
unitarily implementible.
Although Curie�s Principle in algebraic QFT has a certain utility, it is

nearly vacuous. It is not completely vacuous since for any automorphism �
of a C�-algebra there is some state ! which is �-invariant and, thus, with
respect to which � is unitarily implementable (see Arageorgis et al. 2002).
But the Principle can be vacuous if vacuum representations are demanded.
Say that a state ! on a C�-algebraA determines a vacuum representation just
in case (a) the GNS representation determined by ! is unitarily equivalent to
a representation (�;H) such that the action of the automorphism group of A
generated by Poincaré transformations is realized by a unitary group acting
onH, and (b) there is a cyclic vector j0i 2 H that is the unique (up to phase)
vector invariant under said unitary group.29 In the case of the model with
Lagrangian L3 (recall Section 5) what was shown in algebraic terms is that for
the automorphism � of AL3 induced by the symmetry of L3, if ! determines
a vacuum representation for AL3, then � is not unitarily implementable with
respect to !. Thus, under the demand for vacuum representations, there
simply are no states onAL3 which are �-symmetric or even �-semi-symmetric.
And so Curie�s Principle in either of the forms given above is vacuous for
this case since the antecedent condition of an initially symmetric or semi-
symmetric state is never ful�lled. Perhaps a better label for such cases than
spontaneous symmetry breaking would be ubiquitous or automatic symmetry
breaking.
This ubiquity need not entirely obviate the desire for a causal explanation

of a spontaneously broken symmetry. In analogy with the toy example from
Section 3 of spontaneous symmetry breaking in classical physics, one can
imagine a parameterized family of Lagrangians for a �eld such that there is a
symmetry of the Lagrangian that is unitarily implementable for the quantized
�eld until, but not after, the parameter attains a critical value. A request for
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a dynamical explanation of the change of value in the parameter is perfectly
in order.30

8. Curie�s Principle, spontaneous symmetry breaking, and gauge
symmetries in QFT

Rework the model of the scalar �eld from Section 5 so that ' becomes com-
plex valued and acquires a potential V ('). The Lagrangian now becomes
L4 = @�'@

�'� � V ('), V (') := �(''�)2 + {2(''�), where � is a positive
constant.31 L4 is invariant under the transformation ' ! '0 = exp(�i�)',
where @�� = 0. When {2 < 0 the potential V (') has minima at all values
of ' lying on the circle j'j =

p
�{2=� in the the complex '-plane. (The

graph of V (') above the complex '-plane is analogous to what is obtained
from rotating the classical potential of Fig. 2b about the vertical axis to
produce a Mexican hat or wine bottle shape.) Thus, there is an in�nity of
ground states for the classical �eld. Each ground state is asymmetric, i.e. is
non-invariant under the transformations '! '0 = exp(�i�)', but the entire
circle of ground states can be generated by starting with any one such state
and applying the transformations ' ! '0 = exp(�i�)' with di¤erent val-
ues of the spacetime constant �. One expects, therefore, that the quantized
�eld exhibits the characteristic features of spontaneous symmetry breaking
in QFT. An application of Noether�s �rst theorem implies that there is a con-
served current, which in the present case is j� := i['�@�' � @�'�']. Then
the same type of argument used in Section 5 shows that the associated global
Noether charge is not represented by a self-adjoint operator and, hence, that
the symmetry of the Lagrangian L4 is not unitarily implementable.
In the heyday of gauge theories it was often said that relativity theory

demands that �global�symmetries be made �local,�and it was thought that
the implementation of this demand provided a magic route to the discovery of
the laws governing interactions.32 In the present example the demand would
be that the �global� symmetry ' ! '0 = exp(�i�)', where @�� = 0, be
replaced by a �local�symmetry '! '0 = exp(�i�(x))', where �(x) is now
an arbitrary function of spacetime position. Implementing this demand is
accomplished by the introduction of a vector �eld A� coupled to the ' �eld
to produce the Lagrangian L5 := �1

4
F��F

��+[(@�+ieA�)'
�][(@��ieA�)']�

V ('), where F�� := @�A��@�A�, e is the coupling constant, and the potential
V (') is the same as in L4. L5 is invariant under '! '0 = exp(�i�(x))' if the
vector �eldA� is assumed to transform as A�(x)! A0�(x) = A�(x)� 1

e
@��(x).
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One result of this maneuver is to bring to bear Noether�s second theo-
rem: when the variational symmetries form an in�nite dimensional Lie group
whose parameters are arbitrary functions of the independent variables, the
resulting Euler-Lagrange equations are not independent but must satisfy a
set of mathematical identities. Thus, the maneuver has resulted in a case of
underdetermination. The second result of the maneuver is to undercut the
familiar interpretation of conservation laws. The �global� transformations
' ! '0 = exp(�i�)', @�� = 0, A� ! A0� = A�, are symmetries of the
expanded Lagrangian L5. Therefore, Noether�s �rst theorem applies so that
there must be an associated conserved current. There is indeed; it is now
given by j� := ie['�@�' � @�'�'] � 2e2A�'�'. However, the conservation
law @�j

� = 0 for L5 is no longer �proper.� Noether showed that when a �lo-
cal�symmetry group of the Lagrangian admits a �global�symmetry group
as a proper subgroup, then the conserved current associated with the latter
can be written as a linear combination of the Euler-Lagrange expressions
and the divergence of an anti-symmetric �superpotential� (see Barbashov
and Nesterenko 1983, Sec. 5). Thus, for any solution of the Euler-Lagrange
equations the vanishing of the divergence of the current associated with the
global symmetry is a mathematical identity. Noether dubbed such conserva-
tion laws �improper�; in the modern mathematics literature they are called
�trivial�(see, for example, Olver 1993, Ch. 5). Improper or trivial they may
be, but such conservation laws do have a content: they express the fact that
in any solution to the equations of motion, the amount of Noether charge
in a spatial volume is equal to the �ux through the surface bounding the
volume, i.e. the conservation law is equivalent to a form of Gauss�theorem.
The �rst result would seem to render Curie�s Principle inoperative by

negating the �rst antecedent condition (CP1)�determinism�and, thus, open-
ing a loophole through which an asymmetric state can emerge from a sym-
metric one. This loophole is almost never utilized. Instead it is closed by
saying that the apparent violation of determinism is merely apparent, the
false appearance being due to the many-one relation between the descrip-
tions of a physical situation and the situation itself. Or, in more portentous
terms, the �local� symmetry transformations ' ! '0 = exp(�i�(x))' are
regarded as gauge transformations connecting the descriptions that all corre-
spond to the same physical situation. This reading of the �rst result impacts
on the second result, making the meaning of conserved current and its corre-
sponding Noether charge even more opaque since neither of these quantities
are gauge independent. And in general the redundant descriptive appara-
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tus signaled by the presence of non-trivial gauge freedom constitutes a veil
though which the intrinsic gauge-independent content of the model can be
dimly glimpsed.
These issues are of more than idle curiosity since, as the knowledgeable

reader will have recognized, the above model is an illustration of the Higgs
mechanism which has become a standard feature of the Standard Model of
particle physics.33 It achieved this status by neatly solving two problems in
one fell swoop: it resolved an embarrassment connected with spontaneous
symmetry breaking while explaining how particles got their masses. The
embarrassment is the result of Goldstone theorem which shows that the ex-
ample of the massless scalar �eld that was used to motivate the idea of
spontaneous symmetry breaking in QFT is not just an example. In more de-
tail, the theroem demonstrates that a broken �global�continuous symmetry
(invoking Noether�s �rst theorem and the existence of a conserved current),
together with some additional cherished assumptions of QFT (local commu-
tativity, translation symmetry, and positivity of energy) imply the existence
of spinless zero mass bosons. The result is robust, being provable in both con-
ventional QFT (see Goldstone et al. 1962) and algebraic QFT (see Kastler
et al. 1966). It temporarily dampened the enthusiasm for spontaneous sym-
metry breaking since the experimental evidence was against the existence
of Goldstone bosons. The enthusiasm was restored by moving to the Higgs
model with Lagrangian L5. This model can be taken to involve two scalar
�elds � and �, which come respectively from the imaginary and real parts
of '. The �eld � possesses zero mass, but this �eld can can be made to dis-
appear by an appropriate choice of gauge (the �unitary gauge�). Thus, the
Higgs model is not a counterexample to Goldstone�s theorem; rather it shows
that by introducing an appropriate interacting �eld which induces gauge in-
variance, the theorem can be �nessed in that the zero mass modes can be
ignored since they do not describe any real (i.e. gauge independent) phenom-
enon. In the same gauge which suppresses Goldstone bosons the other scalar
�eld � (the �Higgs �eld�) and the vector �eld A� have positive masses.
This is undeniably one of the more brilliant accomplishments of modern

physics. But what exactly is accomplished is hidden behind the veil of gauge
redundancy. The popular presentations use the slogan that the vector �eld
has acquired its mass by �eating�the Higgs �eld. But, as the authors of the
standard treatises well know but rarely bother to warn the unwary reader,
talk of the Higgs �eld has to be carefully quali�ed since by itself, the value
of � does not have gauge invariant signi�cance. The popular slogan can be
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counterbalanced by the cautionary slogan that neither mass nor any other
genuine attribute can be gained by eating descriptive �u¤.
None of this need be any concern for practicing physicists who know when

they have been presented with a fruitful idea and are concerned with putting
the idea to work. But it is dereliction of duty for philosophers to repeat the
physicists�slogans rather than asking what is the content of the reality that
lies behind the veil of gauge. Here an analogy may be helpful. Consider
Maxwell electromagnetism written in terms of electromagnetic potentials.
It is found that the initial value problem for Maxwell�s equations does not
have a unique solution�the initial values of the potentials and their time
derivatives can evolve into many di¤erent values at any given future time.
This is not viewed as a real violation of determinism since, it is said, the
potentials involve unphysical degrees of freedom. The imposition of a gauge
condition can be used to quash these unphysical degrees of freedom; and,
in particular, the imposition of the Lorentz gauge turns Maxwell�s equations
into second order hyperbolic equations which do admit a well-posed initial
value problem. This is �ne as far as it goes. But it remains to ask: Is the
procedure just described a merely ad hoc maneuver to save determinism,
or is there a systematic way to identify the gauge freedom? And when the
gauge freedom is removed, what are the genuine (= gauge invariant) degrees
of freedom of the electromagnetic �eld?
P. A. M. Dirac developed an apparatus that, in principle, gives answers

to both of these questions, and it applies to any theory whose equations of
motion are derivable from a Lagrangian. A system whose Lagrangian falls
under Noether�s second theorem�the case now at issue�corresponds to a con-
strained Hamiltonian system.34 The primary constraints are those that follow
from de�nition of the canonical momenta.35 The secondary constraints are
those that follow from the demand that the primary constraints be preserved
by the laws of motion. The total family of constraints de�nes a subspace
of the Hamiltonian phase space called the constraint surface. A �rst class
constraint is one which �weakly commutes�with all the constraints in the
sense that its Poisson bracket with any constraint vanishes on the constraint
surface. These �rst class constraints generate the transformations that are
taken to be gauge. To get rid of the redundant structure one can pass to
the reduced phase space by quotienting out the gauge orbits generated by
the �rst class constraints, producing an unconstrained Hamiltonian system
in which the reduced phase space variables are gauge invariants. Mathemat-
ical obstructions can derail this reduction procedure, e.g. the reduced phase
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space may not form a manifold; but in the absence of such obstructions, nor-
mal methods for quantizing unconstrained Hamiltonian systems can then be
applied.36

What is the upshot of applying this reduction procedure to the Higgs
model and then quantizing the resulting unconstrained Hamiltonian system?
In particular, what is the fate of spontaneous symmetry breaking? To my
knowledge the application has not been carried out. For purposes of dis-
cussion I will assume that the reduction process leads to local �elds and
that when these �elds are quantized they satisfy the standard assumptions
of QFT, such as Poincaré invariance, locality, etc. If this assumption were
false, the implementation of the Higgs mechanism would necessitate a radical
revision of the way business is conducted in QFT. Next, if the reduced model
admits a �nite dimensional Lie group of internal symmetries, then Noether�s
�rst theorem and the argumentation of Section 5 apply, leading to the con-
clusion that a symmetry is still subject to spontaneous breaking. But Gold-
stone�s theorem also applies and Goldstone bosons have not been quashed
after all. If, on the other hand, the reduced model admits no non-trivial in-
ternal symmetries or else only a discrete group of internal symmetries, then
Goldstone�s theorem does not apply and the spectre of Goldstone bosons has
been de�nitively dispatched. But if there are no non-trivial internal sym-
metries there is ipso facto no possibility of symmetry breaking. If there are
discrete internal symmetries there is the possibility of symmetry breaking;
but as noted in Section 5, Noether�s �rst theorem does not apply and, conse-
quently, the demonstration of symmetry breaking based on the non-existence
of a self-adjoint global charge operator does not apply. This does not pre-
clude there being some other demonstration of the spontaneous breakdown of
the hypothesized discrete symmetries; but such a demonstration�as opposed
to heuristic considerations�is wanting.
While there are too many what-ifs in this exercise to allow any �rm

conclusions to be drawn, it does su¢ ce to plant the suspicion that when the
veil of gauge is lifted, what is revealed is that the Higgs mechanism has worked
its magic of suppressing zero mass modes and giving particles their masses
by quashing spontaneous symmetry breaking. But con�rming the suspicion
or putting it to rest require detailed calculations, not philosophizing.

9. The role of idealizations

In this section I want to air some skeptical doubts that arise from the (alleged)
role of idealizations in spontaneous symmetry breaking. While idealizations
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are useful and, perhaps, even essential to progress in physics, a sound prin-
ciple of interpretation would seem to be that no e¤ect can be counted as a
genuine physical e¤ect if it disappears when the idealizations are removed.
This principle might be taken to call into question the novel features of spon-
taneous symmetry breaking in QFT�the non-unitary implementability of a
symmetry and the degeneracy of the vacuum�since they emerge only for in-
�nitely large systems. For instance, the demonstration of the non-unitary
implementability of the symmetry of the Lagrangian L3 given in Section 5
took the form of showing that the global charge operator does not exist as a
well-de�ned self-adjoint operator. Actually, the charge operator Q̂V associ-
ated with a �nite volume V of space does exist; it is only the in�nite volume
limit limV!1 Q̂V that fails to exist. But (the complaint continues) actual sys-
tems exhibiting spontaneous symmetry breaking�such as ferromagnets and
superconductors�are �nite.
One reaction would be to ask about the prospects that a broken symme-

try can retain some approximation to the features of a spontaneously broken
symmetry without going all the way the limit of the in�nite volume limit.
A symmetry � can be broken by a state ! (i.e. ! is not �-invariant) even
though � is unitarily implementable with respect to !. In the GNS represen-
tation (�!;H!) determined by such a ! the symmetry � is, by hypothesis,
implemented by a unitary Û�. It can happen that there are states j i 2 H!

such that j i and its �-image Û�j i become as close to orthogonal as can
be desired as the volume is increased, e.g. jh jÛ�j ij diminishes exponen-
tially fast in V . This may or may not be good enough to account for the
observed features of spontaneous symmetry breaking. As explained in Sec-
tion 6, the di¤erence between a unitarily implementable automorphism and
a non-unitarily implementable automorphism is at least as great as the dif-
ference between �1�and �2�in the expectation value of some observable. If
this observable is important in explaining observed features of spontaneous
symmetry breaking, then the limit of in�nite volume is not a dispensable
idealization.
Another reaction would be to deny that there is any idealization involved

in taking an in�nite volume limit.37 The impression to the contrary is based
on intuitions that are trained in classical physics to think of physical systems
as consisting of hunks of spatially localized matter. If, however, QFT is true,
then matter is nothing but excitations in quantum �elds. If the theory is
empirically adequate it will explain how circumstances can conspire to give
the impression of spatial localization of matter. But even if one is concerned
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solely with observables associated with spacetime regions all of which share
the same �nite spatial support, the full quantum �eld theoretic description
involves global features. Of course, the philosophy of local QFT is that a
complete description of a local spacetime region is given by the subalgebra
of observables associated with that region and by the restriction of the state
on the global algebra to the said subalgebra. But the global state is not
fully characterized by its behavior on any �nite spatial volume no matter
how large. For example, even the humblest of vacuum states�the Minkowski
vacuum�entails correlations between spacetime regions having an arbitrarily
large a spatial separation. Thus, intuitions retrained to �t QFT would think
of all physical systems as being in�nitely large while recognizing that for
practical purposes some systems can be treated as spatially �nite objects.
Of the two responses, I favor the �no-idealization�one, but I freely admit

that there is room for dispute.

10. Conclusion

Curie�s Principle has proved to be very resilient. My explanation is that
this Principle is analytic but nonetheless useful. However, its usefulness is
diminished by QFT where it becomes nearly vacuous. QFT also necessitates
a reappraisal of spontaneous symmetry breaking. The core notion of this
concept�the failure of some state of special physical importance to exhibit
a symmetry of the Lagrangian�is applicable in QFT. But the application
involves wholly novel features such as the non-unitary implementability of
the symmetry and the degeneracy of the vacuum. Because these features
are connected to a number of fundamental interpretational issues in QFT,
spontaneous symmetry breaking serves as a good entry point to the mysteries
of QFT. But by the same token, a full understanding of spontaneous sym-
metry breaking is possible only after these issues have received satisfactory
resolutions.

Appendix

A C�-algebra A is an algebra, over the �eld C of complex numbers, with
an involution � satisfying: (A�)� = A; (A + B)� = A� + B�; (�A)� = ��A�

and (AB)� = B�A� for all A;B 2 A and all complex � (where the overbar
denotes the complex conjugate). In addition, a C�-algebra is equipped with a
norm, satisfying kA�Ak = kAk2 and kABk � kAk kBk for all A;B 2 A, and
is complete in the topology induced by that norm. It is assumed here that
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A contains a unit 1 such that 1A = A1 = A for all A 2 A. Observables are
identi�ed with self-adjoint elements of A, i.e. elements A such that A� = A.
A state on A is a linear functional ! that is normed (!(1) = 1)) and positive
(!(A�A) � 0 for all A 2 A).
A representation of a C�-algebra A is a mapping � : A ! B(H) from

the abstract algebra into the concrete algebra B(H) of bounded linear op-
erators on a Hilbert space H such that �(�A + �B) = ��(A) + ��(B),
�(AB) = �(A)�(B), and �(A�) = �(A)y for all A;B 2 A and all �; � 2 C.
Two representations (�1;H1) and (�2;H2) of a C�-algebra A are said to be
unitarily equivalent just in case there is an isomorphism V : H1 ! H2 such
that V �1(A)V �1 = �2(A) for all A 2 A.
The proofs of Lemmas 1 and 2 and Prop. 2 are all trivial, but for sake of

completeness they are given here. Lemma 1 follows easily from

Prop. 1. Let A be a C�-algebra with unit 1, ! a state on A, and � an
automorphism of A. Let (H!; �!; j	!i) and (Hc�!; �c�! ; j	c�!i) be the GNS
triples determined by � and c�! respectively. Then there is an isomorphism
E : H! ! Hc�! such that E�!(�(A))E

�1 = �c�!(A) for all A 2 A. Proof :
De�ne the linear map E : H! ! Hc�! by

E�!(�(A))j	!i = �c�!(A)j	c�!i (4)

and extending by continuity (�!(�(A))j	!i = �!(A)j	!i is dense in H!).
Equation (4) can be written as E�!(�(A))[1]! = �c�!(A)[1]c�!, i.e.

E[�(A)]! = [A]c�! (5)

Hence,

E[A]! = [�
�1(A)]c�! (6)

So E is linear bi-jective and preserves inner products. hE[A]!jE[B]!i =
h[��1(A)]c�! j[�

�1(B)]c�! i =c�!((��1(A))���1(B)) = c�!(��1(A�B)) = !(A�B) =

h[A]!j[B]!i. So E is a Hilbert space isomorphism. Now for all A;B 2 A,
�c�!(A)[B]c�! = [AB]c�! ) �c�!(A)E[�(B)]! = E[�(AB)]! ) �c�!(A)E[�(B)]! =
E�!(�(A))[�(B)]!. ButB and �(B) are arbitrary, so �c�!(A)E = E�!(�(A)))
�c�!(A) = E�!(�(A))E

�1.
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Proof of Lemma 2. c�! � ! by hypothesis. So c�!(A) = !(�(A)) =

!(UAU�) for some unitary U 2 A and every A 2 A. Now d�c�!(A) =c�!(�(A)) = !(�(�(A)) = !(�(�(A)), where the last equality follows from the
hypothesis that ����1 = �. But !(�(�(A)) = !(U�(A)U�) = !(�[��1(U)A��1(U�)]).
Since ��1 is an automorphism, ��1(U) = V for some unitary element V 2
A, and ��1(U�) = (��1(U))� = V �. Thus, d�c�!(A) = !(�(V AV �)) =c�!(V AV �), i.e. � is unitarily implementable in state c�!.
In the algebraic setting Curie�s Principle can be stated as:

Prop. 2 (Curie�s Principle). Suppose that the initial state !o is �-
symmetric (i.e. d�!o := !o � � = !o) and that the dynamics � is also
�-symmetric (i.e. ����1 = �). Then the evolved state !1 := d�!o is �-
symmetric. Proof : d�!1 = [�d�!o =d�!o �� = !o ���� = !o �� �� =d�!o �� =
[
�d�!o =d�!o = !1.

Acknowledgement
I am grateful to Jeremy Butter�eld and Chis Smeenk for helpful conversations
on these matters. Thanks are due to two anonymous referees for a number
of helpful criticisms and suggestions, and also to Aristidis Arageorgis for
providing the details of the proof of Prop.1 of the Appendix.

Notes

1. �Lorsque certains e¤ects révèlent une certaine dissymétrie, cette dis-
symétrie doit se retrouver dans les causes qui lui ont donné naissance.� An
English translation of Curie�s paper can be found in Rosen (1982, pp. 17-25).
2. For cases where the equations of motion/�eld equations are derivable
from an action principle the point becomes that there is a symmetry of the
Lagrangian that is not a symmetry of the physically signi�cant state. This
will be discussed in detail below.
3. I take this quali�er from Roberts (1992, p. 404).
4. �C�est la dissymétrie qui crée le phénonène.�
5. See Roberts (1992, p. 404). Weinberg (1996) quips that �we do not have
far to look for examples of spontaneous symmetry breaking,�e.g. most of the
objects we encounter in daily life have a de�nite orientation in space although
the laws governing the motions and interactions of the atoms that compose
these objects are rotationally symmetric (p. 163). ButWeinberg immediately
goes on to discuss how spontaneous symmetry breaking in quantum �eld
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theory di¤ers from such homely examples, and the key di¤erence concerns
the behavior of the quantum vacuum state.
6. Attempts by philosophers of science to come to grips with the impli-
cations spontaneous symmetry breaking can be found in Morrison (1995)
and (2000, sec. 4.4); Cao (1997, Ch. 10); Kosso (2000); Liu (2001); and Bal-
ashov (2002); and Part III (�Symmetry breaking�) of Brading and Castellani
(2003). Historical surveys are to be found in Radicati (1987) and Brown and
Cao (1991).
7. I leave open the question of whether the present proposal captures Curie�s
original intentions. Ismael (1997), who gives a similar reading of Curie�s
Principle, o¤ers textual evidence about Curie�s intentions.
8. For a precise statement and proof of these assertions, see Olver (1993,
Sec. 4.2). A symmetry of the equations of motion need not be a variational
symmetry.
9. For a readable treatment of the Noether theorems and their applications
in physics, see Barbashov and Nesterenko (1983).
10. The quantum treatment of phase transitions belongs to quantum sta-
tistical mechanics. One of the features that emerges from this treatment is
the necessity to invoke unitarily inequivalent representations of the canonical
commutations relations which, as will be seen below, is a key to spontaneous
symmetry breaking in quantum �eld theory. For an accessible introduction
to some of the issues involved in quantum phase transitions, see Ruetsche
(2003)
11. Needless to say, the idea that collapse of the state vector is an objective
physical process is highly controversial. See Albert (1998) for an overview of
di¤erent ways of treating the measurement problem in QM.
12. See Ismael (1997) for a start on this project.
13. With Um(s) := exp(iqms) and Vn(t) := exp(ipnt), the Weyl form of
the canonical commutation relations pnqm � qmpn = �i�nm, etc., is given
by Vn(t)Um(s) = Um(s)Vn(t) exp(ist�nm) and Um(s)Un(t) � Un(t)Um(s) =
0 = Vm(s)Vn(t)� Vn(t)Vn(s). This form of the commutation relations avoids
problems about domains of de�nition for unbounded operators. When the
ranges of m and n, are �nite, the Stone-von Neumann theorem says that all
irreducible representations of these relations by continuous unitary groups
on Hilbert space are unitarily equivalent. For an in�nite number of degrees
of freedom�in particular, for �eld theories�the theorem no longer applies.
14. There are many good reviews of the physics of spontaneous symmetry
breaking. Among the ones I found most helpful are Coleman (1985, Ch. 5)
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and Guralnik et al. (1968).
15. A particularly clear treatment is found in Aitchison (1982, Ch. 6). The
discussion assumes that the dimension of space is two or greater; for the
reasons that this assumption is needed, see Coleman (1973).
16. In di¤erent approaches to QFT the vacuum is expected to satisfy di¤erent
conditions. In Fock representations, the vacuum state is the zero-particle
state. In most approaches it is postulated�and sometimes proved�that the
vacuum is the unique (up to phase) state that is Poincaré invariant.
17. This result is peculiar to the zero mass Klein-Gordon �eld. Streater
(1966) shows that whenm > 0 spontaneous symmetry breaking cannot occur
for the Klein-Gordon �eld.
18. Commentators will sometimes say that a spontaneously broken symme-
try is represented in a �non-Wigner�mode. This terminology invites confu-
sion. Wigner (1959) was concerned with ray mappings of a separable Hilbert
space H that preserve transition probabilities, and he showed that the action
of such a mapping is given by a vector mapping that is either linear unitary
or antilinear antiunitary. So the notion that a spontaneously broken sym-
metry is represented in a �non-Wigner�mode has led some commentators
to conclude that a spontaneously broken symmetry does not conserve prob-
ability (see, for example, Fonda and Ghirardi 1970, p. 446). But as will be
seen below, �symmetry�in spontaneous symmetry breaking does not invoke
the ray or vector maps at the basis of Wigner�s theorem.
19. For an account of what Noether (1918) did in her classic paper on
variational symmetries and her purpose in stating two theorems, see Brading
and Brown (2003).
20. Using similar heuristic reasoning, T. D. Lee (1973) discusses the spon-
taneous breaking of P , CP , and T . For an application of the (assumed)
spontaneous breakdown of CP symmetry to cosmology, see Zel�Dovich et al.
(1975).
21.My �Rough guide to spontaneous symmetry breaking�(2003b) gave a brief
and (alas!) all-too-rough introduction to the use of the algebraic formalism
for QFT to illuminate features of symmetry breaking.
22. Haag�s theorem shows, for example, that irreducible representations of a
free scalar �eld and a self-interacting scalar �eld are unitarily inequivalent.
23. See the Appendix for more details. The mathematics of algebraic QFT
is developed in Bratteli and Robinson (1987, 1996).
24. For a construction of the Weyl algebra for the Klein-Gordon �eld, see
Wald (1994).

28



25. Here jj � jj is the norm of the C�algebra. Note that jj�(A)jj = jjAjj for all
A 2 A.
26. And in the case where there are an uncountable in�nity of degenerate
vacuum states, the Hilbert space that accommodates them all would be non-
separable.
27. �!1+!2(A)0 denotes the commutant of �!1+!2(A), i.e. the set of all
bounded operators on H!1+!2 that commute with each element of �!1+!2(A).
The equivalence of the de�nitions of disjointness is proved in Bratteli and
Robinson (1996).
28. A state ! on a C�-algebra A is said to be a factor i¤ the von Neumann
algebra �!(A)00 (where �00� indicates the double commutant) has a trivial
center, i.e. �!(A)00 \ �!(A)0 consists of multiples of the identity.
29. One might also require of a vacuum representation that it be unitarily
equivalent to a Fock representation with j0i being the no-particle state. But
this is not essential for the present point.
30. he reader is invited to compare the present discussion with the �Panel
discussion�that followed Simon Saunders question about the possibility of a
dynamical representation of spontaneous symmetry breaking; see Cao (1999,
pp. 382-383).
31. This model is taken from Goldstone (1961).
32. For a nice antidote to this hype, see Martin (2001).
33. For an account of the discovery of this mechanism, see Higgs (1997).
34. For details about constrained Hamiltonian systems and techniques for
quantizing them, see Henneaux and Teitelboim (1992). For an introduction
designed to be accessible to philosophers of science, see Earman (2003a).
35. In classical mechanics the Legendre transformation takes one from the
Lagrangian variables (q; _q) to the Hamiltonian variables (q;p), where the
canonical momenta p are given by @L=@ _q. For unconstrained Hamiltonian
systems, p will be m _q.
36. There is another approach to quantizing constrained Hamiltonian sys-
tems called Dirac constraint quantization. It promotes the classical Hamil-
tonian constraints to operators on a Hilbert space and identi�es the physi-
cal sector as consisting of vectors that are annihilated by the operator con-
straints. It is mathematically possible that reduced phase space and Dirac
constraint quantization yield physically inequivalent results. As far as I am
aware this possibility is not realized in the types of examples at issue.
37. Assuming, of course, that the actual universe is spatially in�nite. The
latest evidence from cosmological observations is that this assumption is cor-
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rect.
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Figure captions 
 
Fig. 1:  Greenberger’s hoop-and-bead model 
 
Fig: 2:  Effective potential for angular momentum below the critical value 
 
Fig. 3   Effective potential for angular momentum above the critical value 
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