1 Competing Risk

1.1 Setup

Consider the competing risks model

$$
(T, I)=\left(\min \left\{T_{1}, T_{2}\right\}, \arg \min \left\{T_{1}, T_{2}\right\}\right)
$$

with a binary explanatory variable X. Moreover assume that a discretized version of T is observed. The joint distribution of the data is then characterized by $P\left(T=t_{k}, I=i \mid X=x\right)$. There is a one-to-one relationship between $P\left(T=t_{k}, I=i \mid X=x\right)$ and the discrete-time hazard

$$
P\left(T=t_{k}, I=i \mid X=x, T \geq t_{k}\right)
$$

Honoré and Lleras-Muney (2005) consider the linear programming problem for given a and b

$$
\begin{equation*}
f(a, b)=\max _{\left\{v_{i}\right\},\{p(\cdot, \cdot)\}} \sum-v_{i} \tag{1}
\end{equation*}
$$

subject to

$$
\begin{array}{rlr}
v_{k}+\sum_{\substack{t_{k}<s_{1}<t_{k+1} \\
s_{2}>s_{1}}} p\left(s_{1}, s_{2}\right) & =P\left(T=t_{k}, I=1 \mid X=0\right) & k=1, \ldots M \\
v_{M+k}+\sum_{\substack{t_{k}<s_{2}<t_{k+1} \\
s_{1}>s_{2}}} p\left(s_{1}, s_{2}\right) & =P\left(T=t_{k}, I=0 \mid X=0\right) & k=1, \ldots M \\
v_{2 M+k}+\sum_{\substack{t_{k}<a s_{1}<t_{k+1} \\
b s_{2}>a s_{1}}} p\left(s_{1}, s_{2}\right) & =P\left(T=t_{k}, I=1 \mid X=1\right) & k=1, \ldots M \\
v_{3 M+k}+\sum_{t_{k}<b s_{2}<t_{k+1}}^{a s_{1}>b s_{2}}< \\
v_{4 M+1}+\sum_{s_{1}, s_{2}} p\left(s_{1}, s_{2}\right) & =P\left(T=t_{k}, I=0 \mid X=1\right) & k=1, \ldots M \\
v_{i} & \geq 0 \quad k=1, \ldots 4 M+1 \tag{7}
\end{array}
$$

$1.2 \mathrm{grids}_{-} \mathrm{fcts}$

The gauss routine
grids_fcts(h1, h2, startt, maxt, thmin 1, thmax $1, d t h 1$, thmin $2, t h \max 2, d t h 2)$
calculates the function value for the linear programming problem (1) in Honoré and Lleras-Muney (2005) over a grid of points.

Input

The inputs $h 1$ and $h 2$ are matrices, startt and maxt are positive integers, and thmin 1 , thmax 1 , $d t h 1$, thmin $2, \operatorname{thmax} 2$ and $d t h 2$ are reals such that thmin $1<t h \max 1$ and thmin $2<t h \max 2$.
$h 1$ and $h 2$ both have two columns. $h 1[$ startt $+1:$ maxt,$i]$ and $h 2[s t a r t t+1:$ maxt, $i]$ refer to the discrete time hazards, $P\left(T=t_{k}, I=i \mid X=x, T \geq t_{k}\right)$, for $x=0$ and $x=1$, respectively. We assume that the durations are censored after maxt periods.

The points on the grid are constructed so they cover the set [thmin 1, thmax 1$] \times[$ thmin 2, thmax 2$]$. In terms of the notation of Honoré and Lleras-Muney (2005), the program searches for values of a in $[t h m i n 1, t h \max 1]$ and b in $[t h m i n 2$, thmax 2$]$. The distance between points in the grid is less than $d t h 1$ for the first element and less than $d t h 2$ for the second element.

Output

The output of the routine is a matrix with three columns. The first column contains the function value for a grid point. The second and third columns contain the coordinates for the grid point, i.e., the values if (a, b).

2 Existence of solution to linear constraints.

Let A be a matrix and let b be a vector. Consider the equations

$$
A x=b .
$$

a solution with $x_{i} \geq 0$ for all i exists if and only if 0 equals

$$
\max _{\left\{x_{i}\right\},\left\{v_{i}\right\}}-\sum v_{i}
$$

subject to

$$
\begin{aligned}
A x-b & =v \\
v_{i} & \geq 0
\end{aligned}
$$

The gauss routine

$$
\text { lp_max_value }(A, b, n m e t)
$$

calculates

$$
\max _{\left\{x_{i}\right\},\left\{v_{i}\right\}}-\sum v_{i}
$$

subject to

$$
\begin{aligned}
A x-b & =v \\
v_{i} & \geq 0 .
\end{aligned}
$$

If $n m e t=1$ then Gauss's linear programming routine are used. If $n m e t=2$ then the program uses a linear programming routine based on Press et al.

