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One of the important challenges of plasma theory is searching for new ways of thinking about
turbulence, which remains notoriously complicated notwithstanding decades of research. This pa-
per puts forth an approach that can help make turbulence theory more intuitive. Generic wave
turbulence can be modeled as effective quantum plasma where wave quanta serve as particles and
coherent fields mediate their collective interactions. The dynamics of this effective plasma is gov-
erned by the Wigner–Moyal equation (WME), which is a “full-wave” generalization of the wave
kinetic equation. The WME does not assume scale separation and retains phase correlations, so
coherent structures can be modeled properly. A similar approach is already used ad hoc in appli-
cations to specific systems such as optical turbulence, but the systematic theory makes the WME
more flexible. For example, the WME has been recently applied to drift-wave and Navier–Stokes
turbulence, and similar applications to magnetohydrodynamic turbulence are envisioned. Since dif-
ferent systems correspond to different effective particles, there is more than one “plasma physics of
turbulence”, which is intellectually stimulating.

Introduction. — Turbulence is a ubiquitous phe-
nomenon that is responsible for many aspects of plasma
dynamics, particularly, structure formation and trans-
port of particles, momentum, and energy. Understanding
these effects is of tremendous importance in various areas
of plasma physics, including fusion science, planetary sci-
ence, and astrophysics. Nevertheless, turbulence remains
notoriously difficult to model, and ab initio simulations
are often considered as the only feasible option. In this
situation, searching for new ways of thinking about tur-
bulence is an important challenge of fundamental plasma
theory, perhaps even more important than understanding
specific effects driven by turbulence.

This paper puts forth an intuitive and arguably
promising way of thinking about turbulence, especially
inhomogeneous wave turbulence. Adopting this approach
will not solve all problems in turbulence theory, but it can
make some of them more tractable.

Basic idea. — To motivate the basic idea, let us start
with the following observation. One area where turbu-
lence studies have been particularly fruitful is plasma ki-
netic theory. It is not commonly viewed as a turbulence
theory per se, but it is one in the sense that any, even reg-
ular, dynamics of plasma can be considered as turbulent
dynamics of quantum matter waves. Kinetic theory hides
the complexity of the quantum field by describing only
the Fourier spectrum of its two-point correlation func-
tion, or the Wigner function W [1]. In the geometrical-
optics (classical) limit, when the de Broglie wavelengths
and quantum correlations are negligible, W can be inter-
preted as the particle distribution function and satisfies
a Liouville-type equation (e.g., Vlasov equation). Then,
quantum-turbulence theory becomes an intuitive Hamil-
tonian theory of incompressible flows in phase space.

Due to the success of this reduced theory of quantum

turbulence (a.k.a. plasma kinetic theory), it is tempt-
ing to describe classical turbulence in the same way. In-
deed, Liouville-type “wave kinetic equations” (WKE) for
nonlinear classical waves are widely known. However,
since the wavelengths of classical fluctuations are typi-
cally much larger than those of quantum fluctuations, the
geometrical-optics approximation underlying the WKE
is fragile. For example, the WKE is often inadequate
for modeling structure formation, because the charac-
teristic scales are often determined by diffraction, which
the WKE neglects along with other full-wave effects and
phase information in general. Because of this, practical
applications of the WKE have been limited, and direct
numerical simulations are often preferred instead.

Here, we argue that this can be fixed. Even without
scale separation, wave turbulence can be modeled intu-
itively as effective plasma, except waves must be treated
as quantum particles. To see this, let us return to the
analogy with plasma kinetic theory. When the parti-
cle de Broglie wavelength and (or) quantum correlations
are non-negligible, W is no longer governed by the Liou-
ville equations but satisfies a more general Wigner–Moyal
equation (WME) [2]. Although the WME is a pseudo-
differential equation (see below), it largely retains the
Hamiltonian structure of the Liouville equation and the
associated conservation laws, so quantum turbulence gen-
erally remains tractable. For example, nonlinear modu-
lational instabilities of quantum matter can be viewed as
linear plasma instabilities, and their saturation can be
understood from properties of the particle Hamiltonian.

We propose that classical turbulence be modeled simi-
larly with the WME for the Wigner function (matrix) on
the ray phase space. No scale separation is needed in this
case, and yet the dynamics remains tractable. This idea
was already applied in the past to manifestly quantumlike
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systems, for example, optical turbulence governed by the
nonlinear Schrödinger equation [3]. Here, we propose to
apply it to a broader class of equations, including those
governing magnetized-plasma turbulence. We also ar-
gue that, by following the systematic approach outlined
below, one can significantly reduce the amount of calcu-
lations compared to that needed in ad hoc formulations.

Wigner–Moyal formulation. — The approach itself is
described as follows. Consider the governing equation for
some turbulent field ψ in the form

i∂tψ = Ĥψ. (1)

The variable t can be the true time or an extended time
introduced artificially for uniformity. (In the latter case,
ψ does not actually depend on t, so ∂t can as well be
omitted.) The field ψ will be called a wave for brevity,
but it does not have to be an oscillating field. In partic-
ular, the operator Ĥ, termed Hamiltonian, may or may
not be Hermitian. In general, Ĥ can depend on ψ, ψ†,
and some coherent fields, which may be governed by some
additional equations.

Let us promote ψ to an abstract vector |ψ〉, as com-
monly done in quantum mechanics, and rewrite the above
equation in the invariant vector form:

i∂t |ψ〉 = Ĥ |ψ〉 . (2)

By projecting Eq. (2) on the eigenvectors |x〉 of the co-
ordinate operator x̂, one recovers the original equation
for 〈x|ψ〉 ≡ ψ. By projecting Eq. (2) on the eigenvec-
tors |k〉 of the wave-vector operator k̂

.
= −i∇, one ob-

tains the equation for 〈k|ψ〉, which is the Fourier trans-
form of ψ. (Here, the symbol

.
= denotes definitions

and Euclidean coordinates are assumed. For generaliza-
tions to non-Euclidean coordinates, see Ref. [4].) But
we are interested in a phase-space formulation of tur-
bulence, so we seek to project the governing equation
on both |x〉 and |k〉. A vector equation does not al-
low for such double projection, so we need to switch
to operator equations. For that, let us introduce the
“density operator” Ŵ = |ψ〉 〈ψ|. (If ψ has multiple com-
ponents, we introduce a matrix of operators instead,
namely, Ŵαβ = |ψα〉 〈ψβ |; see Refs. [5, 6].) As usual, it
is governed by the von Neumann equation,

i∂tŴ = [ĤH , Ŵ ]− + i[ĤA, Ŵ ]+. (3)

Here, the indices H and A denote the Hermitian and anti-
Hermitian parts and the brackets denote a commutator
and anti-commutator, respectively.

Let us consider the Weyl transform W , which in a
sense, is the most natural projection of a given operator
to a function on the (x,k) space [7]; for example, it maps
Hermitian operators to real functions (Hermitian matri-
ces [6]). By applying the Weyl transform to Eq. (3), one
obtains the following WME:

∂tW = {{HH ,W}}+ [[HA,W ]]. (4)

Here HH,A
.
= W [ĤH,A], and W

.
= W [Ŵ ] is the Wigner

function, which is a real function (or Hermitian ma-
trix, if ψ has multiple components). Also, {{A,B}} .

=
2A sin(L̂/2)B and [[A,B]]

.
= 2A cos(L̂/2)B are called

the Moyal brackets, and L̂ .
= {←· ,→· } is the canonical

Poisson bracket. The arrows show the directions in which
the derivatives act; for example, AL̂B = {A,B}.

Now, let us suppose that we can define some average
(. . .), which can be, for example, the average over some
insignificant variable or the ensemble average. Let us
split W into its average W̄ and fluctuations W̃ , and sim-
ilarly for HH,A. By averaging Eq. (4), one obtains, by
properties of the Weyl transform, that

∂tW̄ = {{H̄H , W̄}}+ [[H̄A, W̄ ]] + C, (5)

where we introduced

C
.
= {{H̃H , W̃}}+ [[H̃A, W̃ ]]. (6)

Typically, H̄H,A depend on the coherent fields U , whose
generic equations can be written as follows:

D̂U = F [W̄ ]. (7)

Here, D̂ is some evolution operator and F [W ] is some
functional of the Wigner function. [For example, in the
case of the nonlinear Schrödinger equation with cubic
nonlinearity, one can adopt U = |ψ|2 =

∫
W̄ (t,x,k) d3k,

in which case D̂ = 1 and F [·] =
∫

(·) d3k. As an-
other example, consider drift-wave turbulence within the
Hasegawa–Mima model. In this case, U can be the zonal-
flow velocity, and the explicit form of Eq. (7) is derived in
Ref. [8]. Also, for the case of Navier–Stokes turbulence,
see Ref. [5].] In contrast with many other theories of inho-
mogeneous turbulence, no cumbersome calculations are
needed here; instead, one makes use of the known the-
orems of the Weyl-transform theory, or Weyl calculus.
Also advantageously, the WME is closely linked with the
WKE, which is obtained in the geometrical-optics limit
via {{HH ,W}} → {HH ,W} and [[HH ,W ]]→ 2HAW .

Equations (5)–(7) are identical to the kinetic model of
quantum plasma up to the Hamiltonian, with U serving
as a collective field. In this sense, any turbulence is ef-
fectively a quantum plasma, even when it is not plasma
turbulence per se. Also note that C serves as the wave–
wave collision operator. Homogeneous-turbulence theory
is recovered in the limit when the effective plasma is col-
lisional and near-equilibrium, i.e., {{H̄H , W̄}} → 0 and
[[H̄A, W̄ ]]→ 2H̄AW . Note that most of “plasma physics
of turbulence” is ignored in this case. In contrast, the
commonly used [9, 10] quasilinear approximation corre-
sponds to the “collisionless” limit, i.e., the limit when C
is negligible compared with the Moyal brackets in Eq. (5).
Applications. — Equations (5) and (7) are useful both

for analytic calculations and numerical modeling. In an-
alytic theory, the concept of the Hamiltonian allows one
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to picture turbulent dynamics intuitively as phase-space
dynamics of effective particles. One can also apply the
usual methods of plasma kinetic theory to calculate mod-
ulational instabilities as linear instabilities of the effec-
tive plasma [11] and to figure out their saturation mech-
anisms, at least if H̄A is small [12]. In numerical simu-
lations, the advantages are twofold. First of all, by com-
paring WME simulations with WKE simulations, one
can actually check whether a given effect is captured by
the geometrical-optics approach. (This is possible to do
because the Wigner function and the geometrical-optics
density of the wave quanta belong to the same space.)
Second, one can efficiently model multi-scale processes.
In contrast to direct numerical simulations, which have
to resolve the smallest relevant wavelength, Eq. (5) can
be simulated on a much coarser grid. [It can be compu-
tationally cheaper to simulate the dynamics in the (x,k)
space as opposed to the x space alone if the turbulence
spectrum is very broad while the spatial structure of W̄
is mainly large-scale.] Also importantly, solving Eq. (5)
yields statistical predictions in a single run.

Recently, we have been pursuing analytic and numer-
ical quantumlike modeling of drift-wave turbulence and
the associated dynamics of zonal flows, both in the quasi-
linear approximation [11–18] and beyond [19]. As it turns
out, many aspects of drift-wave turbulence that have
remained obscure so far (notwithstanding extensive re-
search) are readily understood within the quantumlike
approach. For example, we have developed a systematic
understanding of the secondary instability of broadband
spectra, the formation of propagating and stationary soli-
tary zonal structures [14–17], and the Kelvin–Helmholtz
instability of zonal flows [13, 14], which can be under-
stood as “vacuum breakdown” for drift waves considered
as quantum particles. A particularly remarkable outcome
of this research is an explanation of the mechanisms of
saturation and nonlinear oscillations of collisionless zonal
flows [12] and also an explanation of the so-called Dimits
shift [18], which is important for fusion science [20] and
fascinating as basic physics.

It has also been shown how to extend such calcula-
tions to vector -wave turbulence. In particular, Ref. [5]
considers Navier–Stokes turbulence as an example. This
opens opportunities in Wigner–Moyal modeling of mag-
netohydrodynamic turbulence, where the structure of the
governing equations is similar. Potential applications are
envisioned in theory of the magnetorotational instability
and turbulent dynamo, also as a development of a related
recent research [10]. This is facilitated by the fact that
even the simplest quasilinear approximation (C ≈ 0) is
known to suffice these applications at least in some limits.

Discussion. — In the long run, quantumlike modeling
of turbulence seems particularly promising and exciting
in the following sense. On one hand, it provides a unified
and intuitive high-level approach to various turbulence
problems. On the other hand, since the Hamiltonians

of turbulent perturbations are different in different types
of turbulence, the quantumlike approach leads to more
than one “plasma physics of turbulence”. The situation is
similar to that in condensed-matter theory, where study-
ing effective (quasi)particles with exotic properties is a
part of the routine. This fact may be appealing to those
plasma theorists who have always worked on the Vlasov–
Maxwell system and would like to try something new.

In summary, it appears that fundamental theory
of plasma turbulence can substantially benefit from
updating its toolbox. Embracing the Weyl calculus
seems like an obvious thing to do [21]. It also may be
helpful to switch from the traditional variables (electro-
magnetic fields, velocities, densities) to more-abstract,
higher-level concepts (state vectors, Wigner matrices,
wave Hamiltonians) in order to make calculations more
systematic and general. Apart from being both conve-
nient and intellectually stimulating, this approach would
facilitate communication between plasma theory and
other disciplines, for example, geophysics, where similar
turbulence studies are being carried out in parallel.
Finally, the visibility of plasma physics among the other
physics disciplines can be improved by communicating
the fact that, in the right variables, any turbulence looks
like an effective quantum plasma.
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