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Introduction. — Drift-wave (DW) turbulence can generate banded sheared flows, called

zonal flows (ZFs), which can significantly influence turbulent transport. Due to the importance

of this effect, physics of DW–ZF interactions has been attracting attention. As a common model,

the wave-kinetic equation (WKE) has been used [1], which assumes that characteristic wave-

lengths of DWs are negligible compared to ZF scales. However, such “geometrical-optics” (GO)

description misses essential physics, which stimulated formulations of more general, “full-

wave” models, e.g., the so-called CE2. (For an overview, see Ref. [2].) But the full-wave models

developed so far are not very intuitive, and their relation to the WKE is not obvious. Thus, de-

veloping robust intuitive understanding of DW–ZF interactions has been an open problem.

Here, we present a quantumlike approach to inhomogeneous DW turbulence [3–9]. Basically,

we show how to extend the WKE-based approach beyond GO by treating DWs as effective

quantum (finite-wavelength) particles. We also apply this approach to analytic and numerical

modeling and explain some basic effects in DW turbulence in collisionless plasma.

Basic equations. — As a governing model, we assume the modified Hasegawa–Mima equa-

tion (mHME), which has been widely used in basic-physics studies of DW turbulence. It has

been seen numerically, also in our work [8,9], that eddy–eddy interactions can often be ignored

when modeling DW–ZF interactions. (This is known as the quasilinear approximation.) Then,

the mHME can be expressed in the following dimensionless form [3, 4]:

i∂tw̃ = Ĥw̃, Ĥ = p̂xU− p̂x(β −U ′′) ˆ̄p−2
, ∂tU = ∂y〈(p̂y ˆ̄p−2w̃)(p̂x ˆ̄p−2w̃)∗〉. (1)

We assume slab geometry with uniform magnetic field along z and constant density gradient β

along y (radial coordinate in toroidal plasmas). The zonal velocity ~U(t,y) is along x (poloidal

coordinate); w̃ is the DW part of the generalized vorticity, or the perturbation of the ion guiding-

center density; also, ~̂p .
= −i∇, ˆ̄p2 .

= 1 + p̂2, U ′′ .= ∂ 2
y U , 〈. . .〉 denotes zonal averaging (i.e.,

averaging over x), and .
= denotes definitions. Dissipation and forcing could be added [3] but are

not discussed below. Since the equation for w̃ has the form of a Schrödinger equation (up to h̄),

w̃ can be viewed as a state function of a DW as an effective quantum particle, or “drifton”.

Linear DWs. — The drifton dynamics in prescribed ZFs can be studied like the dynamics



of quantum particles in prescribed fields. However, notice the following. Although Eqs. (1) are

conservative overall [3], the drifton Hamiltonian Ĥ has a nonzero anti-Hermitian part, because

U ′′ and ˆ̄p−2 do not commute. This means that unless U ′′′ is negligible, driftons are not con-

served. For example, driftons can be spontaneously generated by intense ZFs, which is known as

the Kelvin–Helmholtz tertiary instability (TI). In Ref. [6], we showed that a laminar sinusoidal

ZF with U =U0 cosqy is unstable with respect to DW-like Floquet modes w̃ = Re [w̃(y)eikxx] if

q2 > 1+ k2
x and |U ′′|max > β ; otherwise, all drifton states have real frequencies. This is related

to the fact that Ĥ is pseudo-Hermitian at ∂tU = 0. Specifically, in this case, ĤQ̂ = Q̂Ĥ†, where

Q̂ .
= β−U ′′ is Hermitian, so |U ′′|max = β is the threshold at which pseudo-Hermiticity is broken

and complex frequencies emerge if q is large enough. If a primary instability and dissipation

are added, Kelvin–Helmholtz modes can become unstable also at smaller q, albeit the modes

are significantly different then. They become localized near extrema of U , so w̃ satisfies the

equation of a quantum harmonic oscillator with complex frequency. We also show that these

localized modes are exactly the cause of the Dimits shift [to be published].

Below, we focus on the DW dynamics in a self-consistent U generated from noise in the

absence of dissipation. Using Eqs. (1), we construct a theory of DW turbulence as collisionless

quantumlike plasma of driftons which interact via U as a collective field. (Eddy–eddy interac-

tions can be added as collisions [7].) Several derivative models and effects will be discussed.

Weak quasimonochromatic DWs. — Suppose w̃ is weak and quasimonochromatic, w̃ =

eikxx+ikyyψ(t,y), where ψ is a slow envelope. Since ∂t ≈ −vg∂y, where vg is the linear DW

group velocity, the equation for U readily yields a local an “equation of state” U =U(|ψ|) and

the equation for w̃ becomes a nonlinear Schrödinger equation (NLSE) with a local nonlinearity:

U ≈−〈|ψ|2〉/(4β ), i(∂t + vg∂y)ψ ≈−χ∂
2
y ψ− kx〈|ψ|2〉/(4β )ψ, (2)

where vg = 2βkxky/k̄4, χ = (1−4k2
y/k̄2)βkx/k̄4, and k̄2 .

= 1+k2. (This NLSE was also derived

in the past from other considerations [1].) We showed numerically that Eqs. (2) indeed approx-

imate the mHME adequately at small ψ [8]. They correctly predict the modulational instability

(MI) of a monochromatic short-wavelength DW, and the zonal structures generated in this case

are, basically, NLSE solitons propagating in y at the linear group velocity. In the presence of

background shear flows, NLSE solitons deteriorate but can be reinstated if a primary instability

is added [to be published]. This may explain why in weak-turbulence simulations, propagating

structures are often seen instead of stationary ZFs, which appear only at large enough |w̃|.

Statistical model for general turbulence. — More general (strong, broadband) turbulence

can be described within a statistical model. We promote w̃ to an abstract state vector |w̃〉, intro-



duce the density operator Ŵ .
= |w̃〉〈w̃|, which satisfies ∂tŴ = ĤŴ −Ŵ Ĥ†, and project the latter

equation on the phase space (x,y, px, py) using the Wigner–Weyl transform. This leads to [3]

∂tW̄ = {{HH ,W̄}}+[[HA,W̄ ]], ∂tU = (2π)−2∂y
∫

d2 p p̄−2 ? px pyW̄ ? p̄−2. (3)

Here, W̄ (t,y,~p) .
=

∫
d2se−i~p·~s〈w̃(t,~x+~s/2)w̃(t,~x−~s/2)〉 is the zonally-averaged Wigner func-

tion (Weyl symbol of Ŵ ), HH = pxU −β px/ p̄2 + 1/2 [[U ′′, px p̄−2]] and HA = 1/2{{U ′′, px p̄−2}}

are the Weyl images of the Hermitian and anti-Hermitian parts of Ĥ, {{·, ·}} and [[·, ·]] are the so-

called Moyal brackets, and ? is the Moyal product known from quantum mechanics. Equations

(3) are similar to the equations of quantum-plasma kinetic theory, with W̄ serving as the (drifton)

phase-space distribution and U serving as the electric field; thus, they can be analyzed in a sim-

ilar manner. For example, the MI can be understood as a linear instability of drifton plasma, and

its growth rate can be calculated accordingly for any background distribution W̄0(~p) [3, 8]. One

can also integrate Eqs. (3) numerically. The first Wigner–Moyal simulations of DW turbulence

were done in Refs. [4, 8, 9]. Comparison with nonlinear direct numerical simulations and other

analytic theories shows that Eqs. (3) are an adequate tool for modeling many key effects in DW

turbulence, including the MI, the TI, and the ZF saturation, as also discussed below.

Geometrical-optics limit revisited. — In collisionless plasmas, the MI’s maximum growth

rate is determined by diffraction, and so is the size of saturated ZFs. Hence, keeping full-wave

effects in Eqs. (3) is generally necessary to avoid nonphysical results. However, some aspects

of DW–ZF interactions can be understood in the GO limit (and the results can be checked using

Wigner–Moyal simulations). Specifically, the GO limit is derived by taking [[A,B]]→ 2AB and

{{A,B}}→ {A,B}, where {A,B} is the Poisson bracket. Then, Eq. (3) becomes

∂tW̄ = {HH ,W̄}+2HAW̄ , ∂tU = (2π)−2∂y
∫

d2 p px pyW̄/p̄2, (4)

with HH ≈ pxU − (β −U ′′)px/p̄2 and HA ≈ −U ′′′px py/p̄2. Unlike the traditional WKE [1],

Eqs. (4) respect the integrals of the original mHME [3], so we call this model improved WKE,

or iWKE. (The iWKE was also proposed, under a different name and from different consider-

ations, in Ref. [10].) The first analysis of the iWKE phase space was done in Ref. [5]. Three

types of drifton trajectories were identified, namely, passing, trapped, and runaway trajectories.

The former two are similar to the trajectories of electrons in plasma waves, but the runaway

trajectories are special. They are localized in y but extend to infinity in py; hence, runaways

eventually dissipate, e.g., through viscosity. Depending on the ZF amplitude, runaway trajecto-

ries: (i) coexist with passing and trapped trajectories, (ii) coexist with just trapped trajectories,

or (iii) are the only trajectories. As it turns out, transitions between these three regimes are the

cause of many interesting effects in DW turbulence. Two of them are described below.



Saturation of collisionless ZFs. — ZFs can saturate monotonically or oscillate strongly.

In collisionless plasmas, this is not captured by the usual predator–prey model [1] but can be

explained as follows [9]. If the initial DW is weak, ZFs saturate in regime (i). In this case,

driftons can hop between passing and trapped trajectories but, assuming their initial py are

small, cannot go far in the py space. Then, the DW spectrum remains narrow, so the system has

a low-dimensional configuration space and is conservative, and U has to oscillate. If DWs are

stronger, such that the MI rate is larger than the DW characteristic frequency β px/p̄2, ZFs sat-

urate in regime (ii), so many runaways are produced. The associated spectrum broadening and

dissipation result in phase mixing of DW harmonics, so the saturation of U is largely monotonic.

Cross-scale interactions. — From gyrokinetic simulations, it is known that large-scale

(ITG) turbulence can suppress small-scale (ETG) turbulence. However, a definitive explanation

of this effect has been lacking. We have reproduced the effect within the quasilinear mHME and

propose the following explanation, also tested numerically [to be published]. Large-scale DWs

cause continuous merging of small-scale ZFs roughly until the ZF scale becomes comparable to

the largest characteristic DW wavelength. This causes a long chain of bifurcations in the drifton

phase space, each one throwing a fraction of small-scale driftons to runaway trajectories. Run-

aways typically dissipate before they have a chance to become trapped again; hence, almost

all small-scale driftons are eventually eliminated. Including eddy–eddy interactions does not

change this fact; it only adds another channel through which driftons can become runaways.

Conclusions. — In summary, the quantumlike phase-space approach is a useful tool for un-

derstanding basic physics of many key effects in DW turbulence and DW–ZF interactions.
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