Does Improved Market Access Raise Plant-Level Productivity?

Alla Lileeva
Department of Economics, York Univ.
Statistics Canada

Daniel Trefler
Rotman School of Management, Univ. of Toronto
CIAR

Motivation

Exporters are more productive than nonexporters. Does exporting raise productivity?

1. Raising productivity is not a passive activity.
 ◦ e.g., learning-by-exporting, down the AC curve.

2. What is the policy-relevant question being answered or policy-relevant parameter being estimated?

 ◦ Results for developing countries are more mixed, possibly because of differences in why firms export.
Basic Insight

• Estimate effects of a policy – improved market access.

• Improved market access leads to reorganization:

• Heterogeneity: Firms with low levels of productivity who reorganize and export must be getting a big kick from reorganization.
Why reorganization rather than conventional explanations?

- Moving down and average cost curve — Not a big enough effect (Lileeva, Ph.D., 2005)

- Bilateral tariff reductions under monopolistic competition leads to import competition which raises productivity — No (Trefler, *AER*, 2004)

- Changes in product mix — Yes? (Baldwin, Caves, and Beckstead, Mimeo, 2004).

The strategic management literature often claims that there are benefits Mork and Yueng (*JB*, 1991), Baily and Gersback (*Brookings*, 1995), Berry and Sakakibara (*JEOB*, 2005), Cassiman and Martínez-Ros (Mimeo, 2005), Salomon and Shaver (*JEMS*, forthcoming)
Figure 1. Number of Products per Multi-Product Plant

Product Dispersion
(A measure of the number of products produced per plant)

A Simple Model of Optimizing Behaviour

- Optimization problem only: Ignore markets and focus on selection.
- Static, full information.
- No general equilibrium feedbacks.
Demand

• Two countries, home (Canada) and foreign (‘∗’, United States)
• CES monopolistic competition. A home firm producing variety i faces demands

$$q(i) = p(i)^{-\sigma} A \text{ and } q^*(i) = p^*(i)^{-\sigma} A^*.$$

• The foreign country imposes a tariff $\tau(i) - 1$ on firm i’s products.
Cost

• A standardized bundle of inputs costs c and produces $\varphi(i)$ units of output. Hence marginal costs are:

$$\frac{c}{\varphi(i)}$$

Profit Maximization

• Profit maximizing prices are

$$p(i) = \frac{\sigma}{\sigma - 1} \frac{c}{\varphi(i)} \text{ and } p^*(i) = \tau(i)p(i).$$
Entry into Export Markets

• A fixed cost F^E must be incurred to enter the foreign market. Let $E(i) = 1$ if the firm enters and $E(i) = 0$ if it does not enter.

• Home firm’s profits are (dropping the i index)

$$\pi(E) = \tilde{\phi} \left[A + E \tau^{-\sigma} A^* \right] - EF^E$$

for $E = 0,1$ where

$$\tilde{\phi} = \frac{(\sigma - 1) \sigma^{-1} \sigma^{-\sigma}}{c^{\sigma-1}} \phi^{\sigma-1}.$$

• Enter foreign markets when

$$\tilde{\phi} > \bar{\phi} \equiv \frac{F^E}{\tau^{-\sigma} A^*}.$$

where $\tau^{-\sigma} A^*$ measures the size of the foreign market.
Reorganizing to Raise Productivity

- The firm can choose to pay a fixed ‘reorganization’ cost F^R that raises productivity from φ_0 to φ_1.
- φ_0 and φ_1 are known.
- Let $R = 1$ if the firm reorganizes, $R = 0$ if not.
- Profits are

\[
\pi(R = 1, E) = \tilde{\varphi}_1 \left[A + E \tau^{-\sigma} A^* \right] - EF^E - F^R
\]

\[
\pi(R = 0, E) = \tilde{\varphi}_0 \left[A + E \tau^{-\sigma} A^* \right] - EF^E
\]
\[\phi_1 - \phi_0 \]
\[\varphi_1 - \varphi_0 \]

\[\frac{F^R + F^E}{A + \tau^{-\sigma} A^*} \]

\[\frac{F^R}{A + \tau^{-\sigma} A^*} \]

Export
Reorganize

No Exporting
No Reorganization

Exporting
Reorganize

\[\varphi = \frac{F^E}{\tau^{-\sigma} A^*} \]

\[\frac{F^R + F^E}{\tau^{-\sigma} A^*} \]
\(\phi_1 - \phi_0 \)

\[
\frac{F^R + F^E}{A + \tau^{-\sigma} A^*}
\]

\[
\frac{F^R}{A + \tau^{-\sigma} A^*}
\]
\[\varphi_1 - \varphi_0 \]

\[\frac{F^R + F^E}{A + \tau^{-\sigma} A^*} \]

\[\frac{F^R}{A + \tau^{-\sigma} A^*} \]
Improved market access induces reorganization and exporting

\[\frac{F^R + F^E}{A + \tau^{-\sigma} A^*} \]

\[\frac{F^R}{A + \tau^{-\sigma} A^*} \]
Improved market access induces reorganization and exporting.

Induces exporting without reorganization.
Causal Effects of Improved Market Access on Productivity Growth
Causal Effects of Improved Market Access on Productivity Growth

• For a firm that is initially indifferent between exporting and not exporting.

• Assume

\(\frac{F^E}{\tau^{-\sigma} A^*} < \frac{F^R}{A} \)

• If low \(F^R \), reorganize immediately – lack of dynamics.

• If \(A^* \) is higher for low \(\varphi_0 \) firms then the line is lower (and steeper).

• Expect opposite results if \(F^R \) is higher for low \(\varphi_0 \) firms (but functional form kills this).
Econometric Model

\[\Delta \varphi_0 = \beta_0(X) + U_0 \]
\[\Delta \varphi_1 = \beta_1(X) + U_1 \]
\[E = \begin{cases} 1 & P(X,\Delta \tau) \geq U_E \\ 0 & P(X,\Delta \tau) < U_E \end{cases} \]

- where \(X \) includes \(\varphi_0 \) and \(P(X,\Delta \tau) \equiv \Pr\{ E = 1 | X, \Delta \tau \} \)

- Causal Effects of Improved Market Access (suppress \(X \)):
 \[C = \Delta \varphi_1 - \Delta \varphi_0 = (\beta_1 - \beta_0) + (U_1 - U_0) \]

- \(U_1 \neq U_0 \) means heterogeneous causal effects.
Importance of Conditioning on U_E

• Consider a firm on our line. Set $X = \varphi_0$:

$$P(\varphi_0, \Delta\tau = 0) = U_E.$$

• $P(\varphi_0, \Delta\tau = 0)$ is increasing in φ_0. On the line, firms with a small φ_0 have:

 ◦ A small $U_E = P(\varphi_0, \Delta\tau = 0)$.
 ◦ A large $U_1 - U_0$.

$\Rightarrow U_E$ and $U_1 - U_0$ are negatively correlated

• Conditioning on U_E is informative. Our object of interest is

$$E[\beta_1 - \beta_0 + U_1 - U_0 | \varphi_0, U_E = P(\varphi_0, \Delta\tau)]$$ (1)

or

$$E[C | P].$$ (2)
Importance of Conditioning on U_E

- CES example: Go back to the old notation so that $\Delta \varphi_i$ is replaced by $\varphi_i = \beta_i + U_i$. For simplicity set $U_0 = 0$. Then on our line

$$\beta_1 - \left[\frac{A\beta_0^{1/(\sigma-1)} + F^E + F^R}{A + \tau^{-\sigma} A^*} \right]^{\sigma-1} = -U_1$$

P

where $\partial P / \partial \tau < 0$ so that a higher tariff makes entry less likely.
Estimation of the Line — $E(C|P)$

Observables With Heterogeneity ($U_1 \neq U_0$)

\[\Delta \varphi = \Delta \varphi_0 + (\Delta \varphi_1 - \Delta \varphi_0)E \]
\[= \beta_0 + U_0 + [(\beta_1 - \beta_0) + (U_1 - U_0)]E \]

\[C = (\beta_1 - \beta_0) + (U_1 - U_0) \]

Observables Without Heterogeneity ($U_1 = U_0$)

\[\Delta \varphi = \beta_0 + (\beta_1 - \beta_0)E + U_0 \]
\[C = \beta_1 - \beta_0 \]
Estimation with No Heterogeneity

\[E[\Delta \phi | E] = \beta_0 + (\beta_1 - \beta_0) E + E[U_0 | E] \]

\[C^{OLS} = \frac{\Delta \phi}{E=1} - \frac{\Delta \phi}{E=0} \quad C^{IV} = \frac{\Delta \phi}{E=1} - \frac{\Delta \phi}{E=0} \]

\[E[\Delta \phi | P] = \beta_0 + (\beta_1 - \beta_0) P + E[U_0] \]

- Local IV using plants with the same
 \[\hat{P}^{\Delta \tau = 0} \equiv P(X, \Delta \tau = 0) \text{ and } \hat{P}^{\Delta \tau = 1} \equiv P(X, \Delta \tau = 1) \]
 \[\hat{E}[C | P] = \frac{\Delta \phi}{\hat{P}^{\Delta \tau = 1}} - \frac{\Delta \phi}{\hat{P}^{\Delta \tau = 0}} \]

- \[E[C | P] = \partial E[\Delta \phi | P] / \partial P \]
A Minor Note

- $\mathbb{E}[E|P] = \Pr\{E = 1|P(X,\Delta \tau) = \Pr\{U_E > P\} = P$.

- Identification requires $U_0 \perp P$.
Estimation with Heterogeneity

\[\Delta \varphi = \beta_0 + (\beta_1 - \beta_0)E + U_0 + (U_1 - U_0)E \]

\[C = \beta_1 - \beta_0 + U_1 - U_0 \]

\[\mathbb{E}[\Delta \varphi | E] = \beta_0 + (\beta_1 - \beta_0)E + \mathbb{E}[U_0 | E] + \mathbb{E}[(U_1 - U_0)E | E] \]

IV fails because \(\text{Cov}[E, \Delta \tau] < 0 \) so that the residual is correlated with the instrument.

\[\mathbb{E}[\Delta \varphi | P] = \beta_0 + (\beta_1 - \beta_0)P + \mathbb{E}[(U_1 - U_0)E | P] \]

Theorem 1 (*Heckman and Vytlacil, PNAS, 1999, MTE Identification*)

\[\mathbb{E}[C | P] = \frac{\partial \mathbb{E}[\Delta \varphi | P]}{\partial P}. \]
Proof (1)

• We do not observe whether the firm has reorganized. However, in the region we are interested in $R = E = 1$. Thus,

$$\Delta \varphi \equiv \Delta \varphi_0 + E(\Delta \varphi_1 - \Delta \varphi_0).$$

• Consider a selection rule based on.

$$g(Z) > V_E$$

• Let F_V be the cdf of V. Then the rule is equivalent to

$$F_V(Z) > F_V(V_E).$$

• Define $U_E = F_V(V_E)$. Then U_E is uniformly distributed on $(0,1)$,

$$P(Z) = \Pr(E = 1|Z) = F_V(g(Z)),$$

and the distribution of U_E conditional on $U_E < P(Z)$ is $1/P(Z)$.
Proof (2)

\[\mathbb{E}[\Delta \varphi | P(Z) = P(z)] \]

\[= \int_0^{P(z)} \mathbb{E}[\Delta \varphi_1 | U_E \leq p] \frac{1}{P(z)} dp \cdot P(z) + \int_{P(z)}^{1} \mathbb{E}[\Delta \varphi_0 | U_E > p] \frac{1}{1 - P(z)} dp \cdot (1 - \frac{1}{P(z)}) \]

\[= \int_0^{P(z)} \mathbb{E}[\Delta \varphi_1 | U_E \leq p] dp + \int_{P(z)}^{1} \mathbb{E}[\Delta \varphi_0 | U_E > p] dp \]

Theorem 2 *(Heckman and Vylacil, 1999)*

\[\mathbb{E}[C | P] = \frac{\partial \mathbb{E}[\Delta \varphi | P(Z) = P(z)]}{\partial P(z)} \]
Relationship to LATE

- **LATE:** $E [C \mid U_E \text{ is in the Switcher set}]$

 Switcher Set: $P(X, \Delta \tau = 0) < U_E < P(X, \Delta \tau = 1)$

- **MTE:** $E [C \mid U_E \text{ is on the Line}]$

 Firms on the Line: $P(X, \Delta \tau) = U_E$

- **MTE** is the limit of LATE as the Switcher interval shrinks.
Estimation

- Assume $\beta_1(x) = \beta_0(x) = \beta x$.

- $\Delta \varphi = \beta x + U_0 + (U_1 - U_0)E$.

\[E[\Delta \varphi | P] = \beta x + E[(U_1 - U_0)E|P] \]
\[= \beta x + E[(U_1 - U_0)|P,E = 1] \cdot P \]
\[= \beta x + K(P) \]

- Four-Stage Procedure:

 1. Estimate a probit explaining entry E on $Z = (\varphi_0, \Delta \tau) \Rightarrow \hat{P}$

 2. Local linear regression of observed productivity growth $\Delta \varphi$ on x and $\hat{P} \Rightarrow \hat{K}(\hat{P})$.

 3. Differentiate $\hat{K}(\hat{P})$:

\[\overbrace{E[C|P]} = \frac{\partial E[\Delta \varphi | P]}{\partial \hat{P}} = \frac{\partial \hat{K}(\hat{P})}{\partial \hat{P}} \]
Hypothesis Testing

- Bootstrap standard errors.
- There is heterogeneous treatment effects ($U_1 \neq U_0$) if the derivative is not a constant.
- The theory is ‘true’ if the derivative looks like the profiles from the theory.
Canada-U.S. Free Trade Agreement Timeline

• January 1, 1989: Tariff concessions begin. 1 in 4 industries faced tariffs in excess of 10%.
• December 31, 1996: Average tariff under 1%, nothing above 5%.
Canadian Exports to the United States: Little Entry Between 1984 and 1988?
The Sample

• Data on export status for 1984 and 1996.
 ► If the FTA was anticipated, we want pre-1985 data
 ⇒ 1984 baseline.
 ► If not anticipated, we want pre-1989 data
 ⇒ 1988 baseline.

• Data on the tariff concessions against each of the HS6 outputs produced by a plant. Aggregate using 1996 weights to obtain plant-specific tariff concessions $\Delta \tau'$.

• Binary tariffs.
 ► Prohibitive tariffs, fat tails, Swiss formulas, probits.
 ► $\Delta \tau = 1$ if $\Delta \tau' > \text{median (industry or all)}$.
 ► $\Delta \tau = 0$ otherwise.
The Sample (continued)

- Three types of plants:
 - ‘Nonexporters’: Did not export in 1984 or 1996 (2,133 plants)
 - ‘New Exporters’: Did not export in 1984, exported in 1996 (3,114)
 - Exported in 1984 and 1996 (4,000 plants)
Table 1. Average Plant Characteristics *After* Deviating from Industry Medians

<table>
<thead>
<tr>
<th>Variable</th>
<th>New Exporters $E = 1$</th>
<th>Nonexporters $E = 0$</th>
<th>Difference $\mu_1 - \mu_0$</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>% with Tariff Concessions</td>
<td>64%</td>
<td>34%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Log Employment, 1988</td>
<td>1.43</td>
<td>0.92</td>
<td>0.50</td>
<td>16.87</td>
</tr>
<tr>
<td>Log Productivity, 1988</td>
<td>0.48</td>
<td>0.31</td>
<td>0.17</td>
<td>9.55</td>
</tr>
<tr>
<td>Annual Log Productivity Growth 1988-96</td>
<td>1.4%</td>
<td>-0.5%</td>
<td>1.8%</td>
<td>7.32</td>
</tr>
<tr>
<td></td>
<td>Coeff.</td>
<td>Prob.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta \tau_{FTA}$</td>
<td>0.89</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log Productivity, 1984</td>
<td>0.26</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log Employment, 1984</td>
<td>0.36</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log Productivity Growth, 1984-88</td>
<td>0.89</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIC4 Fixed Effects</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>5,247</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Probability of Entry Without a Tariff Concession:

\[P(x, \Delta \tau_{FTA} = 0) = P(E = 1 \mid X = x, \Delta \tau_{FTA} = 0) \]
Ratio of Nonexporters to New Exporters
By Probability of Entry

Probability of Entry: $P(x, \Delta \tau_{FTA})$
Number of Plants by Probability of Entry

Number of Plants
Nonexporters
New Exporters

Probability of Entry: \(P(x, \Delta \tau^{FTA}) \)

![Bar chart showing the number of plants by probability of entry for nonexporters and new exporters.](image)
Causal Effects of Improved Market Access on Productivity Growth

\[\phi_1 - \phi_0 \]

\[\frac{F^R + F^E}{A + \tau^{-\sigma} A^*} \]

\[\frac{F^R}{A + \tau^{-\sigma} A^*} \]

\[\frac{F^E}{\tau^{-\sigma} A^*} \]
Marginal Treatment Effects: 1988-96

Average Annual Change in Productivity

Probability of Entry: \(P(\tau) = \Pr(E=1 \mid x, \Delta \tau^{FTA}) \)
Marginal Treatment Effects: 1988-96
Industries with Large Tariff Cuts

Avg. Annual Change in Productivity

Probability of Entry: $P(z) = Pr(E=1 | x, \Delta\tau^{FTA})$
Marginal Treatment Effects: 1988-96
By Ownership

Probability of Entry: \(P(z) = Pr(E = 1 \mid x, \Delta \tau^{FTA}) \)
<table>
<thead>
<tr>
<th></th>
<th>High Productivity Plants: $P(z) > 0.5$</th>
<th>Low Productivity Plants: $P(z) < 0.5$</th>
<th>Double Difference (Low - High)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Innovation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Exporters</td>
<td>Mean 0.20 t-stat 0.31</td>
<td>Mean 0.16 t-stat 3.98</td>
<td>0.14</td>
<td>542</td>
</tr>
<tr>
<td>Non-exporters</td>
<td>Mean 0.18 t-stat 0.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design & Engineering Adoption</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Exporters</td>
<td>Mean 0.43 t-stat 0.35</td>
<td>Mean 0.47 t-stat 0.23</td>
<td>0.16</td>
<td>542</td>
</tr>
<tr>
<td>Non-exporters</td>
<td></td>
<td></td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>Design & Engineering, Plans 93</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Exporters</td>
<td>Mean 0.23 t-stat 0.07</td>
<td>Mean 0.22 t-stat 0.08</td>
<td>0.16</td>
<td>542</td>
</tr>
<tr>
<td>Non-exporters</td>
<td></td>
<td></td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>Design & Engineering, Plans 98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Exporters</td>
<td>Mean 0.31 t-stat 0.44</td>
<td>Mean 0.28 t-stat 0.21</td>
<td>0.01</td>
<td>852</td>
</tr>
<tr>
<td>Non-exporters</td>
<td></td>
<td></td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Number of commodities added, all plants</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Exporters</td>
<td>Mean 0.35 t-stat 0.93</td>
<td>Mean 0.27 t-stat 0.29</td>
<td>0.09</td>
<td>3,121</td>
</tr>
<tr>
<td>Non-exporters</td>
<td></td>
<td></td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>Commodity turnover index based on values of commodities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Exporters</td>
<td>Mean 0.06 t-stat 0.88</td>
<td>Mean 0.01 t-stat 0.01</td>
<td>0.08</td>
<td>2,140</td>
</tr>
<tr>
<td>Non-exporters</td>
<td></td>
<td></td>
<td>0.08</td>
<td></td>
</tr>
</tbody>
</table>
Table. Process Innovation and Productivity Gains

<table>
<thead>
<tr>
<th></th>
<th>High Productivity Plants: P(z) > 0.5</th>
<th>Low Productivity Plants: P(z) < 0.5</th>
<th>Double Difference (Low - High)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>t-stat</td>
<td>Mean</td>
<td>t-stat</td>
</tr>
<tr>
<td>Fabrication and Assembly</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Exporters</td>
<td>0.33</td>
<td>0.23</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>Non-exporters</td>
<td>0.31</td>
<td>0.13</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td>0.02</td>
<td>0.28</td>
<td>0.10</td>
<td>2.57</td>
</tr>
<tr>
<td>Infromation and Communication</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Exporters</td>
<td>0.46</td>
<td>0.42</td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td>Non-exporters</td>
<td>0.41</td>
<td>0.27</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td>0.05</td>
<td>0.60</td>
<td>0.15</td>
<td>2.99</td>
</tr>
</tbody>
</table>

Table. Scale / Scope and Productivity Gains

<table>
<thead>
<tr>
<th></th>
<th>High Productivity Plants: P(z) > 0.5</th>
<th>Low Productivity Plants: P(z) < 0.5</th>
<th>Double Difference (Low - High)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>t-stat</td>
<td>Mean</td>
<td>t-stat</td>
</tr>
<tr>
<td>Change in output per commodity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Exporters</td>
<td>0.31</td>
<td>1.33</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>Non-exporters</td>
<td>0.23</td>
<td>0.19</td>
<td>0.19</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

• Improved market access matters.

• Articulating a policy-relevant question.

• With heterogeneity, traditional approaches fail:
 – RT, BJ condition on pre-entry growth
 – IV larger than OLS

• A theory of reorganization helps to explain the heterogeneity of productivity responses to increased market access.