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Abstract

We characterize the evolution of country export performance over the last five decades. Using the gravity
model of trade, we extract a measure of country export capability by industry which we use to evaluate
how absolute advantage changes over time for 135 industries in 90 countries. We alternatively use the
Balassa RCA index as a measure of comparative advantage. Part | of the analysis documents two em-
pirical regularities in country export behavior. One is hyperspecialization: in the typical country, export
success is concentrated in a handful of industries. Hyperspecialization is consistent with a heavy upper
tail in the distribution of absolute advantage across industries within a country, which is well approxi-
mated by a generalized gamma distribution whose shape is stable both across countries and over time.
The second empirical regularity is a high rate of turnover in a country’s top export industries. Churning

in top exports reflects mean reversion in a typical country’s absolute advantage, which we estimate to
be on the order of 30% per decade. Part Il of the analysis reconciles hyperspecialization in exports with
high decay rates in export capability by modeling absolute advantage as a stochastic process. We specify
a generalized logistic diffusion for absolute advantage that allows for Brownian innovations (accounting
for surges in a country’s export prowess), a country-wide stochastic trend (flexibly transforming absolute
into comparative advantage), and deterministic mean reversion (permitting export surges to be imperma-
nent). To gauge the fit of the model, we take the parameters estimated from the pooled time series and
project the cross-sectional distribution of absolute advantage for each country in each year. Based on
just three global parameters, the simulated values match the cross-sectional distributions—which are not
targeted in the estimation—with considerable accuracy. Our results provide an empirical road map for
dynamic theoretical models of the determinants of comparative advantage.
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1 Introduction

Comparative advantage has made a comeback in international trade. After a long hiatus during which the
Ricardian model was universally taught to undergraduates but rarely used in quantitative research, the role of
comparative advantage in explaining trade flows is again at the center of inquiry. Its resurgence is due in part
to the success of the Eaton and Kortum (2002) model (EK hereafter), which gives a probabilistic structure
to firm productivity and allows for settings with many countries and many gbd@a.the empirical side,
Costinot et al. (2012) uncover strong support for a multi-sector version of EK in cross-section data for
OECD countries. Another source of renewed interest in comparative advantage comes from the dramatic
recent growth in North-South and South-South trade (Hanson 2012). The emerging-economy examples
of China and Mexico specializing in labor-intensive manufactures, Brazil and Indonesia concentrating in
agricultural commodities, and Peru and South Africa shipping out large quantities of minerals give the
strong impression that resource and technology differences between countries have a prominent role in
determining current global trade flows.

In this paper, we characterize the evolution of country export advantages over the last five decades. Using
the gravity model of trade, we extract a measure of country export capability which we use to evaluate how
export performance changes over time for 135 industries in 90 countries between 1962 and 2007. Distinct
from Costinot et al. (2012) and Levchenko and Zhang (2013), our gravity-based approach does not use
industry production or price data to evaluate countries’ export prowess. Instead, we rely on trade data only,
which allows us to impose less theoretical structure on the determinants of trade, examine industries at a fine
degree of disaggregation and over a long time span, and include both manufacturing and non-manufacturing
sectors in our analysis. These features help in identifying the stable and heretofore underappreciated patterns
of export dynamics that we uncover.

The gravity model is consistent with a large class of trade models (Anderson 1979, Anderson and van
Wincoop 2003, Arkolakis et al. 2012). These have in common an equilibrium relationship in which bilat-
eral trade in a particular industry and year can be decomposed into three components (Anderson 2011): an
exporter-industry fixed effect, which captures the exporting country’s average export capability in an indus-
try; animporter-industry fixed effect, which captures the importing country’s effective demand for foreign
goods in an industry; and agxporter-importer component, which captures bilateral trade costs between
pairs of exporting and importing countries. We estimate these components for each year in our data, with

and without correcting for zero trade flofdn the EK model, the exporter-industry fixed effect is the prod-

Shikher (2011, 2012) expand EK to a multi-industry setting.
2See Silva and Tenreyro (2006), Helpman et al. (2008), Eaton et al. (2012), and Fally (2012) for alternative econometric
approaches to account for zero trade between countries.



uct of a country’s overall efficiency in producing goods and its unit production costs. In the Krugman (1980),
Heckscher-Ohlin (Deardorff 1998), Melitz (2003), and Anderson and van Wincoop (2003) models, which
also yield gravity specifications, the form of the exporter-industry component differs but its interpretation as
a country-industry’s export capability still applies. By taking the deviation of a country’s export capability
from the global mean for the industry, we obtain a measure of a country’s absolute advantage in an industry.
This definition is equivalent to a country’s share of world exports in an industry that we would obtain were
trade barriers in importing countries non-discriminating across exporters. By further normalizing absolute
advantage by a country-wide term, we remove the effects of aggregate country growth, focusing attention
on how the ranking of a country’s export performance across industries changes over time. We refer to
export capability after its double normalization by global-industry and country-wide terms as a measure of
comparative advantage.

The aim of our analysis is to identify the dynamic empirical properties of absolute and comparative ad-
vantage that any theory of their determinants must explain. Though we motivate our approach using EK, we
remain agnostic about the origins of a country’s export strength. Export capability may depend on the accu-
mulation of ideas (Eaton and Kortum 1999), home-market effects (Krugman 1980), relative factor supplies
(Trefler 1995, Davis and Weinstein 2001, Romalis 2004, Bombardini et al. 2012), the interaction of industry
characteristics and country institutions (Levchenko 2007, Costinot 2009, Cufiat and Melitz 2012), or some
combination of these elements. Rather than search for cross-section covariates of export capability, as in
Chor (2010), we seek the features of its distribution across countries, industries, and time. For robustness,
we repeat the analysis by replacing our gravity-based measure of export capability with Balassa’s (1965)
index of revealed comparative advantage (RCA) and obtain similar results. We further restrict the period
to 1984 and later, when more detailed industry data are available. This more recent period allows us to
vary industry aggregation from two-digit to four-digit sectors, and we demonstrate that our results are not a
byproduct of sector definitions.

After estimating country-industry export capabilities, our analysis proceeds in two stages. First, we
document two strong empirical regularities in country export behavior that are seemingly in opposition to
one another but whose synthesis reveals stable underlying patterns in the evolution of export advantage. One
regularity is hyperspecialization in exportidgn any given year, exports in the typical country tend to be
highly concentrated in a small number of industries. Across the 90 countries in our data, the median share
for the single top good (out of 135) in a country’s total exports is 21%, for the top 3 goods is 45%, and for

the top 7 goods is 64%. Consistent with strong concentration, the cross-industry distribution of absolute

3See Easterly and Reshef (2010), Hanson (2012), and Freund and Pierola (2013) for related findings.



advantage for a country in a given year is heavy tailed and approximately log normal, with ratios of the
mean to the median of about 7. Strikingly, this approximation applies to countries specializing in distinct
types of goods and at diverse stages of economic development. The Balassa RCA index is similarly heavy
tailed.

Stability in the shape of the distribution of absolute advantage makes the second empirical regular-
ity regarding exports all the more surprising: there is steady turnover in a country’s top export products.
Among the goods that account for the top 5% of a country’s absolute-advantage industries in a given year,
nearly 60% were not in the top 5% two decades earlier. Such churning is consistent with mean reversion in
export superiority, which we confirm by regressing the change in a country-industry’s absolute advantage
on its initial value, obtaining decadal decay rates on the order of 25% to 30%. These regressions control
for country-time fixed effects, and so may be interpreted as summarizing the dissipation of comparative
advantage. The mutability of a country’s relative export capabilities is consistent with Bhagwati's (1994)
description of comparative advantage as “kaleidoscopic,” with the dominance of a country’s top export
products often being short lived.

A concern about log normality in absolute advantage is whether it may be a byproduct of the estimation
of the exporter-industry fixed effects. If these fixed effects varied randomly around a common mean for
a country, they would be approximately normally distributed around a constant expected value, making
absolute advantage tend toward log normality. Such logic, however, rests on the exporter-industry fixed
effects having a common country mean. Our central focus is precisely on how mean export capability varies
across industries for a country and how this variation progresses over time. Incidental log normality—
resulting, say, from classical measurement error in trade data—would imply that in our decay regressions
mean reversion in log absolute advantage from one period to the next would be more or less complete. Yet,
this is not what we find. Mean reversion is partial, with estimated annual decay rates being similar whether
based on 5, 10, or 20-year changes. Moreover, subsequent shocks to absolute advantage preserve the shape
of its cross sectional distribution within a country. This subtle balance between mean reversion and random
innovation, which also holds for the RCA index, is highly suggestive of a stochastic growth process at work
for individual industries.

In the second stage of our analysis, we seek to characterize the stochastic process that guides export
capability and thereby reconcile hyperspecialization in exports with mean reversion in export advantage.
We specify a generalized logistic diffusion for absolute advantage that allows for Brownian innovations
(accounting for surges in a country’s relative export prowess), a country-wide stochastic trend (flexibly

transforming absolute into comparative advantage), and deterministic mean reversion (permitting export



surges to be impermanent). The generalized logistic diffusion that we specify has the generalized gamma as
a stationary distributiofl. The generalized gamma unifies the gamma and extreme-value families (Crooks
2010) and therefore flexibly nests many common distributions. To gauge the fit of the model, we take
the three global parameters estimated from the pooled cotimey seriesand project thecross-section
distribution of absolute advantage, which is not targeted in the estimation, for each country in each year.
Based on just these three parameters (and controlling for a country-wide stochastic trend), the simulated
values match the cross-sectional distributions, country-by-country and period-by-period, with considerable
accuracy. The stochastic nature of absolute advantage implies that, at any moment in time, a country is
especially strong at exporting in only a few industries and that, over time, this strength is temporary, with
the identity of top industries churning perpetually.

We then allow model parameters to vary by groups of countries and by broad industry and estimate them
for varying levels of industry aggregation. The three parameters of the generalized gamma govern the rate
at which the process reverts to the global long-run mean (the dissipation of comparative advantage), the
degree of asymmetry in mean reversion from above versus below the mean (the stickiness of comparative
advantage), and the rate at which industries are reshuffled within the distribution (the intensity of innovations
in comparative advantage). The first two parameters alone determine the shape of the stationary cross
sectional distribution, with the third determining how quickly convergence to the long-run distribution is
achieved. The intensity of innovations is stronger for developing than for developed economies. Whereas
comparative advantage dissipates more quickly for manufacturing than for non-manufacturing industries, it
is also relatively sticky for manufacturing, implying that industries revert towards the long-term mean more
slowly from a position of comparative advantage than from a position of disadvantage.

A growing literature, to which our work contributes, employs the gravity model of trade to estimate the
determinants of comparative advant&gén exercises based on cross-section data, Chor (2010) explores
whether the interaction of industry factor intensity with national characteristics can explain cross-industry
variation in export volume and Waugh (2010) identifies asymmetries in trade costs between rich and poor
countries that contribute to cross-country differences in income. In exercises using data for multiple years,
Fadinger and Fleiss (2011) find that the implied gap in countries’ export capabilities vis-a-vis the United
States closes as countries’ per capita GDP converges to U.S.aredd, evchenko and Zhang (2013), who

calibrate the EK model to estimate overall sectoral efficiency levels by country, find that these efficiency

“Kotz et al. (1994) present properties of the generalized gamma distribution. Cabral and Mata (2003) use the generalized gamma
distribution to study firm-size distributions. The finance literature considers a wide family of stochastic asset price processes with
linear drift and power diffusion terms (see, e.g., Chan et al. 1992, on interest rate movements). Those specifications nest neither an
ordinary nor a generalized logistic diffusion.

50n changes in export diversification over time see see Imbs and Wacziarg (2003) and Cadot et al. (2011).

Related work on gravity and industry-level productivity includes Finicelli et al. (2009, 2013) and Kerr (2013).



levels converge across countries over time, weakening comparative advantage in the’process.

Our approach differs from the literature in two notable respects. By not using functional forms specific
to EK or other trade models, we free ourselves from having to use industry production data (which is
necessary to pin down model parameters) and are thus able to examine all merchandise sectors, including
non-manufacturing, at the finest level of industry disaggregation possible. We gain from this approach a
perspective on hyperspecialization in exporting and churning in top export goods that is less apparent in data
limited to manufacturing or based on more aggregate industry categories. We lose, however, the ability to
evaluate the welfare consequence of changes in comparative advantage (as in Levchenko and Zhang 2013).
A second distinctive feature of our approach is that we treat export capability as being inherently dynamic.
Previous work tends to study comparative advantage by comparing repeated static outcomes over time. We
turn the empirical approach around, and estimate the underlying stochastic process itself. The virtue is that
we can then predict the distribution of export advantage in the cross section, which our estimator does not
target, and use the the cross-section projections as a check on the goodness of fit.

Section 2 of the paper presents a theoretical motivation for our gravity specification. Section 3 describes
the data and our estimates of country export capabilities, and documents empirical regularities regarding
comparative advantage, hyperspecialization in exporting and churning in countries’ top export goods. Sec-
tion 4 describes a stochastic process that has a cross sectional distribution consistent with hyperspecial-
ization and a drift consistent with turnover, and introduces a GMM estimator to identify the fundamental

parameters. Section 5 presents the estimates and evaluates the fit of the diffusion. Section 6 concludes.

2 Theoretical Motivation

In this section, we use the EK model to motivate our definitions of export capability and absolute advantage

and then describe our approach for extracting these values from the gravity model of trade.

2.1 Export capability and comparative advantage

In the EK model, an industry consists of many product varieties. The producfiafya source country
firm that manufactures a variety in industrys determined by a random draw from a Fréchet distribution
with CDF Fp(q) = exp{—(q/gis)_ei} for ¢ > 0. Consumers, who have CES preferences over product

varieties within an industry, buy from the firm that is able to deliver a variety at the lowest price. With firms

"Other related literature includes dynamic empirical analyses of the Heckscher-Ohlin model that examine how trade flows
change in response to changes in country factor supplies (Schott 2003, Romalis 2004) and work by Hausmann et al. (2007) on how
the composition of exports relates to the pace of economic growth.



pricing according to marginal cost, a higher productivity draw makes a firm more likely to be the low-priced
supplier of a variety to a given market.

Comparative advantage stems from the position of the industry productivity distribution, gi\LEp by
The position can differ across source countieand industries. In countries with a higheg, , firms
are more likely to have a higher productivity draw, creating cross-country variation in the fraction of firms
that succeed within an industry in being low-cost suppliers to different destination mArRetssider the
many-industry version of the EK model in Costinot et al. (2012). Exports by source cauotdestination

countryd in industry: can be written as,

—0;
(wsTisd/gis>
Xisd = —5; HiYa, 1)

Zs’ (wS’TiS/d/gis/>

wherews is the unit production cost for countey 7,4 is the iceberg trade cost betweeandd in industry
i, i is the Cobb-Douglas share of expenditure on industayndYy; is total expenditure in country. Taking

logs of (1), we obtain a gravity equation for bilateral trade
In Xisqg = kis + mig — 0; In 74, 2)

wherek;; = 0 ln(ﬂis/ws) is source country’s log export capabilityin industryz, which is a function of the

country’s overall efficiency in the industrxi@ and its unit production costsu(), and

mig = In [Mz‘Yd/ P <ws/dis’d/qis/)€i:|

is the log ofeffective import demanily countryd in industry:, which depends on the country’s expenditure

on goods in the industry divided by an index of the toughness of competition for the country in the industry.
Export capability is a function of a primitive country characteristic—the position of a country’s produc-

tivity distribution—and of endogenously determined unit production costs. EK does not yield a closed-form

solution for wages, we can therefore not solve for export capabilities as explicit functionsggsf’mé(et,

in a model with a single factor of production tlg%’s are the only country-specific variable for the in-

dustry (other than population and trade costs) that may determine factor prices, meaning ihat gre

implicit functions of these parameters. Our concept of export capabilitgan further be related to the

8The importance of the position of the productivity distribution for trade depends in turn on the shape of the distribution, given
by 6;. Lower dispersion in productivity draws (a higher valuedgf elevates the role of the distribution’s position in determining
a country’s strength in an industry. These two features—the country-industry position parqzlpamj the industry dispersion
parametef;—pin down a country’s export capability. a



deeper origins of comparative advantage by modeling the country-industry-specific Fréchet position param-
eterl;s = (gis)‘)i as the outcome of an exploration and innovation process, similar to Eaton and Kortum
(1999), a connection we sketch in Appendix D.

Any trade model that has a gravity structure will generate exporter-industry fixed effects and a reduced-
form expression for exporter capability. In the Armington (1969) model, as applied by Anderson and van
Wincoop (2003), export capability is a country’s endowment of a good relative to its remoteness from the
rest of the world. In Krugman (1980), export capability equals the number of varieties a country produces
in an industry times effective industry marginal production costs. In Melitz (2003), export capability is
analogous to that in Krugman adjusted by the Pareto lower bound for productivity in the industry, with the
added difference that bilateral trade is a function of both variable and fixed trade costs. And in a Heckscher-
Ohlin model (Deardorff 1998), export capability reflects the relative size of a country’s industry based
on factor endowments and sectoral factor intensities. The common feature of these models is that export
capability is related to a country’s productive potential in an industry, be it associated with resource supplies,
a home-market effect, or the distribution of firm-level productivity.

The principle of comparative advantage requires that a country-industry’s export capahility:
exp{k;s} be compared to both the same industry across countries and to other industries within the same
country. This double comparison of a country-industry’s export capability to other countries and other
industries is also at the core of measures of revealed comparative advantage (Balassa 1965) and recent im-
plementations of comparative advantage, as in Costinot et al. (2012). Consider two expartéss and

two industries andi’, and define geography-adjusted trade flows as

—0

Xisa = Xisa (Tis0)" = <w8/gis) “exp{mia}.

The correction of observed tradég,,,; by trade cost$r,~sd)9 removes the distortion that geography exerts
on export capability when trade flows are reali?etlVhen compared to any countsf, countrys has a

comparative advantage in industryelative to industry’ if the following condition holds:

{zisd/)?is’d _ Kis/Kis’ > 1. (3)
Xi’sd/Xi’s’d Ki’S/Ki’s’

The comparison of a country-industry to the same industry in other source countries makes the measure
independent of destination-market characteristi¢s because the standardizatiaf,, /X,»S/d removes the

destination-market term. In practice, a large number of industries and countries makes it cumbersome to

This adjustment ignores any impact of trade costs on equilibrium factor prices



conduct double comparisons of a country-indugtryo all other industries and all other countries. Our
gravity-based correction of trade flows for geographic frictions gives rise to a natural alternative summary

measure.

2.2 Estimating the gravity model

By allowing for measurement error in trade data or unobserved trade costs, we introduce a disturbance term
into (2), converting itinto a regression model. With data on bilateral industry trade flows for many importers
and exporters, we can obtain estimates of the exporter-industry and importer-industry fixed effects via OLS.

The gravity model that we estimate is

In Xisqr = Kist + miar — bitDsar + €isdt, (4)

where we have added a time subsctjpte include dummy variables to measure exporter-industry#.gar

and importer-industry-yean,,; terms, D4, represents the determinants of bilateral trade costsegpd

is a residual that is mean independentfRf;. The variables we use to measure trade cbstg in (4) are
standard gravity covariates, which do not vary by indu&tridowever, we do allow the coefficients on

these variables to differ by industry and by y&aAbsent annual measures of industry-specific trade costs
for the full sample period, we model these costs via the interaction of country-level gravity variables and
time-and-industry-varying coefficients.

In the estimation, we exclude a constant term, include an exporter-industry-year dummy for every ex-
porting country in each industry, and include an importer-industry-year dummy for every importing country
except for one, which we select to be the United States. The exporter-industry-year dummies we estimate
thus equal

ki = kist + miust, )

wherek?:S is the estimated exporter-industry dummy for courstriyp industryi and yeart, m;ys; is the
U.S. importer-industry-year fixed effect, akg; is the underlying log export capability. The estimator of
the exporter-industry variables is therefore meaningful only up to an industry normalization.

The values that we will use for empirical analysis are the deviations of the estimated exporter-industry-

1%These include log distance between the importer and exporter, the time difference (and time difference squared) between the
importer and exporter, a contiguity dummy, a regional trade agreement dummy, a dummy for both countries being members of
GATT, a common official language dummy, a common prevalent language dummy, a colonial relationship dummy, a common
empire dummy, a common legal origin dummy, and a common currency dummy.

Hwe estimate (4) separately by industry and by year. Since the regressors are the same across industries for each bilateral pair,
there is no gain to pooling data across industries in the estimation, which helps reduce the number of parameters to be estimated in
each regression.



year dummies from the global industry means:
X 1 N
hist = k3% — < > ki (6)
s'=1

where the deviation removes the excluded importer-industry-year term as well as any global industry-
specific term. This normalization obviates the need to account for worldwide industry TFP growth, demand
changes, or producer price index movements, allowing us to conduct analysis of comparative advantage with
trade data exclusively.

From this exercise, we take as a measuralsolute advantagef countrys’s industryz,

. LOLS .
A = exp{kist} — eXp{ ist . exp{ t} (7)

S S :
exp {§ 5 k255 o {§ S0 ki)

By construction, this measure is unaffected by the choice of the omitted importer-industry-year fixed effect.
As the final equality in (7) shows, the measure is equivalent to the comparison of underlying exporter
capability K;; to the geometric mean of exporter capability across countries in industry

There is some looseness in our measure of absolute advantage. ANhases for country-industrys,
we say that its absolute advantage has risen even though it is only strictly true that its export capability has
increased relative to the global industry geometric mean. In truth, the country’s export capability may have
risen relative to some countries and fallen relative to others. Our motivation for using the deviation from the
geometric mean to define absolute advantage is twofold. One is that our statistic removes the global industry
component of estimated export capability, making our measure immune to the choice of normalization in
the gravity estimation. Two is that removing the industry-year component relates naturally to specifying a
stochastic process for export capability. Rather than modeling export capability itself, we model its devia-
tion from an industry trend, which simplifies the estimation by freeing us from having to model the trend
component that will reflect global industry demand and supply. We establish the main regularities regarding
the cross section and the dynamics of exporter performance using absolute advgptag&ection 3. In
Section 4, we let the stochastic process that is consistent with the empirical regularities of absolute advan-
tage determine the remaining country-level standardization that transforms absolute advantage a
measure of comparative advantage.

As is well known, the gravity model in (2) and (4) is inconsistent with the presence of zero trade flows,
which are common in bilateral data. We recast EK to allow for zero trade by following the approach in Eaton

etal. (2012), who posit that in each industry in each country only a finite number of firms make productivity

10



draws, meaning that in any realization of the data there may be no firms from ceuh#tyhave sufficiently
high productivity to profitably supply destination markgin industryi. In their framework, the analogue
to equation (1) is an expression for the expected share of cosiimthe market for industry in countryd,
E [Xisa/X:a4], which can be written as a multinomial logit. This approach, however, requires that one know
total expenditure in the destination markat;;, including a country’s spending on its own goods. Since
total expenditure is unobserved in our data, we apply the independence of irrelevant alternatives and specify
the dependent variable as the expectation for an exporting country’s share of total import purchases in the
destination market:

E

(8)

Xisd ] _ exp (Kist — bit Disar)
sz Xisd | 2g2q€XP (kist — bitDisrar)
We re-estimate exporter-industry-year fixed effects by applying multinomial pseudo-maximum likelihood
to (8)1?

Our baseline measure of absolute advantage relies on regression-based estimates of exporter-industry-
year fixed effects. Even when following the approach in Eaton et al. (2012), estimates of these fixed effects
may become imprecise when a country exports a good to only a few destinations. As an alternative measure

of export performance, we use the Balassa (1965) measure of revealed comparative advantage, defined as,

RCASt — Zd Xisdt/ Zi’ Zd’ Xilsld/t

9)
Zi’ Zd Xi’sdt/ Es’ Zi’ Zd’ Xirstdre

While the RCA index is ad hoc and does not correct for distortions in trade flows introduced by trade
costs or proximity to market demand, it has the appealing attribute of being based solely on raw trade data.
Throughout our analysis we will employ the gravity-based measure of absolute advantage alongside the

Balassa RCA measure. Reassuringly, our results for the two measures are quite similar.

3 Data and Main Regularities

The data for our analysis are World Trade Flows from Feenstra et al. (2008)ich are based on SITC
revision 1 industries for 1962 to 1983 and SITC revision 2 industries for 1984 and4aWe create a
consistent set of country aggregates in these data by maintaining as single units countries that divide over

the sample perio#® To further maintain consistency in the countries present, we restrict the sample to

2We thank Sebastian Sotelo for estimation code.

13We use a version of these data that have been extended to 2007 by Robert Feenstra and Gregory Wright.

1A further source of observed zero trade is that for 1984 and later bilateral industry trade flows are truncated below $100,000.

5These are the Czech Republic, the Russian Federation, and Yugoslavia. We also join East and West Germany, Belgium and
Luxembourg, and North and South Yemen.
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nations that trade in all years and that exceed a minimal size threshold, which leaves 116 countfy units.
The switch from SITC revision 1 to revision 2 in 1984 led to the creation of many new industry categories.
To maintain a consistent set of SITC industries over the sample period, we aggregate industries from the
four-digit to three-digit level’ These aggregations and restrictions leave 135 industries in the data. In an
extension of our main results, we limit the sample to SITC revision 2 data for 1984 forward, alternatively
using two-digit (61 industries), three-digit (227 industries), or four-digit (684 industries) sector definitions.

A further set of country restrictions are required to estimate importer and exporter fixed effects. For
coefficients on exporter-industry dummies to be comparable over time, the countries that import a good
must do so in all years. Imposing this restriction limits the sample to 46 importers, which account for an
average of 92.5% of trade among the 116 country units. We also need that exporters ship to overlapping
groups of importing countries. As Abowd et al. (2002) show, such connectedness assures that all exporter
fixed effects are separately identified from importer fixed eff&tEhis restriction leaves 90 exporters in the
sample that account for an average of 99.4% of trade among the 116 country units. Using our sample of 90
exporters, 46 importers, and 135 industries, we estimate the gravity equation (4) separately by ahastry

yeart and then extract absolute advantatye given by (7). Data on gravity variables are from CEPII.org.

3.1 Hyperspecialization in exporting

We first characterize export behavior in the cross section of industries for each country at a given moment

of time. For an initial take on the concentration of exports in leading products, we tabulate the share of

a country-industry’s exportX,; /(> Xis) in the country’s total exports across the 135 industries. We

then average these shares across the current and preceding two years to account for measurement error and
cyclical fluctuations. IrFigure 1a, we display median export shares across the 90 countries in our sample

for the top export industry as well as the top three, top seven, and top 14 industries, which roughly translate
into the top 1%, 3%, 5% and 10% of products.

For the typical country, a handful of industries dominate expSrt¥he median export share of just

8This reporting restriction leaves 141 importers (97.7% of world trade) and 139 exporters (98.2% of world trade) and is roughly
equivalent to dropping small countries from the sample. For consistency in terms of country size, we drop countries with fewer than
1 million inhabitants in 1985 (42 countries had 1985 population less than 250,000, 14 had 250,000 to 500,000, and 9 had 500,000
to 1 million), which reduces the sample to 116 countries (97.4% of world trade).

There are 226 three-digit SITC industries that appear in all years, which account for 97.6% of trade in 1962 and 93.7% in 2007.
Some three-digit industries frequently have their trade reported only at the two-digit level (which accounts for the just reported
decline in trade shares for three-digit industries). We aggregate over these industries, creating 143 industry categories that are a
mix of SITC two and three-digit products. From this group we drop nonstandard industries (postal packages, coins, gold bars, DC
current) and three industries that are always reported as one-digit aggregates in the US data. We further exclude oil and natural gas,
which in some years have estimated exporter-industry fixed effects that are erratic.

18Countries that export to mutually exclusive sets of destinations would not allow us to separately identify the exporter fixed
effect from the importer fixed effects.

¥In analyses of developing-country trade, Easterly and Reshef (2010) document the tendency of a small number of bilateral-
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Figure 1:Concentration of Exports
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Source:WTF (Feenstra et al. 2005, updated through 2008) for 135 time-consistent industries in 90 countries from 1962-2007.
Note: Shares of industis export value in country’s total export valueX ;. /(> ", Xi/,:). For the classification of less developed
countries (LDC) see Appendix E.

the top export good is 24% in 1972, which declines modestly over time to 20% by 2007. Over the full
period, the median export share of the top good averages 21%. For the top three products, the median
export share declines slightly from the 1960s to the 1970s and then is stable from the early 1980s onward
at approximately 42%. The median export shares of the top seven and top 14 products display a similar
pattern, stabilizing by the early 1980s at around 62% and 77%, respectively. Thus, the bulk of a country’s
exports tend to be accounted for by the top 10% of its goodBiguare 1b, we repeat the exercise, limiting

the sample to less developed countries (see Appendix E). The patterns are quite similar to those for all
countries, though median export shares for LDCs are modestly higher in the reported quantiles.

One concern about using export shares to measure export concentration is that these values may be
distorted by demand conditions. Exports in some industries may be large simply because these industries
capture a relatively large share of global expenditure, leading the same industries to be top export industries
in all countries. In 2007, for instance, the top export industry in Great Britain, France, Germany, Japan,
and Mexico is road vehicles. In the same year in Korea, Malaysia, the Philippines, Taiwan, and the United
States the top industry is electric machinery. One would not want to conclude from this fact that each of
these countries has an advantage in exporting one of these two products.

To control for variation in industry size that is associated with preferences, we turn to our measure of

industry relationships to dominate national exports and Freund and Pierola (2013) describe the prominent role of the largest few
firms in countries’ total foreign shipments.
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absolute advantage in (7) expressed in logaaks; = kis. As this value is the log industry export capabil-

ity in a country minus global mean log industry export capability, industry characteristics that are common
across countries—including the state of global demand—are differenced out. To provide a sense of the iden-
tities of absolute-advantage goods and the magnitudes of their advantages, we show in Apgaedih

the top two products in terms of;; for 28 of the 90 exporting countries, using 1987 and 2007 as represen-
tative years. To remove the effect of overall market size and thus make values comparable across countries,
we normalize log absolute advantage by its country mean, such that the value we report for country-industry
isisln A;s — (1/1) Z,ﬁ In Ay 5. The country normalization yields a double log difference—a country’s

log deviation from the global industry mean minus its average log deviation across all industries—which is

a measure of comparative advantage.

There is considerable variation across countries in the top advantage industries. In 2007, comparative
advantage in Argentina is strongest in maize, in Brazil it is iron ore, in Canada it is wheat, in Germany it is
road vehicles, in Indonesia it is rubber, in Japan it is telecommunications equipment, in Poland it is furniture,
in Thailand it is rice, Turkey it is glassware, and in the United States it is other transport equipment (mainly
commercial aircraft). The implied magnitudes of these advantages are enormous. Among the 90 countries
in 2007, comparative advantage in the top product—i.e., the double log difference—is over 400 log points
in 76 of the cases. Further, the top industries in each country by and large correspond to those one associates
with national export advantages, suggesting that the observed rankings of export capability are not simply a
byproduct of measurement error in trade values.

To characterize the full distribution of absolute advantage across industries for a country, we next plot
the log number of a source countslg industries that have at least a given level of absolute advantage in a
yeart against that log absolute advantage léued;,; for industriesi. By design, the plot characterizes the
cumulative distribution of absolute advantage by country and by year (Axtell 2001, Luttmer Ei§\rie 2
shows the distribution plots of log absolute advantage for 12 countries in 2007. Plots for 28 countries in
1967, 1987 and 2007 are shown in AppenHigures Al, A2 andA3. The figures also graph the fit of
absolute advantage to a Pareto distribution and to a log normal distribution using maximum likelihood,
where each distribution is fit separately for each country in each year (such that the number of parameters
estimated equals the number of parameters for a distribwtiommber of countriesc number of years).

We choose the Pareto and the log normal as comparison cases because these are the standard options in the
literature on firm size (Sutton 1997). For the Pareto distribution, the cumulative distribution plot is linear in
the logs, whereas the log normal distribution generates a relationship that is concave to the origin. Relevant

to our later analysis, each is a special case of the generalized gamma distribution. To verify that the graphed
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Figure 2:Cumulative Probability Distribution of Absolute Advantage for Select Countries in 2007
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Source:WTF (Feenstra et al. 2005, updated through 2008) for 135 time-consistent industries in 90 countries from 1962-2007 and
CEPIl.org; gravity-based measures of absolute advantage (7).

Note: The graphs show the frequency of industries (the cumulative probab#ity”4 (a) times the total number of industries

1 = 135) on the vertical axis plotted against the level of absolute advantdgech thatd;s; > a) on the horizontal axis. Both

axes have a log scale. The fitted Pareto and log normal distributions for absolute advhntage based on maximum likelihood
estimation by country in yeart = 2007.

15



cross-sectional distributions are not a byproduct of specification error in estimating export capabilities from
the gravity model, we repeat the plots using the Balassa (1965) RCA index, with similar results. And to
verify that the patterns we uncover are not a consequence of arbitrary industry aggregations we construct
plots at the two, three, and four-digit level based on SITC revision 2 data in 1987 and 2007, again with
similar results®

The cumulative distribution plots clarify that the empirical distribution of absolute advantage is decid-
edly not Pareto. The log normal, in contrast, fits the data closely. The concavity of the cumulative distri-
bution plots drawn for the data indicate that gains in absolute advantage fall off progressively more rapidly
as one moves up the rank order of absolute advantage, a feature absent from the scale-invariant Pareto but
characteristic of the log normal. This concavity could indicate limits on industry export size associated with
resource depletion, congestion effects, or general diminishing returns. Though the log normal is a rough
approximation, there are noticeable discrepancies between the fitted log normal plots and the raw data plots.
For some countries, we see that compared to the log normal the number of industries in the upper tail drops
too fast (i.e., is more concave), relative to what the log normal distribution implies. These discrepancies
motivate our specification of a generalized logistic diffusion for absolute advantage in Section 4, which is
consistent with a generalized gamma distribution in the cross section.

Overall, we see that in any year countries have a strong export advantage in just a few industries, where
this pattern is stable both across countries and over time. Before examining the time series of comparative
advantage in more detail, we consider whether log normality in absolute advantage could be merely inci-
dental. The exporter-industry fixed effects are estimated mean values, which by the Central Limit Theorem
will converge to being normally distributed as the sample size becomes large. Incidental log normality in
absolute advantage could result if the estimated exporter-industry fixed effects varied randomly around a
common expected value for a given country. Our preferred view is that log normality in absolute advantage
results instead from differences in thredustry mean®f export capability by country, where these indus-
try means determine comparative advantage. Indeed, if absolute advantage did have a common expected
value across industries for each country there would be no basis for comparative advantage at the industry
level. From the cross sectional distribution of absolute advantage alone, however, one cannot differentiate
between random variation in industry fixed effects around a common mean for each exporter and variation
in each exporter’s industry means. Examining how absolute advantage changes over time will help resolve

this issue?!

2Each of these additional sets of results is available in an online appendix.

21t is worth noting that the hypothesis of incidental normality in the estimated exporter-industry fixed effects applies just as
readily to the estimated importer-industry fixed effects. As an instructive exercise, we also constructed cumulative distribution plots,
analogous to those in Appendsigures Al, A2andA3, for the estimated importer-industry fixed effects, which involves plotting
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Figure 3:Absolute Advantage Transition Probabilities
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Source:WTF (Feenstra et al. 2005, updated through 2008) for 135 time-consistent industries in 90 countries from 1962-2007.
Note: The graphs show the percentiles of prodikctsat are currently among the top 5% of products, 20 years earlier. The sample is
restricted to products (country-industriés)with current absolute advantagg.: in the top five percentiles & Fa(A;st) > .05),

and then grouped by frequencies of percentiles twenty years prior, where the past percenteis(A;, :—20) of the same
product (country-industryjs. For the classification of less developed countries (LDC) see Appendix E.

3.2 The dissipation of comparative advantage

The distribution plots of absolute advantage give an impression of stability. The strong concavity in the
plots is present in all countries and in all years. Yet, this stability masks considerable industry churning in
the distribution of absolute advantage, which we investigate next. Initial evidence of churning is evident in
AppendixTable Al. Between 1987 and 2007, Canada’s top good switches from sulfur to wheat, China’s
from explosives (fireworks) to telecommunications equipment, Egypt’s from cotton to crude fertilizers, In-
dia’s from tea to precious stones, Malaysia’s from rubber to radios, the Philippine’s from vegetable oils to
office machines, and Romania’s from furniture to footwear. Of the 90 total exporters, 70 exhibit a change in
the top comparative-advantage industry between 1987 and 2007. Moreover, most new top products in 2007
were not the number two product in 1987, but from lower down in the distribution. Churning thus appears
to be both pervasive and disruptive.

To characterize turnover in industry export advantage more completdiigime 3 we calculate the
fraction of top products in a given year that were also top products in previous years. We identify for each

country in each year where in the distribution the top 5% of absolute-advantage products (in tem¥ of

exp {m;a: }, the exponentiated importer-industry fixed effect in equation (4), across industries for each country in representative
years. The plots show little evidence of log normality for these values. In particular, the distribution of the exponentiated importer-
industry fixed effects are much less concave to the origin than log normality would imply. These results are in the online appendix.
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were 20 years before, with the options being top 5% of products, next 10%, next 25% or bottom 60%. We
then average across outcomes for the 90 exporters. The fraction of top 5% products in a given year that
were also top 5% products two decades before ranges from a high of 43% in 2002 to a low of 37% in 1997.
Averaging over all years, the share is 41%. There is thus nearly a 60% chance that a good in the top 5% in
terms of absolute advantage today was not in the top 5% two decades earlier. On average, 30% of new top
products come from the 85th to 95th percentiles, 16% come from the 60th to 85th percentiles, and 13% come
from the bottom six deciles. Figures are similar when we limit the sample to just developing economies.
Turnover in top export goods suggests that over time absolute advantage dissipates—countries’ strong
sectors weaken and some weak sectors strengthen. To evaluate this impermanence, we test for mean rever-

sion in log absolute advantage by estimating regressions of the form

In Ajs 10 —In Ajp = pIn Ajsp + 05t + €4t (10)

In (10), the dependent variable is the ten-year change in log absolute advantage and the predictors are the
initial value of log absolute advantage and dummy variables for the countrysyeakbsolute advantage
represents the deviation in industry export capability for a country relative to the global mean. The inclusion
of country-year dummies introduces a further level of differencing from the country-year mean, so that the
regression in (10) evaluates the dynamics of comparative advantage. The cogifeaphires the fraction

of comparative advantage that dissipates over the time interval of one decade, either decaying towards a log
level of zero when currently above or strengthening towards a log level of zero when currently below.

Table 1presents coefficient estimates for equation (10). The first two columns report results for all coun-
tries and industries, first for log absolute advantage in column 1 and next for the log RCA index in column 2.
Subsequent pairs of columns show results separately for less development countries and non-manufacturing
industries. Estimates fqr are uniformly negative and precisely estimated, consistent with mean reversion
in comparative advantage. For the sample of all industries and countries, estimateésdolumns 1 and 2
are similar in value, equal te-0.24 when using log absolute advantage an@30 when using log RCA.

These magnitudes indicate that over the period of a decade the typical country-industry sees one-quarter
to three-tenths of its comparative advantage (or disadvantage) erode. In columns 3 and 4 we present com-
parable results for the subsample of developing countries. Decay rates appear to be larger for this group
of countries than worldwide average, indicating that in less developed economies mean reversion in com-
parative advantage is more rapid. In columns 5 and 6 we present results for only for non-manufacturing
industries, but all countries. For both measures of comparative advantage decay rates are larger in absolute

value for non-manufacturing industries (agriculture and mining), but the difference in decay rates between
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Table 1: DECAY REGRESSIONS FORCOMPARATIVE ADVANTAGE

Full sample LDC exporters Non-manufacturing
Exp. cap.k RCAIn X Exp. cap.k RCAIn X Exp. capk RCAInX
1) 2 3 4 ®) (6)

Decay ratep -0.237 -0.300 -0.338 -0.352 -0.359 -0.315

(0.018)* (0.013)* (0.025y* (0.015y* (0.025)* (0.013y*
Dissipation ratey 0.114 0.115 0.121 0.104 0.120 0.103

(0.007y* (0.004)* (0.007y* (0.003y* (0.007)* (0.004y*
Innov. intens.o? 0.476 0.618 0.683 0.836 0.741 0.737

(0.011y* (0.011y* (0.023y* (0.017y* (0.026)* (0.014y*
Obs. 66,276 67,901 39,937 41,103 30,942 32,390
Adj. R? 0.114 0.125 0.129 0.133 0.124 0.126
Source: WTF (Feenstra et al. 2005, updated through 2008) for 135 time-consistent industries in 90 countries from 1962-2007 and

CEPIl.org.
Note: Reported figures for five-year decadalized changes. Variables are OLS-estimated gravity measures of exporticapability

by (5) and the log Balassa index of revealed comparative advahtage: = In(Xst/ S, Xisre) /(X Xirst/ S0 3w Xirart)-
OLS estimation of the decadal decay ratieom

kist+10 — kist = pkist + 0ir + 0st + Eist,

conditional on industry-year and source country-year effégtandd,; for the full pooled sample (column 1-2) and subsamples
(columns 3-6). The implied dissipation rageand innovation intensity® are based on the decadal decay rate estipated

the estimated variance of the decay regression resifuby (13). Less developed countries (LDC) as listed in Appendix E.
Nonmanufacturing merchandise spans SITC sector codes 0-4. Standard errors (reported below coeffigiares)cfostered by
country and fom ando are calculated using the delta methdtljndicates significance at the 1% level.

non-manufacturing industries and the average industry is particularly pronounced for the log absolute ad-
vantage measuré.

As an additional robustness check on the decay regressions, we re-estimate (10) for the period 1984-
2007 using data from the SITC revision 2 sample. This allows us to perform regressions for log absolute
advantage and the log RCA index at the two, three and four-digit level. Results are reported in Appendix
Table A2. Estimated decay rates are comparable to tho$ahie 1. At the two-digit level (61 industries),
the decadal decay rate for absolute advantage using all countries and industries is 19%, at the three-digit
level (226 industries) it is 24%, and at the four-digit level (684 industries) it is 37%. When using the log
RCA index, decay rates vary less across aggregation levels, ranging from 26% at the two-digit level to 32%
at the four-digit level. The similarity in decay rates across definitions of comparative advantage and levels
of industry aggregation suggest that our results are neither merely generated by econometric estimation nor
the consequence of arbitrary industry definitions.

Our finding that decay rates imply less than complete mean reversion is evidence against the log normal-

ity of absolute advantage being incidental. Suppose the cumulative distribution pktgine 2 reflected

22In the next section, we offer further interpretation of these results.
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random variation in log absolute advantage around a common expected value for each country in each yeatr,
due say to measurement error in trade data. Under the assumption that this measurement error was classi-
cal, all within-country variation in the exporter-industry fixed effects would be the result of iid disturbances
that were uncorrelated across time. In the cross section, we would observe a log normal distribution for
absolute advantage—and possibly also for the RCA index—for each country in each year, with no temporal
connection between these distributions. When estimating the decay regression in (10), mean reversion in
absolute advantage would be complete, yielding a valyesgfual or close te-1. The coefficient estimates

in Table 1 are strongly inconsistent with such a pattern. Instead, as we document next, the results reveal
that the stable cross sectional distribution of absolute absolute and the churn of industry export rankings are

intimately related phenomena.

3.3 Comparative advantage as a stochastic process

On its own, the finding that comparative advantage reverts to a long-term mean is uninformative about the
cross sectional distributiof?. While mean reversion is consistent with a stationary cross sectional distri-
bution, mean reversion is also consistent with a non-ergodic distribution and consistent with degenerate
comparative advantage that collapses at a long-term mean. Yet, the combination of mean rev@esion in
ble 1 and temporal stability in the cumulative distribution plotsHigure 2 are strongly suggestive of a
balance between random innovations to export capability and the dissipation of these capabilities, a balance
characteristic of the class of stochastic processes that generate a stationary cross sectional distribution.

In exploring the dynamics of comparative advantage here and in Section (4) we limit ourselves to dif-
fusions: Markov processes for which all realizations of the random variable are continuous functions of
time and past realizations. As a preliminary exercise, we exploit the fact that the decay regression in (10)
is consistent with the discretized version of a commonly studied diffusion, the Ornstein-Uhlenbeck (OU)
process. Suppose that comparative advantage, which we express in continuousﬁig(e)aﬁ)llows an
OU process given by

_no?

din Aiy(t) = —3 In Ay (t) dt + o dWA(2) (11)

WhereWié(t) is a Wiener process that induces stochastic changes in comparative advantage. The parameter
n regulates the rate of convergence at which comparative advantage reverts to its global long-run mean
and the parameter scales time and therefore the Brownian innovatidﬁéif(t) in addition to regulating

the rate of convergenéé.Comparative advantage reflects a double normalization of export capability—by

ZThis point is analogous to critiques of using cross-country regressions to test for convergence in rates of economic growth (see
e.g. Quah 1996).
2*Among possible parametrizations of the OU process, we choose (11) because it is closely related to our later extension to
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the global industry-year and by the country-year. It is therefore natural to consider a global mean of one,
implying a global mean of zero fan Ais(t).

The OU process is the unique non-degenerate Markov process that has a stationary normal distribution
(Karlin and Taylor 1981, ch. 15, proposition 52P)The OU process of log comparative advanthg.éis(t)
has therefore as its stationary distribution a log normal distribution of comparative advahtége In
other words, if we observed comparative advantzigc(et) and plotted it with graphs like those Kigure 2,
we would find a log normal shape if and only if the underlying Markov process of log comparative advantage
In flis(t) is an OU process. IRigure 2, we only observe absolute advantage, however, so it remains for us
to relate the two cross sectional distributions of comparative and absolute advantage.

In (11), we refer to the parameteras therate of dissipationof comparative advantage because it
contributes to the speed with which log comparative advantage would collapse to a degenerate level of
zero in all industries and all countries if there were no stochastic innovations. The parametrization in (11)
implies thatn alone determines the shape and heavy tail of the resulting stationary distributiongvigile
irrelevant for the cross sectional distribution. Our parametrization is akin to a standardization byswhich
is a normalized rate of dissipation that measures the “number” of typical (one-standard deviation) shocks
that dissipate per unit of time. We refer to the parametes theintensity of innovations Under our
parametrization of), o plays a dual role: on the one hand magnifying volatility by scaling up the Wiener
innovations and on the other hand contributing to the speed at which time elapses in the deterministic part
of the diffusion.

To connect the continuous-time OU process in (11) to our decay regression in (10), we use the fact
that the discrete-time process that results from sampling from an OU process at a fixed time ixtisraal
Gaussian first-order autoregressive process with autoregressive parespdtero?A /2} and innovation
variance(l — exp{—no2A})/n (Ait-Sahalia et al. 2010, Example 1) Applying this insight to the first-

difference equation above, we obtain our decay regression:

In Ajs(t + A) —In Ais(t) = pln Ajs(t) + 05(t) + €45(t, t+A), (12)

a generalized logistic diffusion and because it clarifies that the paraméserrelevant for the cross sectional distribution. We
deliberately specify parametejsaindo that are invariant over time, industry and country and will explore the goodness of fit under
that restriction.

The Ornstein-Uhlenbeck process is a continuous-time analogue to a mean reverting AR(1) process in discrete time. It is a
baseline stochastic process in the natural sciences and finance (see e.g. Vasicek 1977, Chan et al. 1992).

%Concretely,In Ais(t + A) = exp{—no2A/2} In A;s(t) + eise(t,t + A) for a disturbances;q (¢, t +A) ~ N(0,[1 —
exp{—no’A}]/n).
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implying reduced-form expressions for the decay parameter
p=—(1—exp{—no’A/2}) <0

and the unobserved fixed effetit(t) = In Z;(t+A) — (1+p) In Zs(t), where the residual;s(¢,t + A)

is normally distributed with mean zero and variar{i@ée— exp{—no2A})/n. An OU process withp €

(0,1) generates a log normal stationary distribution of absolute advantage in the cross section, with a shape
parameter of /n and a mean of zero.

The estimated dissipation coefficiemis a function both of the dissipation rateand the intensity of
innovationso and therefore may vary across samples because either or both of these parameters vary. This
distinction is important becaugemay change even though the heavy tail of the distribution of comparative
advantage does not. From OLS estimation of the decay regression in (12), we can obtain estimaiek of

o2 using the solutions,

1—(1+p)?
n o= =
S
~9 A\ —2
o2 — $ In (14 p) ’ (13)

wherep is the estimated decay rate agtdis the estimated variance of the decay regression residual.

Table 1 shows estimates of and o2 implied by the decay regression results, with standard errors
obtained using the delta method. Across samples, the estimateasied on log absolute advantage is very
similar to that based on the log RCA index, implying that the two measures of comparative advantage have
a cross sectional distribution of similar shape. Patterns of interest emerge when we coapdyé across
subsamples.

First, consider the subsample of developing economies in columns 3 anthdlefl and compare the
estimates to those for the average country in the full sample (columns 1 and 2). The larger estimates of
in absolute value imply that mean reversion is more rapid in the developing-country group. However, this
result is silent about any underlying country differences in the cross sectional distribution of comparative
advantage. We see that the estimated dissipatiom ateong developing countries is not markedly different
from that in the average country; in fact the@stimates are not statistically significantly different from each
other for the exporter capability measureThis similarity in the estimated dissipation ragéndicates that
comparative advantage is similarly heavy-tailed in the group of developing countries as in the sample of all
countries. The faster reduced-form decay yater developing countries results mainly from their having

a larger intensity of innovations. In other words, a typical comparative-advantage innovation (a one-
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standard-deviation shock) in a developing country dissipates at roughly the same rate as in an industrialized
country but the typical innovation is larger in a developing country.

Second, we can compare non-manufacturing industries in columns 5 and 6 to the average industry in
columns 1 and 2. Whereas non-manufacturing industries differ considerably from the average industry in
measured decay ratgsthere is no such marked difference in the estimated dissipationyates either
measure of comparative advantage, the dissipatiomritenore similar between a non-manufacturing in-
dustry and the average industry than the measured decay ratedd appear. This implies that comparative
advantage is similarly heavy-tailed among non-manufacturing industries as in the sample of all industries.
However, the intensity of innovations is much larger in non-manufacturing industries than in the average
industry, perhaps due to higher volatility in commodity output or commodity prices. These nuances regard-
ing the implied shape of, and the convergence speed towards, the cross sectional distribution of comparative
advantage are not apparent when one focuses only on the reduced-form decay rates themselves.

Finally, we compare results across two, three, and four-digit industries in App&aldig A2 for the
subperiod 1984-2007 when a more detailed industry classification becomes available. Whereas reduced-
form decay rateg increase in magnitude as one goes from the two to four-digit level, dissipationjrates
tend to move in the opposite direction and fall as one goes from the more aggregate to the more detailed
industry classification. For the exporter capability measure of comparative advantage, therdoepieen
the two and the four-digit level is not statistically significant in the full sample of industries and countries—
indicating intuitively that the shape of the cross sectional distribution of comparative advantage remains
similar at varying levels of industry aggregati®hThe difference in reduced-form decay rateis largely
driven by a larger intensity of innovatiomsamong the more narrowly defined industries at the four-digit
level.

The diffusion model in (11) and its discrete analogue in (12) reveal a deep connection between hyperspe-
cialization in exporting and churning in industry export ranks. Random innovations in absolute advantage
cause industries to alternate places in the cross sectional distribution of comparative advantage for a coun-
try, while the dissipation of absolute advantage creates a stable, heavy-tailed distribution of export prowess.
Having established a connection between hyperspecialization and industry churning, we turn next to a more

rigorous analysis of its origins.

?In the subsamples of less developed countries and non-manufacturing industries, however, the dissipatidallratese
pronounced as one goes from the more aggregate to the more detailed industry classification. Those findings imply that, in those
subsamples, the cross sectional distribution of comparative advantage is more widely dispersed and thus more heavy tailed for the
more detailed industry classification. Intuitively, at finer levels of aggregation, the few top industries carry more weight.
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4 The Diffusion of Comparative Advantage

We now search in a more general setting for a parsimonious stochastic process that characterizes the dy-
namics of comparative advantage. In Figure 2, the cross-sectional distributions of absolute advantage drift
rightward perpetually, implying that absolute advantage is not stationary. However, the cross-sectional dis-
tributions preserve their shape over time. We therefore consider absolute advantage as a proportionally
scaled outcome of an underlying stationary and ergodic variable: comparative advantage. One candidate
stationary and ergodic variable is the Balassa RCA index because it removes a specific type of country-
wide trend. Instead of limiting ourselves to a narrowly imposed form, we spgeifigralized comparative

advantagen continuous time as

(14)

where A;4(t) is observed absolute advantage &hdt) is an unobserved country-wide stochastic trend. It
follows directly that this measure satisfies the properties of the comparative advantage statistic in (3) that
compares individual country and industry pairs.

To find a well-defined stochastic process that is consistent with the churning of absolute advantage over
time and with heavy tails in the cross section, we implement a generalized logistic diffusion of comparative
advantageflis(t), which has a generalized gamma as its stationary distribution. Comparative advantage in
the cross section is then denoted with, and understood to have a time-invariant distribution. Absolute
advantaged;;(t), in contrast, has a trend-scaled generalized gamma as its cross-sectional distribution, with
stable shape but moving position as in Figuré 2.

The attractive feature of the generalized gamma is that it nests many distributions as special or limiting
cases, making the diffusion we employ flexible in nature. We construct a GMM estimator by working with a
mirror diffusion, which is related to the generalized logistic diffusion through an invertible transformation.
Our estimator uses the conditional moments of the mirror diffusion and accommodates the fact that we
observe absolute advantage only at discrete points in time. After estimating the stochastic process from the
time series of absolute advantage in Section 5, we explore how well the implied cross-sectional distribution

fits the actual cross-section data, which we do not target in estimation.

%|n log terms, the non-stationary trend becomes an additive component that continually shifts the stationary distribution of
comparative advantagli A;s(¢t) = In Z,(t) + In Ass.
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4.1 Generalized logistic diffusion

The regularities in Section 3.1 indicate that the log normal distribution is a plausible benchmark distribution
for the cross section of absolute advant&y@ut the graphs irFigure 2 (and their companion graphs in
Figures AlthroughA3) also suggest that for many countries and years, the number of industries drops off
faster or more slowly in the upper tail than the log normal distribution can capture. We require a distribution
that generates kurtosis that is not simply a function of the lower-order moments, as would be the case in
the two-parameter log normal. The generalized gamma distribution, which unifies the gamma and extreme-
value distributions as well as many other distributions (Crooks 2010), offers a candidate3far@iyt
implementation of the generalized gamma uses three parameters, as in Stacy{1962).

In a cross section of the data, after arbitrarily much time has passed, the proposed relevant generalized

gamma probability density function for a realizatién of the random variable comparative advantaige

- pr—1 - é
Ajs Ajs o
- exp — | — for a;s >0, 15
( 0 ) p{ < 0 ) } (15)

whereI'(-) denotes the gamma function a(ﬁj Kk, ¢) are real parameters with < > 0.32 The generalized

is given by:

gamma nests as special cases, among several others, the ordinary gamma distribgitier fand the log

normal or Pareto distributions whentends to zerd® The parameter restriction = 1 clarifies that the
generalized gamma distribution results when one takes an ordinary gamma distributed variable and raises it
to a finite powerl /¢. The exponentiated random variable is then generalized gamma distributed, a result
that points to a candidate stochastic process that has a stationary generalized gamma distribution. The

ordinarylogistic diffusion, a widely used stochastic process, generates an ordinary gamma as its stationary

2A log normal distribution also approximates the firm size distribution reasonably well (Sutton 1997). For the United States,
Axtell (2001) argues that a Pareto distribution offers a tight fit to firm sizes but also documents that, in the upper and lower tails
of the cumulative distribution, the data exhibit curvature consistent with a log normal distribution and at variance with a Pareto
distribution.

3%n their analysis of the firm size distribution by age, Cabral and Mata (2003) also use a version of the generalized gamma
distribution with a support bounded below by zero and document a good fit.

31n the original Amoroso (1925) formulationthe generalized gamma distribution has four parameters. One of the four parameters
is the lower bound of the support. However, our measure of absolute advahtagen be arbitrarily close to zero by construction
(because the exporter-industry fixed effect in gravity estimation is not bounded below so thaidyy A7) can be negative and
arbitrarily small). As a consequence, the lower bound of the support is zero in our application. This reduces the relevant generalized
gamma distribution to a three-parameter function.

%2\We do not restrict) to be strictly positive (as do e.g. Kotz et al. 1994, ch. 17). We aliaw take any real value (see Crooks
2010), including a strictly negative for a generalized inverse gamma distribution. Crooks (2010) shows that this generalized
gamma distribution (Amoroso distribution) nests the gamma, inverse gamma, Fréchet, Weibull and numerous other distributions as
special cases and yields the normal, log normal and Pareto distributions as limiting cases.

33As ¢ goes to zero, it depends on the limiting behaviokafhether a log normal distribution or a Pareto distribution results
(Crooks 2010, Table 1).
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distribution (Leigh 1968). By extension, tlyeneralizedogistic diffusion has ayeneralizedgyamma as its

stationary distribution.

Lemma 1. The generalized logistic diffusion

dt + o dW (1) (16)

d1A4is (t) 02 [1 —n Ais (t)¢ -1
Ais(t) 2

for real parameters), ¢, o has a stationary distribution that is generalized gamma with a probability density
Jalais; 0, k, ¢) given by(15), for A;; (understood to have a time-invariant cross sectional distribution) and
the real parameters

6= (¢/m)""">0 and x=1/6°>0.

A non-degenerate stationary distribution exists only if 0.

Proof. See Appendix A. O

The term(c2/2)[1 — n{A;s(t)® — 1}/¢] in (16) is a deterministic drift that regulates the relative change in
comparative advantageid, (¢)/A;(t). The variabIeI/VfSi (t) is the Wiener process. The generalized logistic
diffusion nests the Ornstein-Uhlenbeck process¢0), leading to a log normal distribution in the cross
section. In the estimation, we will impose the condition that 0.34

The deterministic drift involves two types of components: constant parameters (yopthe one hand,
and a level-dependent componehg(t)¢ on the other hand, whetgis the elasticity of the mean reversion
with respect to the current level of absolute advantage. Wegctik level elasticity of dissipation. The
ordinary logistic diffusion has a unitary level elasticity of dissipatign< 1). In our benchmark case of the
OU process (¢— 0), the relative change in absolute advantage is neutral with respect to the current level. If
¢ > 0, then the level-dependent drift componeh;(t)¢’ leads to a faster than neutral mean reversion from
above than from below the mean, indicating that the loss of absolute advantage tends to occur more rapidly
than elimination of absolute disadvantage. Conversely,4f 0 then mean reversion tends to occur more
slowly from above than below the long-run mean, indicating that absolute advantage is sticky. Only in the
level neutral case af — 0 is the rate of mean reversion from above and below the mean the same.

The parameterg ando in the generalized logistic diffusion in (16) inherit their interpretations from the
OU process in (11) as the rate of dissipation and the intensity of innovations, respectively. The intensity
of innovationss again plays a dual role: on the one hand magnifying volatility by scaling up the Wiener

innovations and on the other hand regulating how fast time elapses in the deterministic part of the diffusion.

34t n where negative, comparative advantage would collapse over tinge406 or explode forp > 0.
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This dual role now guarantees that the diffusion will have a non-degenerate stationary distribution. Scaling
the deterministic part of the diffusion by’ /2 ensures that stochastic deviations of comparative advantage
from the long-run mean do not persist and that dissipation occurs at precisely the right speed to offset the
unbounded random walk that the Wiener process would otherwise induce for each country-industry.

Under the generalized logistic diffusion, the dissipation rand dissipation elasticity jointly de-
termine the heavy tail of the cross sectional distribution of comparative advantage, with the intensity of
innovationss determining the speed of convergence to this distribution but having no effect on its shape.

For subsequent derivations, it is convenient to restate the generalized logistic diffusion (16) more com-
pactly in terms of log changes as,

o’ A (t)?

din Ay (1) = 2 gb_l di + o dWA(®),

which follows from (16) by 1o’s lemma.

4.2 The cross sectional distributions of comparative and absolute advantage

If comparative advantagéis(t) follows a generalized logistic diffusion by (16), then the stationary dis-
tribution of comparative advantage is a generalized gamma distribution with density (15) and parameters
6= (62/n)"/? > 0andk = 1/6° > 0 by Lemma 1. From this stationary distribution of comparative ad-
vantaged;, (t), we can infer the cross distribution of absolute advant&gé). Note that, by definition (14),
absolute advantage is not necessarily stationary because the stochastic trend may not be stationary.
Absolute advantage is related to comparative advantage through a country-wide stochastic trend by
definition (14). Plugging this definition into (15), we can infer that the probability density of absolute

advantage must be proportional to

. a; . @i ’
Fa0isi 0, 2(0), m,0) (ézs@)) U (éZs@))

It follows from this proportionality that the probability density of absolute advantage must be a generalized

gamma distribution witt#,(t) = §Z,(t) > 0, which is time varying because of the stochastic tréf(t).

We summarize these results in a lemma.

Lemma 2. If comparative advantagél-s(t) follows a generalized logistic diffusion

N 2 4. ¢ _ .
din Ay(t) = —”;A”(t;l dt + o dW (1) (17)
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with real parameters;, o, ¢ (n > 0), then the stationary distribution of comparative advantafg@(t) is

generalized gamma with the CDF

FA(&’Lsa éa ¢a K) = G

whereG|z; k| = vz (k;z)/T'(k) is the ratio of the lower incomplete gamma function and the gamma func-

tion, and the cross sectional distribution of absolute advantagét) is generalized gamma with the CDF

(ejzi>>¢;"“]

FA(ais; Hs(t)v ¢a K‘) =G

for the strictly positive parameters
n__ 2 1/¢ ) o hd
0=(%/n)"", 6,(t)=0Z,(t) and k=1/6°.

Proof. Derivations above establish that the cross sectional distributions are generalized gamma. The cumu-

lative distribution functions follow from Kotz et al. (1994, Ch. 17, Section 8.7). O

The graphs irFigure 2 plot the frequency of industries, that is the probability- F4(a; 6s(t), ¢, k)
times the total number of industries &€ 135), on the vertical axis against the level of absolute advantage
a (such thatA > a) on the horizontal axis. Both axes have a log scale. Lemma 2 clarifies that a country-
wide stochastic trend(t) shifts log absolute advantage in the graph horizontally but the shape related
parameterg andx are not country specific if comparative advantage follows a diffusion with a common set
of three deep paramete@sn, ¢ worldwide.

Finally, as a prelude to the GMM estimation we note that/thle raw moments of the ratios /05(¢)

o) | =25 )= "™

and identical because bof, /0,(t)]}/¢ and|a;,/0]'/¢ have the same standard gamma distribution (Kotz

anda;, /0 are

et al. 1994, Ch. 17, Section 8.7), whdr¢-) denotes the gamma function. As a consequence, the raw
moments of absolute advantadg are scaled by a country-specific time-varying facto(t)” whereas the
raw moments of comparative advantage are constant over time if comparative advantage follows a diffusion

with three constant deep paramet@rs, o:

B () 2:(07) = Zu(0) - B[] = 2,0 - 07 29,
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By Lemma 2, the median of comparative advantagesis= 6(G![.5; x])'/¢. A measure of concentration
in the right tail is the ratio of the mean and the mediar@an/median ratio), which is independenl@aﬁnd

equals
I'(k+1/9)/T' (k)

Mean/median ratio= (G5 R

(18)

We report this measure of concentration with our estimates to characterize the curvature of the stationary

distribution.

4.3 Implementation

The generalized logistic diffusion model (16) has no known closed form transition densitygvken.
We therefore cannot evaluate the likelihood of the observed data and cannot perform maximum likelihood
estimation. However, an attractive feature of the generalized logistic diffusion is that it can be transformed
into a diffusion that belongs to the Pearson-Wong family, for which closed-form solutions of the condi-
tional moments exist® We construct a consistent GMM estimator based on the conditional moments of a
transformation of comparative advantage, using results from Forman and Sgrensen (2008).

Our model depends implicitly on the unobserved stochastic tref¥d. We use a closed form expression
for the mean of a log-gamma distribution to identify and concentrate out this trend. For a given country and
year, the cross-section of the data across industries has a generalized gamma distribution. The mean of the
log of this distribution can be calculated explicitly as a function of the model parameters, enabling us to
identify the trend from the relation tht,[In A;(t)] = E[In A;(t)] — In Z,(t) by definition (14). We
adopt the convention that the expectations oper&tgr| denotes the conditional expectation for source

countrys at timet. This result is summarized in the following proposition:

Proposition 1. If comparative advantagélis(t) follows the generalized logistic diffusidi6) with real
parametersn, o, ¢ (n > 0), then the country specific stochastic trefd(¢) is recovered from the first

moment of the logarithm of absolute advantage as:

Zu(t) = exp {Est[ln Asu(t)] — In(¢?/n) + F’(;z/ ¢*)/T(n/d?) } (19)
wherel” (k) /T'(x) is the digamma function.
Proof. See Appendix B. O

pearson (1895) first studied the family of distributions now called Pearson distributions. Wong (1964) showed that the Pearson
distributions are stationary distributions of a specific class of stochastic processes, for which conditional moments exist in closed
form.
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This proposition implies that for any GMM estimator, we can concentrate out the stochastic trend in
absolute advantage and work with an estimate of comparative advantage directly. Concretely, we obtain

detrended data based on the sample analog of equation (19):

ASMM() — oo L un(t) }im A0 ¢ RO F’(;z/qbQ)/F(n/QSQ) (20)
j=1
Detrending absolute advantage to arrive at an estimate of comparative advantage completes the first step in
implementing model (16).

Next, we perform a change of variable to recast our model as a Pearson-Wong diffusion. Rewriting
our model as a member of the Pearson-Wong family allows us to apply results in Kessler and Sgrensen
(1999) and construct closed-form expressions for the conditional moments of comparative advantage. This
approach, introduced by Forman and Sgrensen (2008), enables us to estimate the model usfgrG&1M.
following proposition presents an invertible transformation of comparative advantage that makes estimation

possible.

Proposition 2. If comparative advantagélis(t) follows the generalized logistic diffusidi6) with real

parameters;, o, ¢ (n > 0), then:

1. The transformed variable
Bis(t) = [As(t)™? = 1]/9 (21)
follows the diffusion

A 0'2

dB;s(t) 5

[(n — ¢%) Bis(t) — (b} dt + U\/¢2Bis(t)2 +26B;,(t) + 1dWB (1),

and belongs to the Pearson-Wong family.

2. For any timet, time intervalA > 0, and integem < M < n/¢?, then-th conditional moment of the

transformed proceséis (t) satisfies the recursive condition:

E|Bis(t + A)

Bis(t) = b} = exp {—anA) Zn: nn,mbm—nzl TnmE [E’is(t + AT ‘Bis(t) - b}
m=0 m=0
(22)

where the coefficients, andr,, ,, (n,m =1,..., M) are defined in Appendix C.

3More generally, our approach fits into the general framework of prediction-based estimating functions reviewed in Sgrensen
(2011) and discussed in Bibby et al. (2010). These techniques have been previously applied in biostatistics (e.g., Forman and
Sgrensen 2013) and finance (e.g., Lunde and Brix 2013).
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Proof. See Appendix C. O

Transformation (21) converts the diffusion of comparative advanxhg(e) into a mirror specification
that has closed form conditional moments. This central result enables us to construct a GMM estimator.
Consider time series observations 18y, (¢) at timest1, . . ., t7. By equation (22) in Proposition 2, we
can calculate a closed form for the conditional moments of the transformed diffusion 4t taoeditional
on the information set at timg_;. We then compute the forecast error based on using these conditional
moments to forecast the-th power OfBis(tT) with time ¢._; information. These forecast errors must
be uncorrelated with any function of paégs(tT_l). We can therefore construct a GMM criterion for
estimation.

Denote the forecast error with

Uis(m7t7—17t7) = Bis(t’r)m —-E |:st( )

Bis(tr— )}.

This random variable represents an unpredictable innovation imttie power OfBZ-S(tT). As a result,
Uis(m,t-_1,t;) is uncorrelated with any measurable transformatioﬁ?g(tT_l). A GMM criterion func-

tion based on these forecast errors is

T
9is($,m,0°) = Z (71 (Bis(tr—1))Uis(1, tr—1, ), - Bt (Bis(tr—1))Uis (M, £, )]
T=2
where eacth,,, is a row vector of measurable functions specifying instruments forittie moment condi-
tion. This criterion function is mean zero due to the orthogonality between the forecast errors and the time
t-—1 instruments. Implementing GMM requires a choice of instruments. Computational considerations
lead us to choose polynomial vector instruments of the foppBi,(t)) = (1, Bis(t), . .., Bis(t)X 1) to
constructK instruments for each of th&/ moments that we include in our GMM criteriéh.
For observations frond industries acrosS§ source countries, our GMM estimator solves the minimiza-

tion problem

(¢*,n",0%*) = arg min ( SZZQZS ¢,n,0 ) W(;,ZZ%(@S,%U%)

(¢m,02)

for a given weighting matrixV’.

$"\We work with a sub-optimal estimator because the optimal-instrument GMM estimator considered by Forman and Sgrensen
(2008) requires the inversion of a matrix for each observation. Given our large sample, this task is numerically expensive. Moreover,
our ultimate GMM objective is ill-conditioned and optimization to find our estimates gf ando? requires the use of an expensive
global numerical optimization algorithm. For these computational concerns we sacrifice efficiency and use sub-optimal instruments.
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We evaluate this objective function at valuesyof;, ando? by detrending the data to obtajftﬁMM(t)
from equation (20), transforming these variables into their mirror variaBfe¥ (t) = [AGMM (1)=¢ —
1]/¢, and using equation (22) to compute forecast errors. Then, we calculate the GMM criterion function
for each industry and country pair by multiplying these forecast errors by instruments constructed from
BZGSMM(t), and finally sum over industries and countries to arrive at the value of the GMM objective.

For estimation we use two conditional moments and three instruments, leaving us with six equations
for three parameters. Being overidentified, we adopt a two-step estimator. On the first step we com-
pute an identity weighting matrix, which provides us with a consistent initial estimate. On the second
step we update the weighting matrix to an estimate of the optimal weighting matrix by sBfting=
(1/15)3°, 3, 9is(0,m,02)gis(6,m, 0%)’, which is calculated at the parameter value from the first step.
Forman and Sgrensen (2008) establish asymptotigs-asco.3® We impose the constraints that> 0 and
o2 > 0 by reparameterizing the model in termslof; > —oco andIn(o?) > —oo, and use the delta method

to calculate standard errors for functions of the transformed parameters.

5 Estimates

Following the GMM procedure described in Section 4.3, we proceed to estimate the parameters for the
global diffusion of comparative advantage (7, 9, ¢t is worthy of note that, subject to a country-specific
stochastic trend, we are attempting to describe the global evolution of comparative advantage using just
three time-invariant parameters, which by implication must apply to all industries in all countries and in
all time periods. This approach contrasts sharply with our initial descriptive exerckgure 2, which
fits cumulative distribution plots to the log normal based on distribution parameters estimated separately
for each country and each yediable 2 presents the estimation results. To verify that the results are not a
byproduct of specification error in estimating export capabilities from the gravity model, we also perform
GMM estimation using the Balassa (1965) RCA index.

The magnitude of the estimate gfwhich captures the dissipation of comparative advantage, is some-
what difficult to evaluate on its own. In its combination with the level elasticity of dissipatjoncontrols
both the magnitude of the long-run mean and the curvature of the cross-sectional distribution. The sign of

¢ captures the stickiness of comparative advantage. The parameter estimaserobustly negative (and

380ur estimator would also fit into the standard GMM framework of Hansen (1982), which establishes consistency and asymp-
totic normality of our estimator for the produéS — oco. Given the dynamic nature of our times series exercise, we base the
GMM weighting matrix and computations of standard errors on the asymptotics fihder co. Results under the alternative
asymptotics of S — oo are available from the authors upon request; those asymptotics tend to lead to less stable estimates across
specifications.
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Table 2: GMM ESTIMATES OF COMPARATIVE ADVANTAGE DIFFUSION

Full sample Subsamples: Absolute advantage
Abs. adv. Rev. adv. Exporter countries Sectors
A X LDC  Non-LDC Manuf.  Nonmanf.
@) ) 3 4 ®) (6)
Estimated Generalized Logistic Diffusion Parameters
Dissipation rate) 0.265 0.190 0.265 0.264 0.416 0.246
(0.004)* (.002)* (0.004y* (0.008)* (0.005)* (0.004)*
Intensity of innovations 1.396 1.189 1.587 0.971 1.157 1.625
(0.039y* (.026)* (0.045y* (0.073y* (0.011)* (0.042)*
Level elast. of dissipation -.034 -.030 -.027 -.036 -.064 -.028
(0.004)* (.004y* (0.005y* (0.01y* (0.012)* (0.004)*
Implied Parameters
Log gen. gamma scala 6 160.7 177.8 223.8 146.4 72.6 201.6
(25.3)* (28.6) (52.5)* (57.8y (20.3y* (42.3y*
Log gen. gamma shape 5.443 5.349 5.933 5.302 4.628 5.722
(0.236y* (0.226)* (0.355)* (0.585)* (0.395y* (0.316y*
Mean/median ratio 7.375 16.615 7.181 7.533 3.678 8.457
Obs. 459,680 459,680 296,060 163,620 230,890 228,790
Root mean sq. forecast error 1.250 1.090 1.381 913 1.022 1.409
Min. GMM obj. (x 1,000) 0.411 0.012 1.040 1.072 0.401 0.440

Source: WTF (Feenstra et al. 2005, updated through 2008) for 135 time-consistent industries in 90 countries from 1962-2007 and

CEPIl.org; gravity-based measures of absolute advantage (7).

Note: GMM estimation of the generalized logistic diffusion of comparative advam&age),

d lIl Aqg (t) =

2

¢

2 A ($)® — i
_no” Ais()” —1 dt + o dWii (1),

using annual absolute advantage measdre§) = Ais(t)Zs(t) on the full pooled sample (column 1) and subsamples (columns 3-
6), and using the Balassa index of revealed comparative advatage= (Xist/ > . Xisre)/ (i Xirst/ Doy Do Xirsrt)
instead of absolute advantage (column 2). Parametersp are estimated under the restrictidng;, In % > —oo for the mirror

Pearson (1895) diffusion of (21), while concentrating out country-specific trépt. The implied parameters are inferred as

0 = (¢*/n)'/?, k = 1/6%and the mean/median ratio is given by (18). Less developed countries (LDC) as listed in Appendix E.
The manufacturing sector spans SITC one-digit codes 5-8, the nonmanufacturing merchandise sector codes 0-4. Standard errors in
parentheses: marks significance at five arid at one percent level. Standard errors of transformed and implied parameters are
computed using the delta method.
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precisely estimated), so we reject log normality in favor of the generalized gamma distribution. Negativity
in ¢ implies that comparative advantage reverts to the long-run mean more slowly from above than from
below. However, the value af is not far from zero, suggesting that in practice deviations in comparative
advantage from log normality may be modest, as the plofsgare 2 suggest.

The parameter regulates the intensity of innovations and captures both the volatility of the Wiener
innovations to comparative advantage and the a speed of convergence on the deterministic decay. This dual
role binds the parameter estimatesato a level precisely such that a non-degenerate stationary distribution
exists. The intensity of innovations therefore does not play a role in determining the cross-sectional distribu-
tion’s shape. That job is performed byandé, which exclusively depend omand¢, so we are effectively
describing the shape of the cross-sectional distribution with just two parameters.

The parameterg and ¢ together imply a shape of the distribution with a strong concentration of ab-
solute and comparative advantage in the upper tail. The mean exceeds the median by a factor of more
than seven, both among developing and industrialized countries. This considerable concentration is mainly
driven by industries in the non-manufacturing merchandise sector, which exhibit a mean/median ratio of
more than eight (column 6), whereas the ratio is less than four for industries in the manufacturing sector
(column 5). When we use the Balassa (1965) RCA index, the mean/median ratio more than doubles to 16
(column 2). One interpretation of the greater concentration in revealed comparative advantage relative to
our geography-adjusted absolute advantage measure is that geography reinforces comparative advantage by
making countries appear overspecialized in the goods in which their underlying advantage is strong.

In Appendix Table A3 (to be included) we repeat the GMM procedure using data for the post-1984
period on SITC revision 2 industries at the two, three, or four-digit level. The results are largely in line with
those inTable 2. Estimates of the dissipation ratare slightly larger for the post-1984 period than for the
full sample period, and, similar to what we found in the decay regressiorebie 1, become larger as one
moves from higher to lower levels of industry disaggregation. Estimates of the elasticity of dissipati®n
negative in all cases except one—when we measure export prowess using log absolute advantage (based on
the gravity fixed effects) at the four-digit SITC level. As mentioned in Section 3.1, with nearly 700 four-
digit SITC rev. 2 industries we frequently have few destination markets per exporter-industry with which to
estimate the gravity fixed effects, contributing to noise in the estimated exporter-industry coefficients.

The parameters themselves give no indication of the fit of the model. To evaluate fit, we exploit the
fact that our GMM estimation targets exclusively the diffusion of comparative advantage—that is, the time
series behavior for country-industries—and not its cross-sectional dimension. Thus, the cross sectional

distribution of comparative advantage for a given country at a given moment in time provides a means of
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validating our estimation procedure. For each country in each year, we project the cross sectional distribution
of comparative advantage implied by the parameters estimated from the diffusion and compare it to the
distribution based on the raw data.

To implement our validation exercise, we need a measurg fin equation (14), whose value depends
on Z, the country-specific stochastic trend, which is unobserved. The role of the stochastic trend in the
diffusion is to account for horizontal shift in the distribution of log absolute advantage, which may result
from country-specific technological progress, factor accumulation, or other sources of aggregate growth. In
the estimation, we concentrate dti} by exploiting the fact that botH,.; and A;.; have generalized gamma
distributions, allowing us to obtain closed-form solutions for their means, which isolates the value of the
stochastic trend. To obtain an empirical estimat& gfat a given moment in time we apply equation (19),
which defines the variable as the difference between the mean log valig; @hd the expected value of
a log gamma distributed variable (which is a functionmofnd ¢). With estimated realizations for each
country in each year af,, in hand, we compute realized values fbg,, for each country-industry in each
year.

To gauge the goodness of fit of our specification, we first plot our measure of absolute advigptage
To do so, following the earlier exercise Figure 2, we rank order the data and plot for each country-
industry observation the level of absolute advantage (in log units) against the log number of industries with
absolute advantage greater than this value (which is given by the log of one minus the empirical CDF).
To obtain the simulated distribution resulting from the parameter estimates, we plot the global diffusion’s
implied stationary distribution for the same series. The diffusion implied values are constructed, for each
level of A;4, by evaluating the log of one minus the predicted generalized gamma CDE at Aist/Zst.
The implied distribution thus uses the global diffusion parameter estimates as well as the identified country-
specific trendZ;.

Figure 4 compares plots of the actual data against the diffusion implied plots for four countries in three
years, 1967, 1987, 200Figures A7, ABandA9 in the Appendix present plots for the same 28 countries
in 1967, 1987 and 2007 as shownRigures Al, A2 andA3 before. WhileFigures Al throughA3 de-
picted Pareto and log normal maximum likelihood estimates of each individual country’s cross sectional
distribution by year (such that the number of parameters estimated equaled the number of parameters for
a distributionx number of countriesx number of years), our exercise now is vastly more parsimonious
and based on a fit of the time-series evolution, not the observed cross seEligue 4 andFigures A7
throughA9 present the same, horizontally shifting but identically shaped, single cross-sectional distribution,

as implied by the two shape relevant parameter estimates (out of the three total) that fit the global diffusion
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Figure 4: Global Diffusion Implied and Observed Cumulative Probability Distributions of Absolute
Advantage for Select Countries in 1967, 1987 and 2007
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Source:WTF (Feenstra et al. 2005, updated through 2008) for 135 time-consistent industries in 90 countries from 1962-2007 and
CEPIl.org; gravity-based measures of absolute advantage (7).

Note: The graphs show the observed and predicted frequency of industries (the cumulative prdbabHifyfa) times the total

number of industried = 135) on the vertical axis plotted against the level of absolute advantggech thatA;;; > a) on

the horizontal axis. Both axes have a log scale. The predicted frequencies are based on the GMM estimates of the comparative
advantage diffusion (17) in Table 2 (parameteendphi in column 1) and the inferred country-specific stochastic trend component

In Z5; from (19), which horizontally shifts the distributions but does not affect their shape.
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for all country-industries and years. The country-specific ttBpderms shift the implied stationary distri-
bution horizontally, and we cut the depicted part of that single distribution at the lower and upper bounds of
the specific country’s observed support in a given year to clarify the fit.

Considering that the shape of the distribution effectively depends on only two parameters for all country-
industries and years, the simulated distributions fit the actual data remarkably well. There are important
differences between the actual and predicted plots in only a few countries and a few years, including China
in 1987, Russia in 1987 and 2007, Taiwan in 1987, and Vietnam in 1987 and 2007. Three of these four cases
involve countries undergoing a transition away from central planning during the designated time period,
suggesting periods of economic tumult.

There are some telling discrepancies between the actual and diffusion implied plots that are worthy
of further investigation. First, for some countries the upper tail of the distribution in the actual data plots
falls off more quickly than the predicted stationary distribution would imply. This suggests that for some
countries comparative advantage is relatively sticky (i.e., the true valgefof these countries may be
larger in absolute value than that showrTable 2). However, a handful of countries in East and Southeast
Asia—China, Japan, Korea Rep., Malaysia, Taiwan, and Vietnam—show the opposite pattern. They exhibit
less concavity in the data than in the diffusion implied distribution, revealing less stickiness in comparative
advantage than the predicted stationary CDF would indicate, consistent witied is smaller in absolute
value than inTable 2 or even positive. What remains unclear is whether these differences in fit across
countries are associated with the countries or with particular industries in these countries, an issue we will
explore in upcoming work.

Future empirical analysis in this paper will account for the following extensions.

1. We will use our estimates of the parameters of the generalized gamma distribution to simulate a
multi-sector version of the EK model. First, we will use the generalized gamma to generate location
parameters of the Fréchet distribution for firm productivity in each industry and in each country. We
will then combine these location parameters with values for preference and technology parameters
taken from the trade literature to simulate a global general equilibrium, which yields a gravity equa-
tion. Finally, we will add randomly generated noise to the “true” trade values and apply the gravity
model to estimate exporter-industry fixed effects on the simulated data plus noise. By comparing these
gravity estimates to our underlying generalized gamma draws of the location parameters, we can as-
sess the extent to which measurement error in trade data contaminates our measurement of country

export prowess.
2. We will examine alternative measures of the goodness of fit of the generalized logistic diffusion by (a)
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plotting observed quantiles for absolute advantage against predicted quantiles for absolute advantage,
and (b) restricting the estimation to the latter half of the sample period and using these estimates to

simulate distributions for the first half of the sample period.

3. We will examine the robustness of our results to (a) using MPML-based estimates of gravity fixed
effects that account for zero flows, and (b) excluding industries (mainly in electronics, electrical ma-
chinery, transportation equipment, apparel, and footwear) in which global production networks figure

prominently and in which domestic value added accounts for a relatively small share of gross exports.

4. We will derive the exact discrete-time process that results from sampling from our generalized logistic
diffusion at a fixed time interval and compute the precise decadal evanescence rate#0b and
A = 10 using the according generalized autoregressive parameter function of the exact discrete-time
process and evaluateat three percentiles of comparative advantage for the pooled sample as well as

by country and sector.

5. We will re-estimate the GMM specification by explicitly allowing the absolute advantage measures
A, to be aggregates of trade events between the discrete points of observation Sgrensen (2011),

beyond our current implementation of discrete-time trade events.

6 Conclusion

Two salient facts about comparative advantage arise from our investigation of trade flows among a large
set of countries and industries over more than four decades: While at any moment of time countries exhibit
hyperspecialization in only a few industries, the deviation in comparative advantage from its long-run global
mean dissipates at a brisk rate, of one-quarter to one-third over a decade. This impermanence implies that
the identity of the industries in which a country currently specializes changes considerably over time. Within
two decades, a country’s rising industries replace on average three of its top five initial industries in terms
of absolute advantage.

We specify a parsimonious stochastic process for comparative advantage with only three parameters by
generalizing the two-parameter logistic diffusion. The generalized logistic diffusion is consistent with both
hyperspecialization in the cross section and perpetual churning in industry export ranks. We additionally
allow for a country-specific stochastic trend whose removal translates absolute advantage into comparative
advantage and estimate the global parameters of the generalized logistic diffusion using a recently developed

GMM estimator for a well-defined mirror process. In this novel approach, we estimate the stochastic process
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itself, rather than the repeated cross sections, and then use the two time-invariant diffusion parameters
that determine the shape of the cross-sectional distribution to assess the fit of the predicted cross-sectional
distribution across countries and over time. Even though our estimator does not target the cross sections—
but rather the annual diffusion—we find that the shape of the predicted stationary cross section tightly
matches the shape and curvature of the observed cross-sectional distributions for the bulk of countries and
years.

The exercises in this paper deliberately set aside questions about the deeper origin of comparative advan-
tage and aim instead to characterize the empirical evolution of comparative advantage in a typical country-

industry. In future research, we plan to explore natural follow-up questions.

1. We plan a systematic account of the country-industries whose evolution defies the global diffusion
in the sense that their rapid success or decline over time beats the odds and lies outside a confidence
bound of the likely evolution under the specified generalized logistic diffusion. Once the outside-
the-odds successes and failures are accounted for, we can ask whether their subsequent performance
remained outside the odds and what known market-driven forces or government interventions may
account for their beating the odds. In this context, we can explore the addition of a Lévy jump process
to our generalized logistic diffusion, generating a stationary distribution with no closed form, while
restricting parameters so that the implied stationary distribution approximates the generalized gamma
arbitrarily closely. The resulting stochastic process can potentially explain the evolution of individual

country-industries more completely.

2. We plan to bring firm-level evidence on the employment and sales concentration among exporting and
non-exporting firms in select countries to the project and thus complement our sector-level evidence
with recent advances in firm-level theories of international trade. Countries for which we have access
to firm-level data include Brazil, Germany and Sweden. Firms might withstand sector-level dissipa-
tion of comparative advantage by expanding their product scope across sectors or, alternatively, might
be subject to similar rates of dissipation as their home sector. Firm-level evidence can sharpen our
understanding of how the ongoing process of innovation in manufacturing industries and exploration

in non-manufacturing industries contribute to hyperspecialization and industry churning.
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Appendix

A Generalized Logistic Diffusion: Proof of Lemma 1

The ordinary gamma distribution arises as the stationary distribution of the stochastic logistic equation
(Leigh 1968). We generalize this ordinary logistic diffusion to yield a generalized gamma distribution as
the stationary distribution in the cross section. Note that the generalized (three-parameter) gamma distribu-
tion relates to the ordinary (two-parameter) gamma distribution through a power transformation. Take an
ordinary gamma distributed random variaBewith two parameter8, > 0 and the density function

fx(z;0,k) = 1“(1/@);_ (%)Kil exp {—%} for x> 0. (A.1)

Then the transformed variablé = X1/¢ has a generalized gamma distribution under the accompanying
parameter transformatigh= 6'/¢ because

fA(a;éa"ﬁ(b) = %PI‘(

A<w = LPexe <0

= & Pr(X <a®) = fx(a%0% k) - |pa®|

_ a® o] fa® rl a® 1 o (a ot 0’
- Tl (5) w5l G) e G) )

which is equivalent to the generalized gamma probability density function (15), Wierelenotes the
gamma function and, «, ¢ are the three parameters of the generalized gamma distribution in our context
(a > 0 can be arbitrarily close to zero).

The ordinary logistic diffusion of a variabl¥ follows the stochastic process

dX(¢) = [a—BX ()] X(¢)dt + 5 X(t)dW(t)  for X(t) >0, (A.2)

wherea, 3,5 > 0 are parameterg,denotes timelV (¢) is the Wiener process (standard Brownian motion)
and a reflection ensures thatt) > 0. The stationary distribution of this process (the limiting distribution
of X = X (o00) = limy_, X (¢)) is known to be an ordinary gamma distribution (Leigh 1968):

_ 1 |1 /z\~—1 T
Fx(@:0.m) = g5 9_‘ (5) exp{—g} for x>0, (A.3)
asin (A.1) with
) = %/(28) >0, (A.4)
kK = 2a/?—1>0

under the restrictioa > 52/2. The ordinary logistic diffusion can also be expressed in terms of infinitesi-
mal parameters as

dX(t) = pux (X)) dt + ox (X () dW(t)  for X(t) >0,

where
px(X)=(a—-FX)X and o%(X)=35%X2
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Now consider the diffusion of the transformed variallig) = X (¢)/¢. In general, a strictly monotone
transformationd = g(X) of a diffusion X is a diffusion with infinitesimal parameters

pa(4) = 504 (X)g"(X) + ux (X)g'(X) and o4(4) = 0% (X)g(X)?

(see Karlin and Taylor 1981, Section 15.2, Theorem 2.1). Applying this general result to the specific mono-
tone transformatiosl = X'/ yields thegeneralized logistic diffusion:

dA(t) = [a - 5A(t)ﬂ A dt+ oA dW () for  A(t) > 0. (A.5)

with the parameters

-

_[1—-¢06* a
At
The term—B3A(t)® now involves a power function and the parameters of the generalized logistic diffusion
collapse to the parameters of the ordinary logistic diffusionffer 1.
We infer that the stationary distribution df(co) = lim;_,, A(¢) is a generalized gamma distribution
by (15) and by the derivations above:

(A.6)

, o=

ol Q

A 1 Jo|fa or—1 a\?
fala;0,k,¢) = % i <é) exp {— (é) } for = >0,
with
) = 8 =[5%/2B))"/° =[50/ (28))/* > 0,
ko= 2a/5%—1=2a/c*—1]/¢ >0 (A7)

by (A.4) and (A.6).

Existence of a non-degenerate stationary distribution djth > 0 circumscribes how the parameters
of the diffusiona, 3, o and¢ must relate to each other. A strictly positi#émplies that signg) = sign(¢).
Second, a strictly positive implies that sign¢ — 02/2) = sign(g). The latter condition is closely related
to the requirement that absolute advantage neither collapse nor explode. If the level elasticity of dissipation
¢ is strictly positive ¢ > 0) then, for the stationary probability densify (-) to be non-degenerate, the
offsetting constant drift parameter needs to strictly exceed the variance of the stochastic innovations:
a € (02/2,00). Otherwise absolute advantage would “collapse” as arbitrarily much time passes, implying
industries die out. 1f5 < 0 then the offsetting positive drift parameiemeeds to be strictly less than the
variance of the stochastic innovatiors: (—oo, 02 /2); otherwise absolute advantage would explode.

Our preferred parametrization (16) of the generalized logistic diffusion in Lemma 1 is

dt + o dWA (1)

~

ddis(t)  o® | Au(t)? -1
Auty 2|

T2 ¢

for real parameters, ¢, 0. That parametrization can be related back to the parameters in (A.5) by setting
a = (6%2/2) + B and B = no?/(2¢). In this simplified formulation, the no-collapse and no-explosion
conditions are satisfied for the single restriction that 0. The reformulation in (16) also clarifies that one
can view our generalization of the drift tefid;, (1) — 1]/¢ as a conventional Box-Cox transformation of
Ay(t) to model the level dependence.
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The non-degenerate stationary distribution accommodates both the log normal and the Pareto distribu-
tion as limiting cases. Whesn — 0, both« and 5 tend to infinity; if 8 did not tend to infinity, a drifting
random walk would result in the limit. A stationary log normal distribution requires dhi@ — 1, so
a — oo at the same rate with — oo as¢ — 0. For existence of a non-degenerate stationary distribution,
in the benchmark case with — 0 we needl/a — 0 for the limiting distribution to be log normal. In
contrast, a stationary Pareto distribution with shape pararpeteuld require thaty = (2 — p)o?/2 as
¢ — 0 (see e.g. Crooks 2010, Table 1; proofs are also available from the authors upon request).

B Trend Identification: Proof of Proposition 1

First, consider a random variablé which has a gamma distribution with scale paramétand shape
parametek. For any powern € N we have

E[ln(X")] = /0 h In(a") (H);

n oo

= nln0+/ In(2)z" e *dz
o) fy
n 0 [

_ Inéd e v rk—1 —zd

K +F(/-f)@/{/o “

I (k)

= nln@—#—nr(m)

wherel”(x)/I'(k) is the digamma function.

From Appendix A (Lemma 1) we know that raising a gamma random variable to the pgwereates
a generalized gamma random variab{é/? with shape parameters and ¢ and scale parametét/?.
Therefore
In(0) + I (k) /T'(x)

¢

This result allows us to identify the country specific stochastic tr€n@).

Forflis(t) has a generalized gamma distribution acridss any givens andt with shape parametets
andn/¢* and scale parametép?/n)'/? we have

Est [ln flis(t)} L F'<;7/¢2>/ L(n/¢)

From definition (14) andi,,(t) = Ay, (t)/Z,(t) we can infer thaE[In A;,(t)] = E[In As(t)] — In Z4(2).

Re-arranging and using the previous resultifin A, (t) | s, t] gives

In(¢?/n) +T'(n/¢*)/T(n/?) }
o

E [In(x"/%)] = ;E In X] =

@wzm{MM%w%

as stated in the text.
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C Pearson-Wong Process: Proof of Proposition 2

For a random variabl& with a standard logistic diffusion (the = 1 case), the Bernoulli transformation

1/X maps the diffusion into the Pearson-Wong family (see e.g. Prajneshu 1980, Dennis 1989). We follow
up on that transformation with an additional Box-Cox transformation and apply) = [A;s(t)~¢ —1]/¢

to comparative advantage, as stated in (21). Défiffg(t) = —W/(t). ThenA,.” = ¢Bi(t) + 1 and, by

Ito’s lemma,

dgis(t) — d(‘W)

)
= —Ai )0t (722 (1 - ’S(T — 1) Ass(t) 0t + oAz (£) dWA (1)
* %w + 1) Ay (1) 20 Ags (1) dit
(1Y Ay-e L -6 g 1 O i ()%
-z <1+¢) Aunlt)® ¢] dt — 0 Aus(t) WD) + T (0 + 1) Aun(t)
_ o [(n i (¢ _ 1 — g A ()¢ dWA
= -5 _<¢ —q5> Ags(t) ¢] dt — 0 Ais (1) AW (1)
o [(n A n 3 B
= - (¢ - ¢> (¢Bis(t) + 1) — ¢] di+ o (¢Bis(t) + 1) dWig(t)
o? . A > > 5
= -5 (1= ¢°) Bis(t) —¢] dt+a\/¢23is(t)2+2¢3is<t) + LW (t).

The mirror diffusionBiS(t) is therefore a Pearson-Wong diffusion of the form:

dBis(t) = —q(Bis(t) — B)dt+ \/QQ(GBz‘s(t)Q +bBia(t) + ¢) AW (2)

whereq = (1 — ¢*)0*/2, B = 0°$/(29), a = ¢°0%/(29), b = ¢ /q, andc = o? /(2q).

To construct a GMM estimator based on this Pearson-Wong representation, we apply results in Forman
and Sgrensen (2008) to construct closed form expressions for the conditional moments of the transformed
data and then use these moment conditions for estimation. This technique relies on the convenient structure
of the Pearson-Wong class and a general result in Kessler and Sgrensen (1999) on calculating conditional
moments of diffusion processes using the eigenfunctions and eigenvalues of the diffusion’s infinitesimal
generatop?

A Pearson-Wong diffusion’s drift term is affine and its dispersion term is quadratic. Its infinitesimal
generator must therefore map polynomials to equal or lower order polynomials. As a result, solving for
eigenfunctions and eigenvalues amounts to matching coefficients on polynomial terms. This key observation
allows us to estimate the mirror diffusion of the generalized logistic diffusion model and to recover the
generalized logistic diffusion’s parameters.

3%For a diffusion
AX(t) = px (X (1)) dt + ox (X (1) dWX (B)

the infinitesimal generator is the operator on twice continuously differentiable fungtidefined byA(f)(x) = px(z)d/dz +
%ax (x)? d*/dz?. An eigenfunction with associated eigenvalue 0 is any function’ in the domain of4 satisfyingAh = Ah.

43



Given an eigenfunction and eigenvalue pdit, \,) of the infinitesimal generator aB;,(t), we can
follow Kessler and Sgrensen (1999) and calculate the conditional moment of the eigenfunction:

E [ Bis(t + A) | Bis(t) | = exp DAt} h(Bis(8)). (C.8)

Since we can solve for polynomial eigenfunctions of the infinitesimal generatd; ©f) by matching
coefficients, this results delivers closed form expressions for the conditional moments of the mirror diffusion
for Bis(t).

To construct the coefficients of these eigen-polynomials, it is useful to consider the case of a general
Pearson-Wong diffusiotX (¢). The stochastic differential equation governing the evolutiotX ¢f) must
take the form:

dX(t) = —q(X(t) — X) + /2(@X ()2 + bX (t) + )T (k) /T (k) dWX (1),

A polynomialp, (z) = Z:;:O Tn,mx™ IS an eigenfunction of the infinitesimal generator of this diffusion if
there is some associated eigenvalye# 0 such that

n n n
- X) Z 7rn7mm:cm_1 + 9(ax2 + bz + ¢) Z Tn,mm(m — 1)gcm_2 =\, Z TnmT

m=2

We now need to match coefficients on terms.

From thez™ term, we must havg,, = —n[l — (n — 1)a]q. Next, normalize the polynomials by setting
Tm,m = 1 and definer,, ,,+1 = 0. Then matching coefficients to find the lower order terms amounts to
backward recursion from this terminal condition using the equation

Tn,m =

b k.
miﬂﬂn’mﬂ + miﬂmmﬁ (C.9)
Am — Gp m — On
with a,,, = m[l — (m — 1)alq, by, = m[X + (m — 1)b]q, andc,, = m(m — 1)cq. Focusing on polynomials
with order ofn < (1 4 1/a)/2 is sufficient to ensure that,, # a,, and avoid division by zero.
Using the normalization that, ,, = 1, equation (C.8) implies a recursive condition for these conditional
moments:

E[X(t+A)")|X(t) = 2] = exp{—anA} ) mpmaz™ Z TnmB [X(t+A)™|X(t) = 2].

We are guaranteed that these moments exist if we restrict ourselves to theé fir¢t + 1/a)/2 moments.

To arrive at the result in the second part of Proposition 2, set the parameigrs=as?(n — ¢2)/2,
Xo=¢/(n— %), as = ¢*/(n — ¢?), bs = 2¢/(n — ¢?), andcs = 1/(n — ¢*). From these parameters,
we can construct eigenvalues and their associated eigenfunctions using the recursive condition (C.9). These
coefficients correspond to those reported in equation (22).

In practice, it is useful to work with a matrix characterization of these moment conditions by stacking
the first V- moments in a vector;(t):

B [Yio(t + A) | Bis(t) | = AA) T Vi (1) (C.10)
with Yis(t) = (1, Bis(t), ..., Bis(t)M) and the matriced (1) = diage~®'%,e %t ... e ®Mt) andIl =
(m1, 72, ar), whereyrm = (Tm,0s- -+ s Tmm, 0,...,0) foreachm = 1,..., M. In ourimplementation
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of the GMM criterion function based on forecast errors, we work with the forecast errors of the linear
combinationlII - Y4(¢) instead of the forecast errors fb,(¢). Either estimator is numerically equivalent
since the matridl is triangular by construction, and therefore invertible.

D Connection to Endogenous Growth Theory

Eaton and Kortum (1999, 2010) provide a stochastic foundation for Fréchet distributed productivity. Their
fundamental unit of analysis is an idea for a new variety. An idea is a blueprint to produce a variety of good
1 with efficiencyq (in a source country). Efficiency is the amount of output that can be produced with

a unit of input when the idea is realized, and this efficiency is common to all countries where the variety
based on the idea is manufactured. Suppose an idea’s efficjesape realization of a random variable

@ drawn independently from a Pareto distribution with shape pararfieerd location parameter (lower
bound)g.40 Suppose further that ideas for godarrive in continuous time at momentaccording to a

(non-homogeneous) Poisson process with a time-dependent rate parameter norma}li‘zgeR,-th). In
Eaton and Kortum (2010, ch. 4), the rate parameter is a deterministic function of continuous time. In future
empirical implementation, we can also specify a stochastic process for the rate parameter, giving rise to a
Cox process for idea generation.

In this setup, the arrival rate of ideas with an efficiency of at I64&} > ¢) is % R;s(t). If there is no
forgetting, then the measure of idéBg(¢) expands continuously and, at a momerit will have reached a
level .

Ty(t) = / R(r)dr.
—o

As a consequence, at mometie number of ideas about gopdith efficiencyQ >  is distributed Poisson
with parameter;—%T;,(t). Moreover, the productivity = max{g} of the most efficient idea at moment
t has an extreme value Fréchet distribution with the cumulative distribution fungtidn; 7;s(¢), 6;) =
exp{—T;s(t) g%}, whereT;(t) = gis(t)(’i (Eaton and Kortum 2010, ch. 4). In Section 2 we suppressed
time dependency ojl.s to simplify notation.

Similar to Grossman and Helpman (1991), we can specify a basic differential equation for the generation
of new ideas:

dTiS(t) = Rs (t) = giS(t))‘iS(t)XLiS(t)7 (D-ll)

where¢;s(t) is research productivity in country-industiy, including the efficiency of exploration in the
non-manufacturing sector and the efficiency of innovation in manufactukint) = L7 (t)/Lis(t) is the
fraction of employment in country-industfy devoted to research (exploration or innovation), the parameter
x € (0,1) reflects diminishing returns to scale (wherea$ = 1 in Grossman and Helpman 1991) and
L;s(t) is total employment in country-industiy at moment.

The economic value of an idea in source countiy the expected profit;;(¢) from its global expected
sales in industry. Given the independence of efficiency draws, the expected prgfit) is equal to the
total profitlls(¢) generated in source countslg industry: relative to the current measure of idégs(t):

IL(t)  6:;Xis(t) & ws(t)LE(D)

Wis(t):Ti(t)_ Tis(t)  1—=08 Tis(t)

whereX;,(t) = >, Xisq(t) are global sales (exporEd,;ﬁS X;sa plus domestic sale¥ ;) andd; is the

“*The Pareto CDF i$ — ((j/g“)‘ei. Eaton and Kortum (1999) speak of the “quality of an idea” when they refer to its efficiency.
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fraction of industry-wide profits in industry-wide sales (for a related derivation see Eaton and Kortum 2010,
ch. 7). Industry-wide expected profits vary by the type of competition. Under monopolistic competition,
a CES elasticity of substitution in demang and the Pareto shape parameter of efficiehaynply §; =
(o0; — 1)/[0;04] (Eaton and Kortum 2010, ch. 5). The final step follows because the wage bill of labor
employed in production must be equal to the sales not paid out as ptefit9Z% (t) = (1 — §;) Xis(t).

In equilibrium, the CES demand system implies a well defined price idjéX for the economy as a
whole, so the real value of the idea at any future dai®m;s(7)/Ps(7) and, for a fixed interest rate the
real net present value of the idea at momeist

Vis(t) > is(T)
= /t expl—r(r — D) 2 o

The exact price indexes in a multi-industry and multi-country equilibrium remain to be derived (a single-
industry equilibrium is derived in Eaton and Kortum 2010, ch. 5 and 6). To illustrate the optimality condition
driving endogenous growth, we can consitfen(t) as given but we note that it will be a function Bf;(¢)
in general.

Each idea has a nominal valuelgf(¢), so the total value of research outpugig(t) \is ()X L;s(t) Vis(t)
at moment, and the marginal product of engaging an additional worker in reseax@h,(#) \is ()X~ Vs ().
A labor market equilibrium with some research therefore requires that

Xéis (t)vis (t) ) ﬁ )

Ws

Xis(DNis(O)X T WVig(t) =ws = Nis(t) = <

The exploration of new ideas in non-manufacturing and the innovation of products in manufacturing there-
fore follow the differential equation

by (D.11). The nominal value of an idé&&;(¢) is a function ofT;4(¢) in general, so this is a non-degenerate
differential equation. Eaton and Kortum (2010, ch. 7) derive a balanced growth path for the economy in
the single-industry case. By making research producti#it{t) stochastic, we can generate a stochastic
differential equation for the measure of ideBs(t) and thus the Fréchet productivity positign (t) =

T;s ()95

E Classifications and Additional Evidence

In this appendix, we report country and industry classifications, as well as additional evidence to complement
the reported findings in the text.

E.1 Classifications

Our empirical analysis requires a time-invariant definition of less developed countries (LDC) and industri-
alized countries (non-LDC). Given our data time span of more then four decades (1962-2007), we classify
the 90 economies, for which we obtain exporter capability estimates, by their relative status over the entire
sample period.
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In our classification, there are 2®n-LDC Australia, Austria, Belgium-Luxembourg, Canada, China
Hong Kong SAR, Denmark, Finland, France, Germany, Greece,Ireland, Israel, Italy, Japan, Kuwait, Nether-
lands, New Zealand, Norway, Oman, Portugal, Saudi Arabia, Singapore,Spain, Sweden, Switzerland, Trini-
dad and Tobago, United Kingdom, United States.

The remaining 62 countries atd®C: Algeria, Argentina, Bolivia, Brazil, Bulgaria, Cameroon, Chile,
China, Colombia, Costa Rica, Cote d’'lvoire, Cuba, Czech Rep., Dominican Rep., Ecuador, Egypt, El Sal-
vador, Ethiopia, Ghana, Guatemala, Honduras, Hungary, India, Indonesia, Iran, Jamaica, Jordan, Kenya,
Lebanon, Libya, Madagascar, Malaysia, Mauritius, Mexico, Morocco, Myanmar, Nicaragua, Nigeria, Pak-
istan, Panama, Paraguay, Peru, Philippines, Poland, Korea Rep., Romania, Russian Federation, Senegal,
South Africa, Sri Lanka, Syria, Taiwan, Thailand, Tunisia, Turkey, Uganda, United Rep. of Tanzania,
Uruguay, Venezuela, Vietnam, Yugoslavia, Zambia.

We split the industries in our sample by broad sector. The manufacturing sector includes all industries
with an SITC one-digit code between 5 and 8. The non-manufacturing merchandise sector includes indus-
tries in the agricultural sector as well industries in the mining and extraction sectors and spans the SITC
one-digit codes from O to 4.

E.2 Additional evidence

Table Al shows the top two products in terms of normalized log absolute advahtatye for 28 of the

90 exporting countries, using 1987 and 2007 as representative years. To obtain a measure of comparative
advantage, we normalize log absolute advantage by its country meal;; — (1/1) Zf/ In Ay . The

country normalization of log absolute advantagél;.; results in a double log difference of export capability
k;ss—a country’s log deviation from the global industry mean in export capability minus its average log
deviation across all industries.

Table A2 presents estimates of the decay equation (10) for the period 1984-2007 using data from the
SITC revision 2 sample. This recent sample allows us to perform regressions for log absolute advantage and
the log RCA index at the two, three and four-digit level. Estimated decay rates are comparable to those in
Table 1, which uses data for the full period 1962-2007 at the level of 135 STIC three-digit industries.

Figures Al, A2andA3 extendFigure 2 in the text and plot, for 28 countries in 1967, 1987 and 2007,
the log number of a source countgls industries that have at least a given level of absolute advantage
in yeart against that log absolute advantage laweli,.; for industriesi. The figures also graph the fit
of absolute advantage in the cross section to a Pareto distribution and to a log normal distribution using
maximum likelihood, where each cross sectional distribution is fit separately for each country in each year
(such that the number of parameters estimated equals the number of parameters for a distributidyer
of countriesx number of years).

To verify that the graphed cross sectional distributionBigures A1, A2andA3 are not a byproduct
of specification error in estimating export capabilities from the gravity model, we repeat the plots using the
revealed comparative advantage index by Balassa (196gures A4, A5 and A6 plot, for the same 28
countries in 1967, 1987 and 2007, the log number of a source cosfatigdustries that have at least a
given level of revealed comparative advantade,/ > -, Xis)/ (>, Xis/ D i > Xirs) in yeart against
that comparative advantage level for industrie¥he figures also graph the fit of the revealed comparative
advantage index in the cross section to a log normal distribution using maximum likelihood separately for
each country in each year.

Figures A7, A8BandA9 extendFigure 4 in the text and plot, for 28 countries in 1967, 1987 and 2007, the
observed log number of a source courtiy/industries that have at least a given level of absolute advantage
in yeart against that log absolute advantage ldweli;.; for industriesi. This raw data plot is identical
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Table Al:Top Two Industries by Normalized Absolute Advantage

Country 1987 2007 Country 1987 2007
Argentina Maize, unmilled 5.13 Maize, unmilled 5.50 Mexico Sulphur 3.73 Alcoholic beverages 3.97
Animal feed 3.88 Oil seed 461 Crude minerals 3.26 Office machines 3.82
Australia Wool 4.15 Cheese & curd 3.25 Peru Metal ores & conctr.  4.24 Metal ores & conctr. 6.25
Jute 3.83 Fresh meat 3.20 Animal feed 4.03 Coffee 4.60
Brazil Coffee 3.34 Iron ore 5.18 Philippines Vegetable oils & fats  3.81 Office machines 441
Iron ore 3.21 Fresh meat 4.42 Pres. fruits & nuts 3.50 Electric machinery 3.51
Canada Sulphur 4.04 Wheat, unmilled 5.13 Poland Barley, unmilled 5.68 Furniture 3.07
Pulp & waste paper 3.36 Sulphur 3.31 Sulphur 3.35 Glassware 2.74
China Explosives 7.05 Sound/video recorders 4.93 Korea Rep. Radio receivers 5.51 Television receivers 6.06
Jute 4.24 Radio receivers 4.65 Television receivers 5.37 Telecomm. equipment 5.11
Czech Rep. Glassware 4.05 Glassware 4.17 Romania Furniture 3.55 Footwear 3.49
Prep. cereal & flour 3.68 Road vehicles 3.58 Fertilizers, manuf. 2.73 Silk 3.15
Egypt Cotton 4.52 Fertilizers, crude 4.45 Russia Pulp & waste paper 5.16 Animal oils & fats 8.32
Textile yarn, fabrics 2.90 Rice 3.91 Radioactive material 5.02 Fertilizers, manuf. 4.54
France Electric machinery 3.44 Oth. transport eqpmt. 3.31 South Africa Stone, sand & gravel  3.92 Iron & steel 4.17
Alcoholic beverages 3.39 Alcoholic beverages 3.15 Radioactive material  3.65 Fresh fruits & nuts 3.47
Germany Road vehicles 3.95 Road vehicles 3.10 Taiwan Explosives 441 Television receivers 5.18
General machinery 3.89 Metalworking machinery  2.70 Footwear 4.39 Office machines 5.01
Hungary Margarine 3.19 Telecomm. equipment 4.15 Thailand Rice 4.81 Rice 492
Fresh meat 2.76 Office machines 4.08 Fresh vegetables 4.08 Natural rubber 4.50
India Tea 4.20 Precious stones 3.86 Turkey Fresh vegetables 3.48 Glassware 3.30
Leather 3.90 Rice 3.61 Tobacco unmanuf. 3.41 Textile yarn, fabrics 3.20
Indonesia Natural rubber 5.10 Natural rubber 5.26 United States  Office machines 3.96 Oth. transport eqpmt. 3.46
Improved wood 4.74 Sound/video recorders 4.90 Oth. transport eqpmt.  3.25 Photographic supplies 2.60
Japan Sound/video recorders  6.28 Sound/video recorders 5.90 United Kingd. Measuring instrmnts.  3.20 Alcoholic beverages 3.26
Road vehicles 6.08 Road vehicles 5.63 Office machines 3.15 Pharmaceutical prod. 3.12
Malaysia Natural rubber 6.19 Radio receivers 5.78 Vietnam Cereal meals & flour  5.34 Animal oils & fats 10.31
Vegetable oils & fats 4.85 Sound/video recorders 5.03 Jute 5.14 Footwear 7.02

Source: WTF (Feenstra et al. 2005, updated through 2008) for 135 time-consistent industries in 90 countries from 1962-2007.
Note: Top two industries for 28 of the 90 countries in 1987 and 2007 in terms of normalized log absolute advantage, relative to the couhtry,mearfl/I) Zf, In A gy



Table A2: DECAY REGRESSIONS FORCOMPARATIVE ADVANTAGE AT VARYING LEVELS OFINDUSTRY

AGGREGATION

Exporter capabilityt

Balassa RCAn X

SITC aggregate 4 digit 3 digit 2 digit 4 digit 3 digit 2 digit
@) 2) 3 4 ®) (6)
Panel A: Full sample
Decay ratep -0.365 -0.241 -0.188 -0.323 -0.288 -0.256
(0.034y* (0.021y* (0.020y* (0.014y* (0.014y* (0.015)*
Dissipation rate; 0.119 0.122 0.125 0.113 0.130 0.157
(0.009y* (0.009y* (0.012y* (0.004y* (0.005)* (0.008)*
Innovation intensity2 0.766 0.451 0.333 0.693 0.523 0.377
(0.035y* (0.012y* (0.008y* (0.013y* (0.010y* (0.008)*
Obs. 142,664 61,280 19,815 146,644 61,577 19,815
Adj. R? 0.142 0.142 0.160 0.121 0.129 0.132
Panel B: LDC exporters
Decay ratep -0.503 -0.326 -0.236 -0.369 -0.336 -0.296
(0.045y* (0.032y* (0.028y* (0.017y* (0.016)* (0.016y*
Dissipation rate) 0.113 0.122 0.121 0.099 0.115 0.138
(0.007y* (0.010y* (0.013y* (0.004y* (0.005)* (0.007y*
Innovation intensity2 1.235 0.646 0.446 0.927 0.711 0.508
(0.086)* (0.027y* (0.016y* (0.022y* (0.016)* (0.012y*
Obs. 79,325 37,918 13,167 81,963 38,095 13,167
Adj. R? 0.168 0.156 0.165 0.132 0.136 0.137
Panel C: Non-manufacturing industries
Decay ratep -0.530 -0.309 -0.251 -0.334 -0.287 -0.257
(0.046)* (0.027y* (0.026y* (0.015y* (0.015y* (0.015y*
Dissipation rate) 0.095 0.111 0.146 0.086 0.114 0.157
(0.005y* (0.008y* (0.013y* (0.003y* (0.005y* (0.008)*
Innovation intensityy? 1.591 0.665 0.397 0.945 0.597 0.379
(0.118y* (0.024y* (0.014y* (0.019y* (0.013y* (0.009y*
Obs. 37,645 17,985 7,482 40,472 18,236 7,482
Adj. R? 0.176 0.133 0.133 0.124 0.140 0.164

Source: WTF (Feenstra et al. 2005, updated through 2008) for two-digit (61 industries), three-digit (227 industries), and four-digit
(684 industries) sector definitions from 1984-2007, and CEPIl.org.

Note: Reported figures for five-year decadalized changes. Variables are OLS-estimated gravity measures of exporticapability
by (5) and the log Balassa index of revealed comparative advahtage, = In(Xse/ S, Xiare) /(X Xirar/ S0 S0 Xirart)-

OLS estimation of the decadal decay ratieom

kis,t+10 — Kkist = pkist + it + Ost + Eist,

conditional on industry-year and source country-year effégtand d,. for the full pooled sample (panel A) and subsamples
(panels B and C). The implied dissipation ratand innovation intensity? are based on the decadal decay rate estimaied

the estimated variance of the decay regression resigfubly (13). Less developed countries (LDC) as listed in Appendix E.
Nonmanufacturing merchandise spans SITC sector codes 0-4. Standard errors (reported below coeffigiaares)cfostered by
country and fom ando are calculated using the delta methdtjndicates significance at the 1% level.
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to that inFigures Al throughA3 and shown for the same 28 countries and years as before. In addition,
Figures A7 through A9 now plot the implied stationary distribution based on the time series diffusion
estimates in Table 2 for the full sample (column 1), using the estimates of the two shape relevant global
diffusion parameters (and¢), which determine the curvature of the implied single stationary distribution

of comparative advantagé;; (throughx and¢), and the recovered estimates of the unknown country-wide
stochastic trend<’s;, which determine the horizontal position of the stationary distribution of observed
absolute advantagé;;.
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Figure Al:Cumulative Probability Distribution of Absolute Advantage for 28 Countries in 1967
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Source:WTF (Feenstra et al. 2005, updated through 2008) for 135 time-consistent industries in 90 countries from 1962-2007 and CEPIl.org; gravity-based measures of absolute
advantage (7).

Note: The graphs show the frequency of industries (the cumulative probability’s (a) times the total number of industrids= 135) on the vertical axis plotted against the

level of absolute advantage(such thatd,,: > a) on the horizontal axis. Both axes have a log scale. The fitted Pareto and log normal distributions for absolute adyantage

are based on maximum likelihood estimation by countiy yeart = 1967.
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Figure A2: Cumulative Probability Distribution of Absolute Advantage for 28 Countries in 1987
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Source:WTF (Feenstra et al. 2005, updated through 2008) for 135 time-consistent industries in 90 countries from 1962-2007 and CEPIl.org; gravity-based measures of absolute
advantage (7).

Note: The graphs show the frequency of industries (the cumulative probability’s (a) times the total number of industrids= 135) on the vertical axis plotted against the

level of absolute advantage(such thatd,,: > a) on the horizontal axis. Both axes have a log scale. The fitted Pareto and log normal distributions for absolute adyantage

are based on maximum likelihood estimation by countiy yeart = 1987.
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Figure A3: Cumulative Probability Distribution of Absolute Advantage for 28 Countries in 2007
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Source:WTF (Feenstra et al. 2005, updated through 2008) for 135 time-consistent industries in 90 countries from 1962-2007 and CEPIl.org; gravity-based measures of absolute
advantage (7).

Note: The graphs show the frequency of industries (the cumulative probability’s (a) times the total number of industrigs= 135) on the vertical axis plotted against the

level of absolute advantage(such thatd,;: > a) on the horizontal axis. Both axes have a log scale. The fitted Pareto and log normal distributions for absolute adyantage

are based on maximum likelihood estimation by coustity yeart = 2007.
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Figure A4:Cumulative Probability Distribution of Absolute Advantage for 28 Countries in 1967
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Czech Rep. Egypt
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SourceWTF (Feenstra et al. 2005, updated through 2008) for 135 time-consistent industries in 90 countries from 1962-2007.
Note: The graphs show the frequency of industries (the cumulative probabiity’y (£) times the total number of industrids= 135) on the vertical axis plotted against the

Balassa index of revealed comparative advantiige (X;./ Yoo X))/ oy Xirs/ > > Xirer) On the horizontal axis. Both axes have a log scale. The fitted log normal
distribution is based on maximum likelihood estimation by coustityyeart = 1967.
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Figure A5: Cumulative Probability Distribution of Absolute Advantage for 28 Countries in 1987

Argentina Australia Brazil Canada China Czech Rep. Egypt

Hungary

SourceWTF (Feenstra et al. 2005, updated through 2008) for 135 time-consistent industries in 90 countries from 1962-2007.
Note: The graphs show the frequency of industries (the cumulative probabiity’y (£) times the total number of industrids= 135) on the vertical axis plotted against the

Balassa index of revealed comparative advantiige (X;./ Yoo X))/ oy Xirs/ > > Xirer) On the horizontal axis. Both axes have a log scale. The fitted log normal
distribution is based on maximum likelihood estimation by coustityyeart = 1987.
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Figure A6: Cumulative Probability Distribution of Absolute Advantage for 28 Countries in 2007
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SourceWTF (Feenstra et al. 2005, updated through 2008) for 135 time-consistent industries in 90 countries from 1962-2007.
Note: The graphs show the frequency of industries (the cumulative probabiity’y (£) times the total number of industrids= 135) on the vertical axis plotted against the

Balassa index of revealed comparative advantiige (X;./ Yoo X))/ oy Xirs/ > > Xirer) On the horizontal axis. Both axes have a log scale. The fitted log normal
distribution is based on maximum likelihood estimation by coustityyeart = 2007.



Figure A7:Global Diffusion Implied and Observed Cumulative Probability Distributions of Absolute Advantage in 1967
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Source:WTF (Feenstra et al. 2005, updated through 2008) for 135 time-consistent industries in 90 countries from 1962-2007 and CEPIl.org; gravity-based measures of absolute
advantage (7).

Note: The graphs show the observed and predicted frequency of industries (the cumulative prdbabfifya) times the total number of industrids= 135) on the vertical

axis plotted against the level of absolute advantagguch thatd;.: > a) on the horizontal axis, for the year= 1967. Both axes have a log scale. The predicted frequencies

are based on the GMM estimates of the comparative advantage diffusion (17) in Table 2 (pararaatésé: in column 1) and the inferred country-specific stochastic trend
componentn Z,; from (19), which horizontally shifts the distributions but does not affect their shape.
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Figure A8:Global Diffusion Implied and Observed Cumulative Probability Distributions of Absolute Advantage in 1987
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Source:WTF (Feenstra et al. 2005, updated through 2008) for 135 time-consistent industries in 90 countries from 1962-2007 and CEPIl.org; gravity-based measures of absolute
advantage (7).

Note: The graphs show the observed and predicted frequency of industries (the cumulative prdbabfifya) times the total number of industrids= 135) on the vertical

axis plotted against the level of absolute advantagguch thatd;.: > a) on the horizontal axis, for the year= 1987. Both axes have a log scale. The predicted frequencies

are based on the GMM estimates of the comparative advantage diffusion (17) in Table 2 (pararaatésé: in column 1) and the inferred country-specific stochastic trend
componentn Z,; from (19), which horizontally shifts the distributions but does not affect their shape.
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Figure A9:Global Diffusion Implied and Observed Cumulative Probability Distributions of Absolute Advantage in 2007
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Source:WTF (Feenstra et al. 2005, updated through 2008) for 135 time-consistent industries in 90 countries from 1962-2007 and CEPIl.org; gravity-based measures of absolute
advantage (7).

Note: The graphs show the observed and predicted frequency of industries (the cumulative prdbabfifya) times the total number of industrids= 135) on the vertical

axis plotted against the level of absolute advantagguch thatd;.: > a) on the horizontal axis, for the year= 2007. Both axes have a log scale. The predicted frequencies

are based on the GMM estimates of the comparative advantage diffusion (17) in Table 2 (pararaatésé: in column 1) and the inferred country-specific stochastic trend
componentn Z,; from (19), which horizontally shifts the distributions but does not affect their shape.
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