Discussion of
The Sources of Capital Misallocation
by Jeol David and Venky Venkateswaran

Oleg Itskhoki
Princeton University

AEA Meetings
Philadelphia, 2018
Capital misallocation

- Under certain circumstances, if the planner could statically reallocated capital across plants i, he would equalize:

$$\frac{VA_{it}}{K_{it}} \rightarrow MPK_{it}$$
Capital misallocation

- Under certain circumstances, if the planner could statically reallocated capital across plants i, he would equalize:

$$\frac{VA_{it}}{K_{it}} \rightarrow MPK_{it}$$

- In the data, Hseih and Klenow (2009) wedges:

$$\tau_{it}^K \equiv \log \frac{VA_{it}}{K_{it}}$$

are hugely dispersed across plants within industry-time periods seemingly indicating **misallocation and aggregate TFP loss**
This paper argues that the bulk of Hsieh and Klenow (2009) capital misallocation wedges:

1. cannot be explained by adjustment costs
2. are due to “other” firm-specific factors
3. this is true for both China and the US
This paper argues that the bulk of Hsieh and Klenow (2009) capital misallocation wedges:

1. cannot be explained by adjustment costs
2. are due to “other” firm-specific factors
3. this is true for both China and the US

This sounds to be in seeming direct conflict with Asker, Collard-Wexler and De Loecker (JPE 2014) who argue that:

— an adjustment cost model can explain 80-90 percent of capital misallocation wedges across industries and countries
This paper argues that the bulk of Hsieh and Klenow (2009) capital misallocation wedges:

1. cannot be explained by adjustment costs
2. are due to “other” firm-specific factors
3. this is true for both China and the US

This sounds to be in seeming direct conflict with Asker, Collard-Wexler and De Loecker (JPE 2014) who argue that:

— an adjustment cost model can explain 80-90 percent of capital misallocation wedges across industries and countries

I agree with the authors!
General environment

- Planner’s static allocation goal:

 $$\max U(Q; \xi) \quad \text{s.t.} \quad Q_i = Q_i(K_i, L_i, M_i; A_i)$$

- First order condition

 $$\lambda_i \frac{\partial Q_i}{\partial K_i} = \lambda_K$$

 where λ_i is the shadow value of good i, λ_K is the shadow cost of capital
General environment

• Planner’s static allocation goal:

\[
\max U(Q; \xi) \quad \text{s.t.} \quad Q_i = Q_i(K_i, L_i, M_i; A_i)
\]

• First order condition (violation)

\[
\lambda_i \frac{\partial Q_i}{\partial K_i} = \lambda_K (1 + t^K_i)
\]

where \(\lambda_i \) is the shadow value of good \(i \), \(\lambda_K \) is the shadow cost of capital and \(t^K_i \) is the misallocation wedge
General environment

- Planner’s static allocation goal:

$$\max U(Q; \xi) \quad \text{s.t.} \quad Q_i = Q_i(K_i, L_i, M_i; A_i)$$

- First order condition (violation)

$$\lambda_i \frac{\partial Q_i}{\partial K_i} = \lambda_K (1 + t_i^K)$$

where λ_i is the shadow value of good i, λ_K is the shadow cost of capital and t_i^K is the misallocation wedge

- Note that, in general, t_i^K is not the same as τ_i^K, that is:

$$\frac{VA_i}{K_i} \neq \frac{\lambda_i}{\lambda_K} \frac{\partial Q_i}{\partial K_i}$$
General environment

- Reasons for

\[
\frac{\text{VA}_i}{K_i} \neq \frac{\lambda_i \partial Q_i}{\lambda_K \partial K_i}
\]

1. Output elasticities \(\varepsilon_i^K \) and \(\varepsilon_i^M \) differ across plants
 - differences in technologies and returns to scale
 - non-constant-elasticity technologies

2. Prices that do not reflect marginal values \((P_i/\lambda_i, P_{Ki}/\lambda_K, P_{Mi}/\lambda_M) \), e.g. due to markups or non-CES aggregation

3. Measurement error, including more broadly:
 - mismeasurement of capital due to depreciation, capacity utilization, quality
 - fixed costs and non-variable inputs
 - timing of inputs and output
General environment

- Reasons for

\[
\frac{VA_i}{K_i} \neq \frac{\lambda_i}{\lambda_K} \frac{\partial Q_i}{\partial K_i}
\]

1. Output elasticities ε^K_i and ε^M_i differ across plants
 - differences in technologies and returns to scale
 - non-constant-elasticity technologies

2. Prices that do not reflect marginal values (P_i/λ_i; P_{Ki}/λ_K, P_{Mi}/λ_M), e.g. due to markups or non-CES aggregation

3. Measurement error, including more broadly:
 - mismeasurement of capital due to depreciation, capacity utilization, quality
 - fixed costs and non-variable inputs
 - timing of inputs and output

- How did empirical misallocation literature take off?!
Non-structural look at the data

- Assume value-added production in logs:

\[y_{it} = a_{it} + \gamma[\alpha k_{it} + (1 - \alpha)\ell_{it}] \]

and capital and labor wedges

\[\tau_{it}^k = y_{it} - k_{it} \quad \text{and} \quad \tau_{it}^\ell = y_{it} - \ell_{it} \]

1. “First-best” benchmark (both in level and in changes)

\[y_{it}, k_{it}, \ell_{it} \propto a_{it} \quad \text{and} \quad \tau_{it}^k = \tau_{it}^\ell = 0, \]

2. No adjustment benchmark:

\[\Delta k_{it} = \Delta \ell_{it} = 0 \quad \text{and} \quad y_{it}, \tau_{it}^k, \tau_{it}^\ell \propto a_{it} \]
Non-structural look at the data

US Compustat

Variation in levels (panel):

<table>
<thead>
<tr>
<th></th>
<th>y_{it}</th>
<th>k_{it}</th>
<th>ℓ_{it}</th>
<th>τ_{it}^k</th>
<th>τ_{it}^ℓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{var}(\cdot)$</td>
<td>5.91</td>
<td>5.55</td>
<td>4.40</td>
<td>1.13</td>
<td>0.81</td>
</tr>
<tr>
<td>$\text{corr}(y_{it}, \cdot)$</td>
<td>0.90</td>
<td>0.93</td>
<td></td>
<td>0.28</td>
<td>0.52</td>
</tr>
</tbody>
</table>
Non-structural look at the data

US Compustat

1 Variation in levels (panel):

<table>
<thead>
<tr>
<th></th>
<th>y_{it}</th>
<th>k_{it}</th>
<th>ℓ_{it}</th>
<th>τ_{it}^k</th>
<th>τ_{it}^ℓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{var}(\cdot)$</td>
<td>5.91</td>
<td>5.55</td>
<td>4.40</td>
<td>1.13</td>
<td>0.81</td>
</tr>
<tr>
<td>$\text{corr}(y_{it}, \cdot)$</td>
<td>0.90</td>
<td>0.93</td>
<td>0.28</td>
<td>0.52</td>
<td></td>
</tr>
</tbody>
</table>

2 Contribution of fixed effects:

<table>
<thead>
<tr>
<th></th>
<th>\bar{y}_i</th>
<th>$\bar{\tau}_i^k$</th>
<th>$\bar{\tau}_i^\ell$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>81%</td>
<td>59%</td>
<td>58%</td>
</tr>
</tbody>
</table>

3 Correlated wedges $\text{corr}(\tau_{it}^k, \tau_{it}^\ell) = 0.61$ and $\text{corr}(\bar{\tau}_i^k, \bar{\tau}_i^\ell) = 0.60$
Non-structural look at the data

US Compustat

1 Variation in levels (panel):

<table>
<thead>
<tr>
<th></th>
<th>(y_{it})</th>
<th>(k_{it})</th>
<th>(\ell_{it})</th>
<th>(\tau_{it}^k)</th>
<th>(\tau_{it}^\ell)</th>
</tr>
</thead>
<tbody>
<tr>
<td>var((\cdot))</td>
<td>5.91</td>
<td>5.55</td>
<td>4.40</td>
<td>1.13</td>
<td>0.81</td>
</tr>
<tr>
<td>corr((y_{it}, \cdot))</td>
<td>0.90</td>
<td>0.93</td>
<td>0.28</td>
<td>0.52</td>
<td></td>
</tr>
</tbody>
</table>

2 Contribution of fixed effects:

<table>
<thead>
<tr>
<th></th>
<th>(\bar{y}_i)</th>
<th>(\bar{\tau}_i^k)</th>
<th>(\bar{\tau}_i^\ell)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>81%</td>
<td>59%</td>
<td>58%</td>
</tr>
</tbody>
</table>

3 Correlated wedges
\[\text{corr}(\tau_{it}^k, \tau_{it}^\ell) = 0.61 \] and
\[\text{corr}(\bar{\tau}_i^k, \bar{\tau}_i^\ell) = 0.60 \]

4 Variation in changes (time-series):

<table>
<thead>
<tr>
<th></th>
<th>(\Delta y_{it})</th>
<th>(\Delta k_{it})</th>
<th>(\Delta \ell_{it})</th>
<th>(\Delta \tau_{it}^k)</th>
<th>(\Delta \tau_{it}^\ell)</th>
</tr>
</thead>
<tbody>
<tr>
<td>var((\cdot))</td>
<td>0.25</td>
<td>0.12</td>
<td>0.10</td>
<td>0.21</td>
<td>0.23</td>
</tr>
<tr>
<td>corr((y_{it}, \cdot))</td>
<td>0.12</td>
<td>0.41</td>
<td>0.77</td>
<td>0.82</td>
<td></td>
</tr>
</tbody>
</table>
More specific comments for the authors

1. Test directly the Euler equation for investment

2. More general productivity process:

\[a_{it} = \bar{a}_i + \rho a_{i,t-1} + \mu_{it} \]

3. Hard-to-interpret decomposition:

\[T_{it} = \gamma a_{it} + \chi_i + \varepsilon_{it} \]

4. Markup measurement assumes no misallocation of inputs

5. Technology differences limited to relative capital-labor intensity