Discussion of

Capital Allocation and Productivity in South Europe

by Gopinath, Kalemli-Ozcan, Karabarbounis and Villegas-Sanchez

Oleg Itskhoki
Princeton University

3rd iNET Conference on Macro Externalities
IMF, April 2015
Two big literatures

1. Misallocation literature (Hsieh and Klenow, 2009)
 - Measurement of misallocation in capital and labor across firms
 - Large differences across rich and poor countries
 - Large potential contribution to TFP differences
 - **But**: no evidence in the time series
 (and no exploration of panel data properties of misallocation)

2. Financial frictions literature (Kiyotaki and Moore, 1997)
 - A natural model for thinking about misallocation of capital
 - Baseline framework for modeling Great Recession
 - Strong micro-data implications for patterns of misallocation
 - **But**: no empirical test so far of the macro effect of financial frictions through misallocation
Two big literatures

1. Misallocation literature (Hsieh and Klenow, 2009)
 - Measurement of misallocation in capital and labor across firms
 - Large differences across rich and poor countries
 - Large potential contribution to TFP differences
 - But: no evidence in the time series
 (and no exploration of panel data properties of misallocation)

2. Financial frictions literature (Kiyotaki and Moore, 1997)
 - A natural model for thinking about misallocation of capital
 - Baseline framework for modeling Great Recession
 - Strong micro-data implications for patterns of misallocation
 - But: no empirical test so far of the macro effect of financial frictions through misallocation

3. This paper: happy marriage of the two!
This paper

1. Misallocation is an important driver of \textbf{TFP dynamics}
2. Financial frictions are a likely \textit{cause} of this misallocation
This paper

1 Misallocation is an important driver of TFP dynamics
2 Financial frictions are a likely cause of this misallocation

- Focus: South Europe experience since the Euro
- Stylized facts:
 (a) Large capital inflows in the 2000s, then sudden stop after 2008
 (b) Stagnant (somewhat declining) TFP until 2008, then a drop
 (c) New fact: patterns of capital misallocation track TFP

\[\text{TFP dynamics}\]
Misallocation is an important driver of TFP dynamics. Financial frictions are a likely cause of this misallocation.

Focus: South Europe experience since the Euro

Stylized facts:
(a) Large capital inflows in the 2000s, then sudden stop after 2008
(b) Stagnant (somewhat declining) TFP until 2008, then a drop
(c) New fact: patterns of capital misallocation track TFP

A calibrated model with collateral constraints and adjustment costs can rationalize these facts as a result of:
→ a reduction in interest rate in 1995
→ a tightening of the collateral constraint in 2008 (or second-moment shock)
Misallocation is an important driver of **TFP dynamics**

Financial frictions are a likely **cause** of this misallocation

- Focus: South Europe experience since the Euro

- Stylized facts:
 - (a) Large capital inflows in the 2000s, then sudden stop after 2008
 - (b) Stagnant (somewhat declining) TFP until 2008, then a drop
 - (c) **New fact**: patterns of capital misallocation **track** TFP

- A calibrated model with **collateral constraints** and **adjustment costs** can rationalize these facts as a result of:
 - → a reduction in interest rate in 1995
 - → a tightening of the collateral constraint in 2008
 (or second-moment shock)

- What’s **missing** from the story:
 - (a) Misallocation across sectors: construction vs manufacturing
 - (b) Nominal and real wages inflation
 - (c) Welfare evaluation
Misallocation accounting I

• Complaint about the misallocation literature:
 — We know only about \textit{MRPK} dispersion
 — not about the panel properties of \textit{MRPK} wedges
 — which contain a lot of information about the mechanism
Misallocation accounting I

• Complaint about the misallocation literature:
 — We know only about $MRPK$ dispersion
 — not about the panel properties of $MRPK$ wedges
 — which contain a lot of information about the mechanism

• Panel properties of misallocation wedges in the data:
 1. Firm fixed effects dominate the dispersion of wedges (70%)
 2. Large firms too small and small firms too large (corr of 0.25)
 3. Little evidence of dynamic misallocation: the large constrained firms were large for a long time
 4. In time series, to a large extent output and wedges move together, and inputs move very little
Misallocation accounting I

• Complaint about the misallocation literature:
 — We know only about \(MRPK \) dispersion
 — not about the panel properties of \(MRPK \) wedges
 — which contain a lot of information about the mechanism

• Panel properties of misallocation wedges in the data:
 ① Firm fixed effects dominate the dispersion of wedges (70%)
 ② Large firms too small and small firms too large (\(corr \) of 0.25)
 ③ Little evidence of dynamic misallocation: the large constrained firms were large for a long time
 ④ In time series, to a large extent output and wedges move together, and inputs move very little

• To me this suggestions small relative role for misallocation on the input side (adjustment costs or financial frictions) and large role for either markups or technology differences

• This, however, does not mean that input misallocation is not important for dynamics over time
Misallocation accounting II

• The time-series relationship between capital misallocation and TFP in South Europe is astonishing.

• But the authors can go a lot deeper inside the mechanism at the micro level. For example:
 (a) Basic decompositions:

\[
\text{var}(y - k) = \text{var}(y) + \text{var}(k) - 2\text{corr}(y, k)\sqrt{\text{var}(y)\text{var}(k)},
\]

\[
\text{var}(a + \varphi_L(\ell - k)) = \text{var}(a) + \varphi_L^2\text{var}(\ell - k) + 2\varphi_L\text{cov}(a, \ell - k),
\]

\[
\text{var}(a - \varphi_K(\ell - k)) = \text{var}(a) + \varphi_K^2\text{var}(\ell - k) - 2\varphi_K\text{cov}(a, \ell - k),
\]

Why dispersion in MRPL did not change?

(b) Between vs within dispersion:
— Small vs Large firms
— Financially Constrained vs Unconstrained firms
— Firms with Small vs High wedges

(c) Track the firms that received capital. Who were they?

(d) Can you say more on entry and growth of new firms?

• The model can guide this slicing of the data and these patterns should discipline the modeling choices.
Misallocation accounting II

- The time-series relationship between capital misallocation and TFP in South Europe is astonishing.
- But the authors can go a lot deeper inside the mechanism at the micro level. For example:
 (a) Basic decompositions
 Why dispersion in MRPL did not change?
 (b) Between vs within dispersion:
 — Small vs Large firms
 — Financially Constrained vs Unconstrained firms
 — Firms with Small vs High wedges
Misallocation accounting II

- The time-series relationship between capital misallocation and TFP in South Europe is astonishing.

- But the authors can go a lot deeper inside the mechanism at the micro level. For example:

 (a) Basic decompositions
 Why dispersion in MRPL did not change?

 (b) Between vs within dispersion:
 — Small vs Large firms
 — Financially Constrained vs Unconstrained firms
 — Firms with Small vs High wedges

 (c) Track the firms that received capital. Who were they?

 (d) Can you say more on entry and growth of new firms?

- The model can guide this slicing of the data and these patterns should discipline the modeling choices.
Comments on the model

1. Why such a stylized model of collateral constraint, rather than a standard model with fixed cost?
Comments on the model

1. Why such a stylized model of collateral constraint, rather than a standard model with fixed cost?

2. More flexible parameterization can allow to fit more features of the data.
Comments on the model

1. Why such a stylized model of collateral constraint, rather than a standard model with fixed cost?

2. More flexible parameterization can allow to fit more features of the data

3. Why such a stark choice of moments rather than a GMM with a broader set of moments?
Comments on the model

1. Why such a stylized model of collateral constraint, rather than a standard model with fixed cost?

2. More flexible parameterization can allow to fit more features of the data

3. Why such a stark choice of moments rather than a GMM with a broader set of moments?

4. Entry and other extensive margin decisions?
Comments on the model

1. Why such a stylized model of collateral constraint, rather than a standard model with fixed cost?
2. More flexible parameterization can allow to fit more features of the data
3. Why such a stark choice of moments rather than a GMM with a broader set of moments?
4. Entry and other extensive margin decisions?
5. Why no exogenous labor wedges to mimic the data?
Comments on the model

1. Why such a stylized model of collateral constraint, rather than a standard model with fixed cost?

2. More flexible parameterization can allow to fit more features of the data

3. Why such a stark choice of moments rather than a GMM with a broader set of moments?

4. Entry and other extensive margin decisions?

5. Why no exogenous labor wedges to mimic the data?

6. Why no permanent productivity differences in the baseline?
Why such a stylized model of collateral constraint, rather than a standard model with fixed cost?

More flexible parameterization can allow to fit more features of the data.

Why such a stark choice of moments rather than a GMM with a broader set of moments?

Entry and other extensive margin decisions?

Why no exogenous labor wedges to mimic the data?

Why no permanent productivity differences in the baseline?

Arellano-Bond for productivity estimation