Discussion of

Slicing the Pie: Quantifying the Aggregate and Distributional Effects of Trade

by Simon Galle, Andrés Rodriguez-Clare and Moises Yi

Oleg Itskhoki
Princeton University

JRC 7th Annual Conference
Princeton, 2018
This paper

- The goal: develop a benchmark framework for quantifying gains and losses from trade, including distributional effects
 - Much of trade literature moved away from HO and SF models and lost focus on distributional consequences
 - In particular, the leading quantitative framework, the Ricardian EK model, does not allow for distributional effects
This paper

- The goal: develop a benchmark framework for quantifying gains and losses from trade, including distributional effects
 - Much of trade literature moved away from HO and SF models and lost focus on distributional consequences
 - In particular, the leading quantitative framework, the Ricardian EK model, does not allow for distributional effects

- Ricardian trade model + Roy labor market sorting model
 - Country i has comparative productivity advantage in industry s
 \[
 \text{Frechet}(T_{is}, \theta) \rightarrow \lambda_{ijs} = \frac{T_{is}(\tau_{ij}w_{is})^{-\theta}}{\sum_{\ell} T_{\ell s}(\tau_{\ell j}w_{\ell s})^{-\theta}}
 \]
 - Workers g have comparative advantage in working in sector s
 \[
 \text{Frechet}(A_{igs}, \kappa) \rightarrow \pi_{igs} = \frac{A_{igs}w_{is}^{\kappa}}{\sum_{k} A_{igk}w_{ik}^{\kappa}}
 \]
This paper

• The goal: develop a benchmark framework for quantifying gains and losses from trade, including distributional effects
 — Much of trade literature moved away from HO and SF models and lost focus on distributional consequences
 — In particular, the leading quantitative framework, the Ricardian EK model, does not allow for distributional effects

• Ricardian trade model + Roy labor market sorting model
 — Country i has comparative productivity advantage in industry s
 \[
 \text{Frechet}(T_{is}, \theta) \implies \lambda_{ij} = \frac{T_{is}(\tau_{ij}w_{is})^{-\theta}}{\sum_{\ell} T_{\ell s}(\tau_{\ell j}w_{\ell s})^{-\theta}}
 \]
 — Workers g have comparative advantage in working in sector s
 \[
 \text{Frechet}(A_{igs}, \kappa) \implies \pi_{igs} = \frac{A_{igs}w_{is}^{\kappa}}{\sum_{k} A_{igk}w_{ik}^{\kappa}}
 \]

• A very elegant and tractable formulation
 An obvious model for a textbook to teach economic intuition.
Main insights

- Sharp characterization of group-specific welfare gains:

\[
\Delta \log W_g = \left(-\frac{1}{\theta} \sum_s \omega_s \Delta \log \lambda_s \right) + \left(-\frac{1}{\kappa} \sum_s \omega_s \Delta \log \pi_{gs} \right)
\]

\[= \text{Consumer Gains} \quad \text{and} \quad = \text{Income Gains} \]

- Workers in group \(g\) lose if sectors of their comparative advantage are disadvantaged by trade, a neoclassical story.
Main insights

• Sharp characterization of group-specific welfare gains:

\[
\Delta \log W_g = \left(-\frac{1}{\theta} \sum_s \omega_s \Delta \log \lambda_s \right) + \left(-\frac{1}{\kappa} \sum_s \omega_s \Delta \log \pi_{gs} \right)
\]

= Consumer Gains

= Income Gains

— Workers in group \(g \) lose if sectors of their comparative advantage are disadvantaged by trade, a neoclassical story.

1. More gains than in the baseline EK model if \(\kappa < \infty \)
2. Aggregate welfare depends on group-specific income effects
3. Aggregate welfare can be adjusted for inequality aversion
Main insights

• Sharp characterization of group-specific welfare gains:

\[
\Delta \log W_g = \left(-\frac{1}{\theta} \sum_s \omega_s \Delta \log \lambda_s \right) + \left(-\frac{1}{\kappa} \sum_s \omega_s \Delta \log \pi_{gs} \right)
\]

= Consumer Gains

= Income Gains

— Workers in group \(g \) lose if sectors of their comparative advantage are disadvantaged by trade, a neoclassical story.

1. More gains than in the baseline EK model if \(\kappa < \infty \)
2. Aggregate welfare depends on group-specific income effects
3. Aggregate welfare can be adjusted for inequality aversion

• Potentially large heterogeneity in outcomes within group \(g \)

— How much residual inequality given estimated \(\kappa \) (dual role)
Main insights

• Sharp characterization of group-specific welfare gains:

\[
\Delta \log W_g = \left(-\frac{1}{\theta} \sum_s \omega_s \Delta \log \lambda_s \right) + \left(-\frac{1}{\kappa} \sum_s \omega_s \Delta \log \pi_{gs} \right)
\]

\[= \text{Consumer Gains} \]

\[= \text{Income Gains} \]

— Workers in group \(g \) lose if sectors of their comparative advantage are disadvantaged by trade, a neoclassical story.

1. More gains than in the baseline EK model if \(\kappa < \infty \)
2. Aggregate welfare depends on group-specific income effects
3. Aggregate welfare can be adjusted for inequality aversion

• Potentially large heterogeneity in outcomes within group \(g \)
 — How much residual inequality given estimated \(\kappa \) (dual role)
 — Adjust welfare for residual inequality
 — Are changes in residual inequality consistent with the data?
Skilled vs unskilled

- The paper finds overall gains, which however vary considerably across groups g
 - Groups g in the paper correspond to detailed geography \times two educational bins

- One surprising result is the high correlation (0.87) between the outcomes of high and low skill groups across geographies
Skilled vs unskilled

• The paper finds overall gains, which however vary considerably across groups g
 — Groups g in the paper correspond to detailed geography \times two educational bins

• One surprising result is the high correlation (0.87) between the outcomes of high and low skill groups across geographies

• This seemingly contrasts with the empirical findings of ADH:
 — higher skill workers in affected geographies experience less unemployment and income loss

• What feature of the data ensures this result?
Relationship to the real world

The paper focuses on the long-run distributional effects after the adjustment to trade is complete

— Arguably, the key disruptions empirically are transitory, along the adjustment to trade shocks
— Yet, these transitions can last very long
— What is the right model to use?
Relationship to the real world

1 The paper focuses on the long-run distributional effects after the adjustment to trade is complete
 — Arguably, the key disruptions empirically are transitory, along the adjustment to trade shocks
 — Yet, these transitions can last very long
 — What is the right model to use?

2 What are worker groups g?
 — Why geography is a fixed characteristic of workers?
 — Why worker productivity is geography-specific?
Relationship to the real world

1. The paper focuses on the long-run distributional effects after the adjustment to trade is complete
 - Arguably, the key disruptions empirically are transitory, along the adjustment to trade shocks
 - Yet, these transitions can last very long
 - What is the right model to use?

2. What are worker groups g?
 - Why geography is a fixed characteristic of workers?
 - Why worker productivity is geography-specific?
 - This points to the role of firms, absent in a neoclassical model. Why firms do not move towards workers? Agglomeration.
Relationship to the real world

1. The paper focuses on the long-run distributional effects after the adjustment to trade is complete
 - Arguably, the key disruptions empirically are transitory, along the adjustment to trade shocks
 - Yet, these transitions can last very long
 - What is the right model to use?

2. What are worker groups g?
 - Why geography is a fixed characteristic of workers?
 - Why worker productivity is geography-specific?
 - This points to the role of firms, absent in a neoclassical model.

3. The model features no unemployment and no non-employment, two important margins in the data
A frictional model

- Itskhoki and Helpman (2015): adjustment to trade in a Melitz model with DMP search and matching friction
A frictional model

- With labor search frictions alone, trade shocks create either little unemployment or little income loss.
A frictional model

- With labor search frictions alone, trade shocks create either little unemployment or little income loss

- Two counterfactual features:
 1. If search frictions are large, firms do not fire workers
 2. Free entry forces firm to enter where workers are