International Shocks, Variable Markups and Domestic Prices*

Mary Amiti
Mary.Amiti@NY.FRB.ORG

Oleg Itskhoki
Itskhoki@Princeton.EDU

Jozef Konings
Joep.Konings@KULeuven.BE

January 11, 2019

Abstract

How strong are strategic complementarities in price setting across firms? In this paper, we provide a direct empirical estimate of firms’ price responses to changes in competitor prices. We develop a general theoretical framework and an empirical identification strategy, taking advantage of a new micro-level dataset for the Belgian manufacturing sector. We find strong evidence of strategic complementarities, with a typical firm adjusting its price with an elasticity of 0.4 in response to its competitors’ price changes and with an elasticity of 0.6 in response to its own cost shocks. Furthermore, we find evidence of substantial heterogeneity in these elasticities across firms. Small firms exhibit no strategic complementarities in price setting and complete cost pass-through. In contrast, large firms exhibit strong strategic complementarities, responding to both competitor price changes and their own cost shocks with roughly equal elasticities of around 0.5. We show that this pattern of heterogeneity in markup variability across firms is important for explaining the aggregate markup response to international shocks and the observed low exchange rate pass-through into domestic prices.

*Previous drafts circulated as “International Shocks and Domestic Prices: How Large are Strategic Complementarities?” Amiti: Federal Reserve Bank of New York, 33 Liberty Street, New York, NY 10045; Itskhoki: Princeton University, Department of Economics, Princeton, NJ 08544; Konings: University of Liverpool Management School, Chatham St, Liverpool L69 7ZH, UK and Katholieke Universiteit Leuven, Department of Economics, Naamsestraat 69, 3000 Leuven, Belgium. Access to confidential data was possible while Jozef Konings was affiliated to the National Bank of Belgium. Most of this research was carried out during that period. We thank Ilke Van Beveren for all her help with the concordances of the product codes; and Emmanuel Dhyne and Catherine Fuss of the National Bank of Belgium for data clarifications and suggestions. We thank Costas Arkolakis, David Atkin, Andy Bernard, Ariel Burstein, Arnaud Costinot, Jan de Loecker, Dave Donaldson, Gilles Duranton, Linda Goldberg, Gita Gopinath, Gene Grossman, Anna Kovner, Ben Mandel, Dmitry Mukhin, Peter Neary, Ezra Oberfield, Gianmarco Ottaviano, Jacques Thissie, Felix Tinellnot, David Weinstein, and seminar and conference participants at multiple venues for insightful comments. Tyler Bodine-Smith, Sungki Hong, Preston Mui and Rafael Parente provided excellent research assistance. The views expressed in this paper are those of the authors and do not necessarily represent those of the Federal Reserve Bank of New York or the Federal Reserve System or the National Bank of Belgium.
1 Introduction

How strong are strategic complementarities in price setting across firms? Do firms mostly adjust their prices in response to changes in their own costs, or do they put a significant weight on the prices set by their competitors? The answers to these questions are central for understanding the transmission of shocks through the price mechanism, and in particular the transmission of international shocks such as exchange rate movements across borders. A long-standing classical question in international macroeconomics, dating back at least to Dornbusch (1987) and Krugman (1987), is how international shocks affect domestic prices. Although these questions are at the heart of international economics, and much progress has been made in the literature, the answers have nonetheless remained unclear because of the complexity of empirically separating the movements in marginal costs from markups.

In this paper, we construct a new micro-level dataset for Belgium containing the necessary information on firms’ domestic prices, their marginal costs and their competitors’ prices, in order to directly estimate the strength of strategic complementarities across a broad range of manufacturing industries. We develop a general theoretical framework that allows us to empirically decompose the firm’s price change into a response to movements in its own marginal cost (the own cost pass-through) and a response to its competitors’ price changes (the strategic complementarity elasticity). An important feature of our theoretical framework is that it does not require us to commit to a specific model of demand, market structure, price setting, or production to obtain our elasticity estimates.

Within this general framework, we develop an identification strategy to deal with three major empirical challenges: (i) endogeneity of the competitor prices, which are determined simultaneously with the price of the firm in the equilibrium of the price-setting game; (ii) measurement error in the marginal cost of the firm; and (iii) correlated demand and cost shocks. We exploit the rare features of our dataset to construct instrumental variables to address these issues. In particular, our data provide information on the domestic market prices set by the firm and all of its competitors (both domestic and foreign), as well as the prices of all of the firm’s imported intermediate inputs. We use these highly disaggregated unit values of imported inputs to construct instruments for the firm’s cost shocks, and we construct instruments for the prices of its competitors using proxies for their marginal costs. The identification strategy exploits the idiosyncratic variation in firms’ marginal costs, which arises as firms, even within the same industry, source their intermediate inputs from different countries and suppliers.

Our results provide strong evidence of strategic complementarities. We estimate that, on average, a domestic firm changes its price in response to its competitors’ price changes with an elasticity of about 0.4. In other words, when the firm’s competitors raise their prices by 10%, the firm increases its own price by 4% in the absence of any movement in its marginal cost, which entirely translates into an increase in its markup. At the same time, the elasticity of the firm’s price with respect to its own marginal cost, holding constant the prices of its competitors, is on average about 0.6, corresponding to a 60% cost pass-through. These estimates stand in sharp contrast with the implications of the workhorse model in international economics, which features CES demand and monopolistic competition and im-

1In macroeconomics, the presence of strategic complementarities in price setting creates additional persistence in response to monetary shocks in models of staggered price adjustment (see e.g. Kimball 1995, and the literature that followed).
plies constant markups, a complete (100%) cost pass-through and no strategic complementarities in price setting. However, models that relax either of those assumptions (i.e., the assumption of monopolistic competition or of CES demand) are consistent with our findings, predicting both a positive response to competitor prices and incomplete cost pass-through. In our estimation, we cannot reject that the two elasticities sum to one, confirming a restriction imposed by an important class of conventional demand models.

Interestingly, we find substantial heterogeneity in the elasticities across firms. Small firms exhibit no strategic complementarities in price setting, and fully pass through their marginal cost shocks into their domestic prices. The behavior of these small firms is well approximated by constant-markup pricing, in line with a standard model of monopolistic competition under CES demand. In contrast, large firms exhibit strong strategic complementarities and incomplete pass-through of own marginal cost shocks. Specifically, we estimate their own cost pass-through elasticity to be slightly below 0.5, and the elasticity of their prices with respect to the prices of their competitors to be slightly above 0.5. These large firms, though few in number, account for the majority of sales, and therefore shape the average elasticities in the data.²

We use these estimated markup elasticities to study the transmission of an international shock, namely an exchange rate depreciation, to aggregate sectoral-level domestic prices. We find that the presence of strategic complementarities and markup variability at the micro level does not necessarily translate into aggregate markup adjustment. We show that it is necessary to have heterogeneity in both the cost shocks and markup elasticities in order for aggregate markups to adjust. When cost shocks are the same for all firms, the equilibrium fixed point features complete pass-through, no change in relative prices across firms, and hence no markup adjustment. Interestingly, even when cost shocks are heterogeneous, resulting in some firms increasing their markups and other firms decreasing them, these markup adjustments net out exactly if all firms share the same markup elasticity and exhibit the same degree of strategic complementarities. Consequently, the aggregate markup remains unchanged, despite markup adjustment by individual firms, and the aggregate pass-through of shocks is complete.³

Thus, we show it is the interaction between the heterogeneity in strategic complementarities and cost shocks across firms that is necessary for aggregate markup adjustment.

We find that the presence of firm-level heterogeneity in strategic complementarities plays an important role in helping to explain the low exchange rate pass-through into domestic prices emphasized in the empirical literature. Indeed, it is specifically the type of heterogeneity that we document in the data — with larger firms exhibiting both greater markup variability and higher import intensity — that results in aggregate markup adjustment in response to international shocks. Because the large firms are the ones most affected by the shock, they adjust their markups such that the cost shocks are only

²According to our baseline definition, a large firm employs at least 100 workers (FTE), which roughly corresponds to firms with at least a 2% market share (or also in the top 20% of the sales distribution) within their industries. Such firms account for over 60% of total manufacturing sales. The effects we estimate are robust to different cutoffs used to define large firms.

³To gain intuition for this, perhaps surprising, result consider a cost shock to a subset of firms triggering their direct pass-through response, which is in general incomplete. This initial effect, however, then induces additional indirect price adjustments by all firms — whether affected directly by the shock or not — driven by strategic complementarities. When the own cost pass-through elasticity and the strategic complementarity elasticity sum to one and are the same across all firms, the direct and the indirect effects cumulate to ensure complete pass-through in the aggregate.
partially passed through into prices. And since the small firms have low exposure to the shock and almost no strategic complementarities, this set of firms does not sufficiently increase markups to offset the large firms’ adjustment. Hence, the reduction in the large firms’ markups translates into a reduction in the aggregate markup, attenuating the exchange rate pass-through into domestic prices. We further show the quantitative relevance of this mechanism using a calibrated industry equilibrium model disciplined with our empirical estimates.\(^4\) The structural model also enables us to explore the response in counterfactual industries that may be more typical in other countries. Interestingly, we find that the channel through which foreign value added reaches the home market is important for the aggregate exchange rate pass-through in the industry. In particular, aggregate markups fall by a larger amount in industries with more import-intensive large domestic firms and less direct foreign competition in the output market.

Our paper is the first to provide direct evidence on the extent of strategic complementarities in price setting across a broad range of industries. It builds on the literature that has estimated pass-through and markup variability in specific industries such as cars (Feenstra, Gagnon, and Knetter 1996), coffee (Nakamura and Zerom 2010), and beer (Goldberg and Hellerstein 2013). By looking across a broad range of industries, we explore the importance of strategic complementarities at the macro level for the pass-through of exchange rates into aggregate producer prices. The industry studies typically rely on structural estimation by adopting a specific model of demand and market structure, which is tailored to the industry in question.\(^5\) In contrast, for our estimation we adopt a general theoretical framework, with an identification strategy that relies on instrumental variables, providing direct evidence on the importance of strategic complementarities in a broad class of price setting models.

The few studies that have focused on the pass-through of exchange rate shocks into domestic consumer and producer prices have mostly relied on aggregate industry-level data (see, e.g. Goldberg and Campa 2010). The more disaggregated empirical studies that use product-level prices (Auer and Schoenle 2016, Cao, Dong, and Tomlin 2012, Pennings 2017) have typically not been able to match the product-level price data with firm characteristics, prices of local competitors, or measures of firm marginal costs, all of which play a central role in our identification. Without data on firm marginal costs, correlated cost shocks may be misconstrued for strategic complementarities in price setting, as discussed in Gopinath and Itskhoki (2011).\(^6\)

Berman, Martin, and Mayer (2012) emphasize that large firms exhibit lower exchange rate pass-

\(^4\) For this exercise, we adopt the Atkeson and Burstein (2008) model of variable markups, which we show captures accurately the extent of strategic complementarities for both small and large firms that we find in the data. We further ensure that the model matches the market share and import intensity distributions across firms in Belgian manufacturing.

\(^5\) A survey by De Loecker and Goldberg (2014) contrasts these studies with an alternative approach for recovering markups based on production function estimation, which was originally proposed by Hall (1986) and developed by De Loecker and Warzynski (2012). Our identification strategy, which relies on the direct measurement (of a portion) of the marginal cost and does not involve a production function estimation, constitutes a third alternative for recovering information about the markups of the firms. If we observed the full marginal cost, we could calculate markups directly by subtracting it from prices. Since we have an accurate measure of only a portion of the marginal cost, we identify only certain properties of the firm’s markup, such as its elasticities. Nonetheless, with enough observations, one can use our method to reconstruct the entire markup function for the firms.

\(^6\) Gopinath and Itskhoki (2011) and Burstein and Gopinath (2014) survey a broader pricing-to-market (PTM) literature, which documents that firms charge different prices in different destinations, and actively use markups to smooth the effects of exchange rate shocks across markets (in particular, Fitzgerald and Haller 2014 offer a direct empirical test).
through into export prices relative to small firms. Amiti, Itskhoki, and Konings (2014) demonstrate the importance of imported intermediate inputs, in addition to variable markups, in explaining the lower exchange rate pass-through into export prices for large firms. While these elasticities are informative, the pass-through into export prices is only one component of the overall pass-through into domestic prices of the destination countries. The other component, namely domestic prices of the domestic producers, are also affected by the exchange rate both directly through the cost of their imported inputs and indirectly due to strategic complementarities with the competing foreign firms. These overall effects are the focus of our current paper. Further, both of the papers on export prices estimate reduced-form equilibrium relationships between export price pass-through and firm size in the cross-section of firms, which are not suitable for counterfactual analysis. In contrast, this paper adopts an instrumental-variable strategy to estimate structural markup elasticities, which are then suitable for counterfactual analysis of the markup responses to various shocks.

Our framework applies more broadly beyond the study of counterfactual exchange rate shocks because our elasticity estimates do not rely on projections of firm prices on exchange rates, as is conventionally done in the pass-through literature. Our structural estimates of markup elasticities can also be used to explore other international shocks such as trade reforms and commodity price movements. The literature on the effects of tariff liberalization on domestic prices has mostly focused on developing countries, where big changes in tariffs have occurred in the recent past. For example, De Loecker, Goldberg, Khandelwal, and Pavcnik (2016) analyze the Indian trade liberalization and Edmond, Midrigan, and Xu (2015) study a counterfactual trade liberalization in Taiwan; both studies find evidence of aggregate markup adjustment. These studies take advantage of detailed firm-product-level data, but neither has matched import data, which constitutes the key input in our analysis, enabling us to directly measure the component of the firm marginal cost that is most directly affected by international shocks.

Lastly, our theoretical result on (the lack of) the aggregate markup adjustment is related to the recent papers by Arkolakis, Costinot, Donaldson, and Rodriguez-Clare (2019; henceforth ACDR) and Feenstra (2018). In contrast with these papers, however, our focus is on the medium-run industry equilibrium (without entry and exit), yet we do not impose any restrictions on the class of the demand models or the productivity distribution across firms, and importantly we allow for arbitrary patterns in the use of imported inputs across firms.

The rest of the paper is organized as follows. In section 2, we set out the theoretical framework to guide our empirical analysis. Section 3 describes the data and presents the empirical results. Section 4

7The unavailability of comprehensive measures of competitor prices and market shares in the domestic market prevented these studies from providing direct estimates of strategic complementarities. For example, Amiti, Itskhoki, and Konings (2014) use industry-destination-time fixed effects to absorb the competitor prices.

8The strategic complementarity elasticity also plays an important role in the New Keynesian literature, as it directly affects the slope of the New Keynesian Phillips curve (e.g., see Klenow and Willis 2016, Gopinath and Itskhoki 2011); our estimates can be used as a direct input in these studies. Gopinath and Itskhoki (2010) and Berger and Vavra (2019) emphasize the relationship between the strength of strategic complementarities and the frequency of price adjustment in the menu cost models; our study links heterogeneity in strategic complementarities to specific firm characteristics. A number of recent studies have used our estimates of strategic complementarities: to explain the lack of the aggregate stimulus from the Japanese QE policy in 2012-14 (Rodniansky 2018); to reproduce the exchange rate disconnect behavior in an equilibrium model (Itskhoki and Mukhin 2017); to explain the dynamic behavior of exchange rate pass-through over the medium and the long run (Casas, Diez, Gopinath, and Gourinchas 2016); and to study the emergence of the dollar as a vehicle currency in general equilibrium (Mukhin 2017).
applies the general framework with our empirical estimates of markup elasticities to analyze the effect of an exchange rate depreciation on aggregate domestic prices. Section 5 concludes.

2 Theoretical Framework

This section lays out the theoretical framework for the empirical estimation of the strength of strategic complementarities in price setting in Section 3 and the quantitative analysis in Section 4.

Price setting and the markup function We start with an accounting identity for the log price of firm i in period t, which equals the sum of the firm’s log marginal cost mc_{it} and log markup μ_{it}:

$$p_{it} \equiv mc_{it} + \mu_{it},$$

where our convention is to use small letters for logs. This identity can also be viewed as the definition of a firm’s realized log markup, whether or not it is chosen optimally by the firm and independently of the details of the equilibrium environment. Since datasets with precisely measured firm marginal costs are usually unavailable, equation (1) cannot be directly implemented empirically to recover firm markups. Instead, in what follows we impose the minimum structure on the equilibrium environment that is necessary to convert the price identity (1) into a decomposition of price changes, which can be estimated in the data to recover important properties of the firm’s markup.\(^9\)

We focus on a given industry s with N competing firms, denoted with $i \in \{1, ..., N\}$, where N may be finite or infinite. We omit the industry identifier when it causes no confusion. Our analysis is at the level of the firm-product, and for now we abstract from the issue of multi-product firms, which we address in Section 3.4. We denote with $p_t \equiv (p_{1t}, ..., p_{Nt})$ the vector of prices of all N firms in the industry, and with $p_{-it} \equiv \{p_{jt}\}_{j \neq i}$ the vector of prices of all $(N-1)$ firm i’s competitors, and we make use of the notational convention $p_t \equiv (p_{it}, p_{-it})$.

We consider an arbitrary invertible demand system $q_{it} = q_i(p_t; \xi_t)$ for $i \in \{1, ..., N\}$, which constitutes a one-to-one mapping between any vector of prices p_t and a corresponding vector of quantities demanded $q_t \equiv (q_{1t}, ..., q_{Nt})$, given the vector of demand shifters $\xi_t = (\xi_{1t}, ..., \xi_{Nt})$. The demand shifters summarize all variables that move the quantity demanded for a given price vector. Demand invertibility is a mild technical requirement, which allows us to fully characterize the market outcome in terms of a vector of prices, with a unique corresponding vector of quantities.\(^10\) The invertibility assumption rules out the case of perfect substitutes, where multiple allocations of quantities across firms are consistent with the same common price, yet it allows for an arbitrarily large but finite elasticity of substitution, which approximates well the case of perfect substitutes (see Kucheryavyy 2012). Importantly, this assumption does not rule out commonly used demand systems such as CES (as in

\(^9\)An alternative approach in the Industrial Organization literature imposes specific demand and market structure in a given industry to back out the implied optimal markups of the firms, and then uses identity (1) to calculate the marginal costs.

\(^10\)Global demand invertibility (one-to-one mapping between p_t and q_t) is only needed to accommodate the case of oligopolistic competition in quantities (Cournot-Nash) using the general notation in the space of prices. For our empirical implementation, which relies on local variation, we only require local invertibility, i.e. a full rank of the Jacobian matrix for the demand system evaluated at the equilibrium price vector.
Atkeson and Burstein (2008), linear (Melitz and Ottaviano 2008), Kimball (Gopinath and Itskhoki 2010), translog (Feenstra and Weinstein 2017) and discrete-choice logit (Goldberg 1995), as well as the general non-homothetic demand system considered by ACDR.

We allow for a range of commonly used market competition structures such as monopolistic competition (as N becomes unboundedly large or as firms do not internalize their effect on aggregate prices) and oligopolistic competition (for any finite N) in both prices and quantities. Formally, the results below accommodate all full-information simultaneous-move price-setting games, and can be immediately extended to some sequential-move price-setting games, such as Stackelberg equilibrium. This assumption excludes incomplete-information and/or dynamic price-setting considerations, such as menu costs (e.g. Gopinath and Itskhoki 2010) or inventory management (e.g. Alessandria, Kaboski, and Midrigan 2010), which could also be incorporated in our analysis as we discuss in Section 3.4.

Under these mild assumptions on demand and market structure, we prove the existence of a markup function, which characterizes the firm’s optimal price-setting strategy in a given industry equilibrium environment:

Proposition 1 For any given invertible demand system and competition structure, there exists a markup function $\mu_{it} = M_i(p_{it}, p_{-it}; \xi_t)$, such that the firm’s static profit-maximizing price \tilde{p}_{it} is the solution to the following fixed point equation, for any given price vector of the competitors p_{-it}:

$$\tilde{p}_{it} = mc_{it} + M_i\left(\tilde{p}_{it}, p_{-it}; \xi_t\right).$$

(2)

We provide the proof in Appendix C and offer here a brief discussion. The markup function characterizes the firm’s optimal markup, $\mu_{it} = M_i(p_{it}, p_{-it}; \xi_t)$, which depends on the firm’s own price and its competitor prices. As such, the firm’s optimal price \tilde{p}_{it} is a solution to the fixed point equation (2). Proposition 1 does not require that competitor prices are equilibrium outcomes, as equation (2) holds for any possible vector p_{-it}, and corresponds to the firm’s best response schedule (or reaction function). Hence, equation (2) characterizes both the on- and off-equilibrium behavior of the firm given its competitors’ prices. The full industry equilibrium is achieved when equation (2) holds for every firm $i \in \{1, \ldots, N\}$ in the industry, that is all firms are on their best response schedules.

Why does the markup function depend on the price vector, and in particular on the firm’s own price? Consider the familiar expression for the profit-maximizing log markup of a monopolistically competitive firm, $\mu_{it} = \log \frac{\sigma_{it}}{\sigma_{it} - 1}$, where σ_{it} is the elasticity of the firm’s residual demand. In general, a change in any firm’s price p_{jt} affects the demand for all firms in the industry, shifting the allocation to a new point on the demand surface with different values of demand elasticities σ_{it} for $i = 1, \ldots, N$. Therefore, optimal markups change for all firms (with the exception of the special case of constant-elasticity demand). This characterization of the optimal markup generalizes beyond the case of monopolistic competition, and also applies in models with oligopolistic competition, in which case σ_{it} is the per
ceived demand elasticity for firm i, and it depends on both the curvature of demand and the conjectured equilibrium behavior of the competitors, as we describe in Appendix C.

Price change decomposition To derive the estimating equation, we totally differentiate the best response condition (2) around some admissible point $(\hat{p}_{it}, \hat{p}_{-it}; \xi_t)$, e.g. any equilibrium point $(p_{it}; \xi_t)$. We obtain the following decomposition for the firm’s log price differential:

$$dp_{it} = dmc_{it} + \frac{\partial M_i(p_i; \xi_t)}{\partial p_{it}} dp_{it} + \sum_{j \neq i} \frac{\partial M_i(p_i; \xi_t)}{\partial p_{jt}} dp_{jt} + \sum_{j=1}^{N} \frac{\partial M_i(p_i; \xi_t)}{\partial \xi_{jt}} d\xi_{jt}. \quad (3)$$

The markup function $M_i(\cdot)$ can be evaluated for an arbitrary price vector $p_t = (p_{it}, \hat{p}_{-it})$, and therefore (3) characterizes all possible perturbations to the firm’s price in response to shocks to its marginal cost dmc_{it}, the prices of its competitors $\{dp_{jt}\}_{j \neq i}$, and the demand shifters $\{d\xi_{jt}\}_{j=1}^{N}$. Note that the change in the firm’s optimal price does not directly depend on the shocks to its competitors’ marginal costs since changes in competitors’ prices provide a sufficient statistic, as follows from Proposition 1.

Solving the fixed point for dp_{it} in (3) results in:

$$dp_{it} = \frac{1}{1 + \Gamma_{it}} dmc_{it} + \frac{\Gamma_{-it}}{1 + \Gamma_{it}} dp_{-it} + \varepsilon_{it}, \quad (4)$$

where the residual $\varepsilon_{it} \equiv \frac{1}{1 + \Gamma_{it}} \sum_{j=1}^{N} \frac{\partial M_i(p_i; \xi_t)}{\partial \xi_{jt}} d\xi_{jt}$ is firm i’s effective demand shock. In (4), we introduce the following new notation:

$$\Gamma_{it} \equiv - \frac{\partial M_i(p_i; \xi_t)}{\partial p_{it}} \quad \text{and} \quad \Gamma_{-it} \equiv \sum_{j \neq i} \frac{\partial M_i(p_i; \xi_t)}{\partial p_{jt}} \quad (5)$$

for the own and (cumulative) competitor markup elasticities, respectively, measuring the slope of the optimal markup function $M_i(\cdot)$. The own markup elasticity Γ_{it} is defined with a negative sign, as many models imply that a firm’s markup function is non-increasing in the firm’s own price, $\frac{\partial M_i(p_i; \xi_t)}{\partial p_{it}} \leq 0$. Intuitively, a higher price may shift the firm towards a more elastic portion of demand (e.g., as with Kimball demand) and/or reduce its market share (in oligopolistic competition models), both of which result in a lower optimal markup (see Appendix D). In contrast, the markup elasticity with respect to competitor prices is typically non-negative and, when positive, it reflects the presence of strategic complementarities in price setting. Nevertheless, we do not impose any sign restrictions on Γ_{it} and Γ_{-it} in our empirical analysis.

Finally, equation (4) defines the (scalar) index of competitor price changes:

$$dp_{-it} \equiv \sum_{j \neq i} \omega_{ijt} dp_{jt}, \quad \text{where} \quad \omega_{ijt} \equiv \frac{\partial M_i(p_i; \xi_t)}{\partial p_{jt}} / \sum_{k \neq i} \frac{\partial M_i(p_i; \xi_t)}{\partial p_{kt}}. \quad (6)$$

This implies that, independently of the demand and competition structure, there exists a theoretically well-defined index of competitor price changes, even when the model of demand does not admit a well-defined ideal price index (e.g., under non-homothetic demand). The index of competitor price changes...
\(dp_{-it} \) aggregates the individual price changes across all of the firm’s competitors, \(dp_{jt} \) for \(j \neq i \), using endogenous (firm-state-specific) weights \(\omega_{ijt} \), which are defined to sum to one. These weights depend on the relative markup elasticities: the larger is firm \(i \)'s markup elasticity with respect to the price change of firm \(j \), the greater is the weight of firm \(j \) in the competitor price index for firm \(i \).

Equation (4) is a generalization of the accounting framework for price changes developed by Gopinath, Itskhoki, and Rigobon (2010) and used in Burstein and Gopinath (2014). It decomposes firm \(i \)'s price change \(dp_{it} \) into responses to its own cost shock \(dmc_{it} \), to its competitor's price changes \(dp_{-jt} \), and to the demand shifters captured by the residual \(\varepsilon_{it} \). The two coefficients of interest are:

\[
\alpha_{it} \equiv \frac{1}{1 + \Gamma_{it}} \quad \text{and} \quad \gamma_{it} \equiv \frac{\Gamma_{-it}}{1 + \Gamma_{it}},
\]

characterizing the slope of the firm’s best response schedule, defined implicitly by (2). The coefficient \(\alpha_{it} \) measures the own (or idiosyncratic) cost pass-through of the firm, i.e. the elasticity of the firm’s price with respect to its marginal cost, holding constant the prices of its competitors. The coefficient \(\gamma_{it} \) measures the strength of strategic complementarities in price setting, as it is the elasticity of the firm’s price with respect to the prices of its competitors.\(^1\)

The coefficients \(\alpha_{it} \) and \(\gamma_{it} \) are shaped by the markup elasticities \(\Gamma_{it} \) and \(\Gamma_{-it} \): a higher own-markup elasticity reduces the own cost pass-through, as markups are more accommodative of shocks, while a higher competitor markup elasticity increases the strategic complementarities elasticity.

In order to empirically estimate the coefficients in the theoretical price decomposition (4), we need to measure the competitor price index (6). We now provide conditions under which the weights in (6) can be easily measured in the data, as well as a way to test these conditions empirically. Let \(z_t \) denote the log industry expenditure function, which quantifies the cost of purchasing one unit of aggregate output in a given industry.\(^2\) We prove in Appendix C:

Proposition 2

(i) If the log expenditure function \(z_t \) is a sufficient statistic for competitor prices, i.e. if the demand can be written as \(q_{it} = q_i(p_{it}, z_t; \xi_t) \), then the weights in the competitor price index (6) are proportional to the competitor revenue market shares \(S_{jt} \), for \(j \neq i \), and given by \(\omega_{ijt} \equiv S_{jt}/(1 - S_{it}) \). Therefore, the index of competitor price changes simplifies to:

\[dp_{-it} \equiv \sum_{j \neq i} S_{jt} \frac{dp_{jt}}{1 - S_{it}}. \]

(ii) Under the stronger assumption that the perceived demand elasticity is a function of the price of the firm relative to the industry expenditure function, \(\sigma_{it} = \sigma_i(p_{it} - z_t; \xi_t) \), the two markup elasticities in (5) are equal:

\[\Gamma_{-it} \equiv \Gamma_{it}. \]

\(^1\)Elasticity \(\gamma_{it} \) can be non-zero even under monopolistic competition when firm behavior is non-strategic, yet the complementarities in pricing still exist via the curvature of demand. In this case, the term demand complementarity may be more appropriate. Furthermore, \(\gamma_{it} \) could, in principle, be negative, in which case the prices of the firms are strategic substitutes.

\(^2\)Formally, \(z_t = \log \min_{(Q_{it})} \{ \sum_{n=1}^{N} P_{it}Q_{it} | U((Q_{it}); Q_t) = 1 \} \), where \(U(\cdot) \) is the (preference) aggregator, which defines the unit of industry output \(Q_t \).
The assumption underlying Proposition 2 is that the log expenditure function \(z_t \) summarizes all of the necessary information contained in the competitor price vector \(p_{-it} \), given the firm’s price \(p_{it} \). By definition, this is the case from the point of view of the consumers of the industry output. In general, however, the same is not the case for the competing firms supplying the product varieties in the industry. Nonetheless, this assumption holds exactly for the nested-CES demand structure and applies as a first-order approximation for a broad class of models with symmetric preference structure. Intuitively, the symmetry assumption implies that the significance of any firm for all other firms is fully summarized by its market share, independently of the firm’s identity.

Proposition 2 then follows from Shephard’s lemma, which implies that the elasticity of the expenditure function with respect to firm \(j \)’s price equals firm \(j \)’s market share, \(\partial z_t / \partial p_{jt} = S_{jt} \). Consequently, the relevant weights in the competitor price index (8) are proportional to the competitor market shares \(S_{jt} \). The assumption in part (ii) of the proposition implies that the markup function only depends on the relative price, and hence it has the same elasticity with respect to the own price and the competitor price index (in absolute value, with opposite signs), resulting in (9).

Proposition 2 offers a useful way to empirically test the implication of its assumptions: the condition on markup elasticities in (9) implies that the two coefficients in the price decomposition (4) sum to one. Using the notation in (7), this can be summarized as the following parameter restriction:

\[
\alpha_{it} + \gamma_{it} = 1. \tag{10}
\]

We do not impose condition (9) and the resulting restriction (10) in our estimation, but instead test it empirically. This also validates the weaker property (8) in Proposition 2, which we adopt for our measurement of the competitor price changes, and then relax it non-parametrically in Section 3.4.

Structural elasticities Specific models of demand and competition structure link our two elasticities of interest, \(\alpha_{it} \) and \(\gamma_{it} \), to model primitives, and impose restrictions on the values of those elasticities. For example, the most commonly used model in the international economics literature follows Dixit and Stiglitz (1977) and combines constant elasticity of substitution (CES) demand with monopolistic competition, which results in a constant \(\sigma_{it} \equiv \sigma \), and hence constant-markup pricing \(\mu_{it} \equiv \log (\sigma) - 1 \). Consequently, there is complete pass-through of the cost shocks and no strategic complementarities in price setting. In other words, all firms have zero markup elasticities, \(\Gamma_{it} = \Gamma_{-it} \equiv 0 \), and therefore \(\alpha_{it} \equiv 1 \) and \(\gamma_{it} \equiv 0 \). These implications are in gross violation of the stylized facts about price setting in actual markets, a point recurrently emphasized in the *pricing-to-market* literature.

In order to allow for incomplete pass-through \(\alpha_{it} < 1 \) and strategic complementarities \(\gamma_{it} > 0 \), one needs to depart from either the CES or the monopolistic competition assumption. We illustrate this

14In general, consumers and producers put different weight on the cross-sectional dispersion of prices, resulting in different price aggregators. In Appendix D, we show that Proposition 2 holds as a first-order approximation for the Kimball demand family; the same is true for the family of separable preference aggregators \(Q_t = \sum_{i=1}^N u_i(Q_{it}) \), as in Krugman (1979), as well as for the broad homothetic families of demand considered in Matsuyama and Ushchev (2017).

15More formally, under the conditions of Proposition 2, the markup function can be written as \(M_i(p_{it} - z_t; \xi) \), and hence: (i) \(\partial M_{it}/\partial p_{jt} = \partial M_{it}/\partial z_{it} \cdot S_{jt} \) for all \(j \neq i \) and (ii) \(\partial M_{it}/\partial p_{it} = -\partial M_{it}/\partial z_{it} \), implying (8) and (9) respectively, as follows from the definitions in (5) and (6).
in the context of a specific model of variable markups with oligopolistic competition and nested-CES demand, following Krugman (1987) and Atkeson and Burstein (2008). Under Cournot competition, the perceived elasticity σ_{it} is a function of the firm’s market share, averaging the between- and within-industry elasticities of substitution (given, respectively, by $\eta \geq 1$ and $\rho > \eta$):\(^\text{16}\)

$$\sigma_{it} = \left[\frac{1}{\eta} S_{it} + \frac{1}{\rho} (1 - S_{it})\right]^{-1}. \tag{11}$$

Furthermore, the market share is a decreasing function of the firm’s relative price, $S_{it} = \xi_{it} \left(\frac{p_{it}}{P_{st}}\right)^{(\eta - 1)/\rho}$, where $P_{st} = \left[\sum_{j=1}^{N} \xi_{jt} p_{jt}^{1-\rho}\right]^{1\/(1-\rho)}$ is the industry price index, which is also the expenditure function. Note that this model satisfies the conditions of both Propositions 1 and 2.

Using the above expressions, we can write out the markup function $M_i(p_t; \xi_t) = \log \frac{\sigma_{it} - 1}{\sigma_{it}}$ for this model, and calculate its respective elasticities according to (5), to yield:

$$\Gamma_{it} = \Gamma_{-it} = \frac{(\rho - 1) S_{it}}{1 + \frac{\rho(\eta - 1)}{(\rho - \eta)(1 - S_{it})}}, \tag{12}$$

which simplifies to $\Gamma_{it} = \Gamma_{-it} = (\rho - 1) S_{it}$ in the Cobb-Douglas case with $\eta = 1$. The main additional insight from this example is that Γ_{it} is an increasing function of the firm’s market share S_{it}.\(^\text{17}\) This relation is not exclusive to the nested-CES model, and holds more generally in many models of oligopolistic and monopolistic price setting, as we show in Appendix D. For a broad class of models, the markup elasticity is increasing in a firm’s market share, although the specific functional form underlying the markup elasticities does depend on the model details. What is specific to the nested-CES model is the property that $\Gamma_{it} \approx 0$ for the very small firms with $S_{it} \approx 0$. Indeed, such small firms behave nearly as constant-markup monopolistic competitors, with a complete own cost pass-through ($\alpha_{it} \approx 1$) and no strategic complementarities ($\gamma_{it} \approx 0$). In contrast, firms with positive market shares have $\Gamma_{it} > 0$, and hence exhibit incomplete pass-through and positive strategic complementarities, $\alpha_{it} < 1$ and $\gamma_{it} > 0$.

Intuitively, when faced with a negative cost shock, a firm can either maintain its markup by increasing its price and losing market share, or alternatively maintain its price and market share at the expense of a declining markup. Small firms charge low markups and have only a limited capacity to adjust them in response to shocks, and hence choose high pass-through of cost shocks into prices. In contrast, large firms charge high markups and actively adjust them in response to shocks to ensure stability of their market shares. This offers a sharp testable hypothesis.

Estimating equation We are interested in estimating the magnitudes of the pass-through and strategic complementarity elasticities in the price change decomposition (4), as they form a **sufficient statistic** for firm i’s price responses to shocks, independently of the industry demand and competition structure.

\(^{16}\)The only difference under Bertrand competition is that $\sigma_{it} = \eta S_{it} + \rho(1 - S_{it})$; both cases are derived in Appendix C.

\(^{17}\)Strictly speaking, for $\eta > 1$, Γ_{it} is non-monotonic in S_{it}, however the point of non-monotonicity only occurs for very large $S_{it} \approx 1$, well outside of the empirically-relevant range.
In order to estimate these elasticities, we rewrite (4) in changes over time as:

$$\Delta p_{it} = \alpha \Delta mc_{it} + \gamma \Delta p_{-it} + \varepsilon_{it},$$ \hspace{1cm} (13)$$

where $\Delta p_{it} \equiv p_{i,t+1} - p_{it}$. Equation (13), which corresponds to the first-order expansion of the firm’s best response schedule, constitutes our estimating equation.18 Implementing it in the data requires measures of prices and marginal costs for the firm and its competitors, as well as an identification strategy to address the simultaneity of Δp_{-it} and possible endogeneity of Δmc_{it}. Furthermore, while there is merit in quantifying the average elasticities α and γ, the theory suggests that they should vary with firm characteristics, in particular firm size.

3 Empirical Analysis

We start by describing our dataset and explaining the construction of the main variables. We then present our baseline empirical results, followed by a detailed discussion of the threats to identification and the robustness analysis.

3.1 Data and measurement

Dataset To empirically implement the theoretical framework of Section 2, we need to be able to measure each variable in equation (13). We do this by combining three different datasets for Belgian manufacturing firms for the period 1995 to 2007 at the annual frequency. The first dataset is firm-product level production data (PRODCOM), collected by Statistics Belgium. A rare feature of these data is that they contain highly disaggregated information on both values and quantities of sales, which enables us to construct domestic unit values at the firm-product level. It is the same type of data that is more commonly available for firm-product exports. Firms in the Belgian manufacturing sector report production values and quantities for all their products, defined at the PC 8-digit (over 1,500 products). The survey includes all Belgian firms with a minimum of 10 employees, which covers over 90% of production value in each NACE 4-digit industry.19 Firms are required to report total values and quantities but are not required to report the breakdown between domestic sales and exports. Therefore, to get a measure of domestic values and quantities we merge on the export data from customs and subtract total export values and quantities from total production values and quantities sold.

The second dataset, on imports and exports, is collected by Customs. These data are reported at the firm level by destination and source country for each product classified at the 8-digit combined

18Alternatively, we could estimate the equilibrium reduced form of the model, which expresses the firm’s price change as a function of the exogenous shocks of the model. We provide an explicit solution for the reduced form in Appendix C, where we also discuss the reasons why we focus on the best response (13), which include the feasibility of empirical implementation and the ease of structural interpretation. Nonetheless, we report the reduced form estimates in the Online Appendix Table O1 available at http://www.princeton.edu/~itskhoki/papers/DomesticPricesOA.pdf.

19We only keep firms that report their main activity to be in the manufacturing sector, defined as NACE 2-digit codes 15–36. We define an industry at the NACE 4-digit level (also corresponds to the first 4 digits of the PC 8-digit code) and include all industries for which there is a sufficient number of domestic firms in the sample (around 160 industries). We choose this level of aggregation in order to avoid huge market shares arising solely due to narrowly defined industries, and we show the robustness of our results to more disaggregated industry definitions in Section 3.4.
nomenclature (CN) in values and quantities, with around 10,000 distinct products. The first 6 digits of
the CN codes correspond to the World Harmonized System (HS). Combining the production and trade
data is straightforward as both datasets include a unique firm identifier; however, the matching of the
product codes across the two datasets is more complicated, as we describe in Appendix B.

The third dataset, on firm characteristics, draws from annual income statements of all incorporated
firms in Belgium. These data are used to construct measures of total variable costs. They are available
on an annual frequency at the firm level. Each firm reports its main economic activity within a 5-digit
NACE industry, but there is no individual firm-product level data available from this dataset.

Prices The main variable of interest is the price of the domestically sold goods, which we proxy
using the log change in the domestic unit value, denoted Δp_{it}, where i corresponds to a firm-product
at the PC-8-digit level. The domestic unit values equal the domestic sales divided by the quantity sold
domestically:

$$\Delta p_{it} = \Delta \log \frac{\text{Domestic Value}_{it}}{\text{Domestic Quantity}_{it}}.$$ \hspace{1cm} (14)

We clean the data by dropping the observations with abnormally large price jumps, namely with year-
to-year price ratios above 3 or below 1/3. Summary statistics for all variables are provided in the Ap-
pendix Table A1.

An essential, and rare, feature of our dataset is that we are able to measure price changes for all
domestic and foreign competitors of each firm in the home market. We follow Proposition 2 in con-
structing the full competitor price index Δp_{--it}. When selling goods in the Belgian market, Belgian
firms in the PRODCOM sample face competition from other Belgian firms that produce and sell their
goods in Belgium (also in the PRODCOM sample), as well as from the firms not in the PRODCOM sam-
ple that import goods to sell in the Belgian market. We refer to the former set of firms as the domestic
firms and the latter as the foreign firms. We follow Proposition 2 and equation (8), and calculate the full
index of competitor price changes as:

$$\Delta p_{--it} = \sum_{j \in D_i} S_{jt} \Delta p_{jt} + \sum_{j \in F_i} S_{jt} \Delta p_{jt},$$ \hspace{1cm} (15)

where D_i and F_i denote respectively the sets of domestic and foreign firm-product competitors of
firm i. The changes in individual prices Δp_{jt} are constructed at the most disaggregated level that
is possible in the data: for domestic competitors this is at the firm×PC8-digit level, and for foreign
competitors it is at the level of the importing-firm×source-country×CN8-digit. The market shares S_{jt}
are at the corresponding levels, defined as the ratio of the firm-product sales in Belgium relative to the
total sales in industry s.20

Marginal cost Good measures of firm marginal costs are notoriously hard to come by. We address
this challenge in two steps. First, we adopt a rather general production structure, where we assume

20In (15), S_{it} is the cumulative market share of firm i in industry s. Note that $\sum_{j \in D_i} S_{jt}$ and $\sum_{j \in F_i} S_{jt}$ are the cumulative
market shares of all domestic and all foreign competitors of firm i in the industry, and therefore the weights sum to one
(as $\sum_{j \in D_i} S_{jt} + \sum_{j \in F_i} S_{jt} = 1 - S_{it}$). In practice, we measure S_{jt} as the average of t and $t−1$ market shares of firm-product j.\hspace{1cm}
that upon paying a fixed cost the firm has access to a technology with a firm-specific returns-to-scale parameter $1/(1 + \nu_i)$. As a result, the marginal cost of the firm can be written as:

$$MC_{it} = C_{it} Y_{it}^{\nu_i},$$

(16)

where Y_{it} is output and C_{it} is the unit cost of the firm independent from the scale of production. This cost structure immediately implies that the log change in the marginal cost is equal to the log change in the average variable cost:

$$\Delta mc_{it} = \Delta \log \frac{\text{Total Variable Cost}_{it}}{Y_{it}}.$$

(17)

We obtain total variable costs from the firm accounting data as the sum of the total material cost and the total wage bill. We calculate the change in the log production quantity $\Delta \log Y_{it}$ as the difference between $\Delta \log \text{Revenues}_{it}$ and $\Delta \log \text{Price index}_{it}$ of the firm, equal to the domestic-sales weighted average of the log price changes Δp_{it} across the products produced by the firm. Note that Δmc_{it} is calculated at the firm level and it acts as a proxy for the marginal cost of all products produced by the firm. Importantly for our structural inference, this reflects not just the exogenous cost shock, to which the firm may adjust in various ways, but the full resulting change in the costs of the firm.

Second, because accounting measures of average costs are known to be very noisy, we construct an instrument for the marginal cost Δmc_{it}. We use the rare feature of our dataset which enables us to measure with great precision one component of the marginal cost, namely the cost changes of the imported intermediate inputs. We assume that the unit cost of the firm C_{it} depends on the firm productivity A_{it}, as well as the prices of its inputs, including labor and intermediates. We denote with W_{it} and V_{it} the firm-i-specific cost indexes for domestic and imported inputs, respectively. The first-order expansion for the log marginal cost is then given by:

$$dmc_{it} = \phi_{it} dv_{it} + (1 - \phi_{it}) dw_{it} - d\alpha_{it} + \nu_i dy_{it},$$

(18)

where the small letters denote the logs of the corresponding variables and ϕ_{it} is the import intensity of the firm, i.e. the expenditure share on imported inputs in total variable costs, which we measure as the sum of the expenditure on home and foreign intermediates and the wage bill. We construct the foreign-input component of a firm’s marginal cost, a counterpart to the first term in (18), as follows:

$$\Delta mc_{it}^{*} = \phi_{it} \Delta v_{it} = \phi_{it} \sum_m \omega_{imt} \Delta v_{imt},$$

(19)

where m indexes the firm’s imported inputs at the country of origin and CN-8-digit product level, and

21It follows from (16) that the average variable cost is $AVC_{it} = \frac{1}{\nu_i} MC_{it}$, and the i-specific multiplicative factor in front of MC_{it} cancels out when log changes are taken, given the time-invariant return-to-scale parameter. In the more general case, which allows for a varying degree of returns to scale ν_i, our estimation is still valid, yet the structural interpretation of Γ_{it} needs to be adjusted to reflect curvature arising from both the demand and the cost sides (i.e., non-constant σ_{it} and ν_i). Also note that the macroeconomic complementarities operating through the marginal cost, such as roundabout production (Basu 1995) and local input markets (Woodford 2003), do not confound our estimates of the microeconomic complementarities.
\(\Delta v_{int} \) denotes the change in the log unit values of the firm’s imported intermediate inputs (in euros). The weights \(\omega_{int} \) are the average of \(t \) and \(t-1 \) firm import shares of input \(m \).

We find that the projection of \(\Delta mc_{it} \) on the instrument \(\Delta mc_{it}^* \) yields a large and highly significant coefficient of 0.97, providing support for our identification assumption that the accounting measure of marginal cost \(\Delta mc_{it} \) is an unbiased measure of the true marginal cost. Our identification strategy further relies on the presence of sufficient variation in the firm’s marginal cost \(\Delta mc_{it} \) that is independent from its competitor’s prices \(\Delta p_{-it} \) to identify the two elasticities in equation (13). In the data, this correlation is extremely low at 0.09. It is important to note that even firms within the same industry source their inputs from different countries, giving rise to a large idiosyncratic shock in their foreign marginal cost component: the correlation between \(\Delta mc_{it}^* \) and its counterpart for the domestic competitors \(\Delta mc_{-it}^* \) is very low, equal to 0.27.

Baseline instruments To address the endogeneity of the competitor price index \(\Delta p_{-it} \), we construct instruments that proxy for the marginal costs of the different types of competitors faced by Belgian firms in the domestic market. For the domestic competitors \(j \in D_i \) (recall the first term in (15)), we use the foreign component of the marginal cost \(\Delta mc_{jt}^* \), as defined in (19), to construct a weighted average:

\[
\Delta mc_{-it}^* = \sum_{j \in D_i} \frac{S_{jt}}{1-S_{it}} \Delta mc_{jt}^*.
\]

(20)

For foreign competitors \(j \in F_i \) (the second term in (15) comprising both euro and non-euro competitors), direct measures of marginal costs at the firm level are unavailable in our data, and thus we need to rely on product-level data to construct instruments for their price movements. For the non-euro foreign competitors of firm \(i \), \(j \in X_i \), we proxy for their marginal costs using bilateral exchange rates. Specifically, we construct:

\[
\Delta e_{X_{-it}} = \sum_{j \in X_i} \frac{S_{jt}}{1-S_{it}} \Delta e_{k(j)it},
\]

where \(\Delta e_{k} \) is the euro exchange rate with country \(k \) and \(k(j) \) is the country of origin of the non-EZ competitor \(j \in X_i \).

For the euro foreign competitors of firm \(i \), \(j \in E_i \), we construct a proxy for their marginal costs using their export prices to all destination other than Belgium. We construct this instrument in two steps. In the first step, we take all of Belgium’s euro trading partners and calculate weighted averages of the change in their log export prices to all destination countries, except Belgium. Then for each product at the CN 8-digit level we have the log change in the export price index for each of the 10 euro countries (denoted \(k \)). In the second step, we aggregate these up to the 4-digit NACE industry level (denoted \(s \)), using the value of imports of each product-country pair into Belgium as import weights, and denote

\[22\] We drop abnormally large jumps in import unit values, and we take into account that not all imports are intermediate inputs. In our baseline case, we define an import to be a final good for a firm if it also reports positive production of that good (at PC-8 digit level); such imports are dropped from the calculation of \(\Delta mc_{it}^* \).

\[23\] The bilateral exchange rates are average annual rates from the IMF, reported for each country relative to the US dollar and converted to be relative to the euro.

\[24\] These data are from the Comext trade database of Eurostat (http://ec.europa.eu/eurostat/web/international-trade/data/database); all our calculations include Austria, Germany, Spain, Finland, France, Greece, Ireland, Italy, Netherlands, Portugal, and exclude Luxembourg.
with \(\Delta p^M_{kst} \) the resulting proxy for the Belgian import price index from country \(k \) in sector \(s \). This allows us to construct our next instrument as:

\[
\Delta p^E_{it} = \sum_{j \in E_i} \frac{S_{jt}}{1 - S_{it}} \Delta p^M_{k(j)s(i)t},
\]

where \(k(j) \) denotes the country of origin of competitor \(j \in E_i \) and \(s(i) \) is the industry of the Belgian firm-product \(i \). The idea is that movements in the price indexes \(\Delta p^M_{kst} \) should correlate with movements in European competitors’ marginal costs without being affected by the demand conditions in Belgium.

We use this set of instruments — namely \((\Delta mc_{it}^*, \Delta mc_{-it}^*, \Delta e_{X-it}^*, \Delta p^E_{-it}) \) — in our baseline analysis, and provide an extensive discussion of the threats to identification and the ways in which we address them in Section 3.3.

3.2 Empirical Results

We now turn to estimating the strength of strategic complementarities in price setting across Belgian manufacturing industries.

Baseline estimates We regress the annual change in the log firm-product price \(\Delta p_{it} \) on the changes in the firm’s log marginal cost \(\Delta mc_{it} \) and its competitors’ price index \(\Delta p_{-it} \), as in equation (13). This results in two estimated average elasticities, the own cost pass-through elasticity \(\alpha \) and the strategic complementarities elasticity \(\gamma \). All of the equations are weighted using one-period lagged domestic sales, and the standard errors are clustered at the 4-digit industry level. The first two columns of Table 1 report the the OLS estimates, with year fixed effects in column 1 and with both year and industry fixed effects in column 2. The coefficients on both the firm’s marginal cost and on the competitors’ price index are positive, of similar magnitudes and significant, yet the two coefficients only sum to 0.7, violating the parameter restriction of Proposition 2. These estimates, however, are likely to suffer from endogeneity bias due to the simultaneity of price setting by the firm and its competitors \(\Delta p_{-it} \), as well as from downward bias due to measurement error in our marginal cost variable \(\Delta mc_{it} \). Indeed, while our proxy for marginal cost, as described in equation (17), has the benefit of encompassing all of the components of marginal costs, it has the disadvantage of being measured with a lot of noise.

To address these concerns, we re-estimate equation (13) using our baseline instrument set, and present the results in columns 3 and 4 of Table 1 with the lower panel reporting the corresponding first-stage regressions. The coefficients in the first-stage regressions have the expected signs and are strongly statistically significant, and our instruments pass the Hansen overidentification \(J \)-tests and the weak identification tests with the \(F \)-stats over 100, well above the critical value of around 12.

We see from our baseline IV estimates in columns 3 and 4 of Table 1 that both coefficient estimates increase relative to the OLS results in columns 1 and 2, with the coefficient on the firm’s marginal cost almost doubling in size. Moreover, the sum of the two coefficients is now slightly above one, yet we cannot reject the null that it equals one at the 5% significance level. When we estimate the constrained version of equation (13) in column 5, imposing \(\alpha + \gamma = 1 \), the estimate of the coefficient on the firm’s marginal cost is unaffected, equal to 0.6. This implies that the data are consistent with the
Table 1: Strategic complementarities: baseline estimates

<table>
<thead>
<tr>
<th>Dep. var.: Δp_{it}</th>
<th>OLS</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Δmc_{it}</td>
<td>0.348***</td>
<td>0.348***</td>
</tr>
<tr>
<td></td>
<td>(0.040)</td>
<td>(0.041)</td>
</tr>
<tr>
<td>Δp_{-it}</td>
<td>0.400***</td>
<td>0.321***</td>
</tr>
<tr>
<td></td>
<td>(0.079)</td>
<td>(0.095)</td>
</tr>
<tr>
<td># obs.</td>
<td>64,823</td>
<td>64,823</td>
</tr>
<tr>
<td>Year F.E.</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Industry F.E.</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>$H_0: \psi + \gamma = 1$</td>
<td>0.747</td>
<td>0.669</td>
</tr>
<tr>
<td>[p-value]</td>
<td>[0.00]</td>
<td>[0.00]</td>
</tr>
<tr>
<td>Overid J-test χ^2</td>
<td>2.41</td>
<td>0.74</td>
</tr>
<tr>
<td>[p-value]</td>
<td>[0.30]</td>
<td>[0.69]</td>
</tr>
<tr>
<td>Weak IV F-test</td>
<td>199.1</td>
<td>154.6</td>
</tr>
</tbody>
</table>

Table 1b: First-stage regressions

<table>
<thead>
<tr>
<th>Dep. var.: Δmc_{it}</th>
<th>Δp_{it}</th>
<th>For column 3</th>
<th>For column 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δmc_{it}^δ</td>
<td>0.681***</td>
<td>0.167***</td>
<td>0.647***</td>
</tr>
<tr>
<td></td>
<td>(0.117)</td>
<td>(0.034)</td>
<td>(0.120)</td>
</tr>
<tr>
<td>Δmc_{-it}^e</td>
<td>0.851***</td>
<td>1.355***</td>
<td>0.832***</td>
</tr>
<tr>
<td></td>
<td>(0.363)</td>
<td>(0.217)</td>
<td>(0.372)</td>
</tr>
<tr>
<td>Δe_{-it}^X</td>
<td>-0.407</td>
<td>0.637***</td>
<td>-0.353</td>
</tr>
<tr>
<td></td>
<td>(0.363)</td>
<td>(0.217)</td>
<td>(0.372)</td>
</tr>
<tr>
<td>Δp_{-it}^E</td>
<td>0.089</td>
<td>0.481***</td>
<td>0.194</td>
</tr>
<tr>
<td></td>
<td>(0.226)</td>
<td>(0.149)</td>
<td>(0.281)</td>
</tr>
<tr>
<td>First stage F-test</td>
<td>48.5</td>
<td>79.7</td>
<td>28.9</td>
</tr>
<tr>
<td>[p-value]</td>
<td>[0.00]</td>
<td>[0.00]</td>
<td>[0.00]</td>
</tr>
</tbody>
</table>

Notes: All regressions are weighted by lagged domestic firm sales and include year fixed effects, with robust standard errors clustered at the 4-digit industry level reported in parentheses. The lower panel presents the first stage-regressions corresponding to column 3 and 4 respectively. See the text for the definition of the instruments. The IV regressions pass the weak instrument test with F-stats well above critical values and pass all overidentification tests. The null of Proposition 2 (i.e., parameter restriction (10) that $\alpha + \gamma = 1$) cannot be rejected in both IV specifications, while it is rejected in OLS specifications; column 5 reports the results of the IV estimation under the restriction $\alpha + \gamma = 1$.

The results in Table 1 show that firms exhibit incomplete pass-through of their cost shocks, holding constant the competitor prices, with an average elasticity α of around 0.6. At the same time, firms exhibit substantial strategic complementarities, adjusting their prices with an average elasticity γ of around 0.5 in response to the price changes of their competitors, in the absence of any own cost shocks.
In other words, in response to a 10% increase in competitor prices, firm i raises its own price by almost 5%, accounted for entirely by an increase in its markup. These estimates are very stable across various specifications and subsamples, as we report in Section 3.4. The estimates of γ and α offer a direct quantification of the average strength of strategic complementarities in price setting across Belgian manufacturing firms.\(^{25}\)

Heterogeneity of coefficients We now explore firm heterogeneity, following the theory in Section 2, and allow the two estimated elasticities to vary with firm size. Specifically, we split our observations into subsamples for small and large firms, and estimate elasticities separately for each group.\(^{26}\)

We begin by defining a large firm as one with 100 or more employees on average over the sample period. Columns 1 and 2 of Table 2 report the results from IV estimation of equation (13) for the sub-samples of small and large firms separately. In comparison to the average baseline results, we find that small firms have a larger coefficient on their own marginal cost, equal to 0.97, insignificantly different from 1, and a small and insignificant coefficient of -0.05 on the competitor price index. In contrast, large firms have a smaller coefficient on their marginal cost, 0.48, and a larger coefficient on the competitor price index, 0.65, both statistically significant. An alternative way to identify differential effects between small and large firms is to pool all firms in one equation and interact both right-hand-side variables with a Large$_i$ dummy, as in column 3. We find the same pattern of results, albeit with more noisy estimates: the two elasticities for the small firms are estimated at 1.01 and 0.02, while these elasticities for the large firms are 0.49 ($=1.01-0.52$) and 0.62 ($=0.02+0.60$). Interestingly, despite these differences between large and small firms, we cannot reject that the sum of the elasticities within each group still equals one, consistent with Proposition 2.

One potential concern with these results is that there could be industry-level correlated marginal cost shocks. For example, if there is a global demand shock to an industry, input prices might increase everywhere as producers increase production and therefore input demand. We address this concern by additionally including industry \times year fixed effects in the next two columns of Table 2. In column 4, we show that the results are robust to including very fine 4-digit industry \times year fixed effects, replacing the competitor price index Δp_{-it}. This specification also addresses the potential concern about the

\(^{25}\)Using (7), we can convert these estimates to recover the average markup elasticity Γ in the range of 0.6–1.2 (recall that we cannot reject $\Gamma_{-it} = \Gamma_{it}$). These estimates are largely in line with the values suggested by Gopinath and Itskhoki (2011) based on the analysis of various indirect pieces of evidence. In order to obtain substantial amplification of monetary non-neutrality in the New Keynesian literature, some studies have adopted rather extreme calibrations with $\Gamma > 5$, an order of magnitude above our estimates (see also Klenow and Willis 2016). Our results, however, do not imply that strategic complementarities in price setting are unimportant for monetary business cycles, yet this mechanism alone cannot account for the full extent of monetary non-neutrals and it needs to be reinforced by other mechanisms (such as roundabout production as in Basu 1995 or local input markets as in Woodford 2003).

\(^{26}\)Estimating pass-through and strategic complementarities by finer bins of firms (beyond a simple two-bin split) is difficult because there are so few large firms. Indeed, our bin of small firms, with employment below 100, contains over 75% of observations, yet accounts for less than 25% of total domestic sales. In contrast, extra-large firms with more than 1000 employees account for over 33% of sales, yet under 4% of observations, making separate estimation for this bin infeasible. We describe alternative splits of the data in Appendix Figure A1.

\(^{27}\)Note that both interaction terms in column 3 of Table 2 are significant when we use firm-level clustering or if we weight the regressions with current sales instead of our more conservative industry-level clustering and lagged sales weights (see the Online Appendix Table O2).
Table 2: Strategic complementarities: heterogeneity

<table>
<thead>
<tr>
<th>Sample:</th>
<th>Small</th>
<th>Large</th>
<th>All</th>
<th>All</th>
<th>All</th>
<th>All</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dep. var.: Δp_{it}</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7)</td>
</tr>
<tr>
<td>Δmc_{it}</td>
<td>0.972***</td>
<td>1.006***</td>
<td>0.937***</td>
<td>1.012***</td>
<td>0.802***</td>
<td>0.800***</td>
<td></td>
</tr>
<tr>
<td>(0.160)</td>
<td>(0.211)</td>
<td>(0.128)</td>
<td>(0.195)</td>
<td>(0.221)</td>
<td>(0.123)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta mc_{it} \times \text{Large}_{i}$</td>
<td>0.478**</td>
<td>-0.515</td>
<td>-0.297*</td>
<td>-0.549</td>
<td>-0.235</td>
<td>-0.315</td>
<td></td>
</tr>
<tr>
<td>(0.203)</td>
<td>(0.344)</td>
<td>(0.178)</td>
<td>(0.432)</td>
<td>(0.364)</td>
<td>(0.201)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δp_{-it}</td>
<td>-0.047</td>
<td>0.019</td>
<td>0.134</td>
<td>0.208</td>
<td>0.100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.194)</td>
<td>(0.237)</td>
<td>(0.229)</td>
<td>(0.205)</td>
<td>(0.102)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta p_{-it} \times \text{Large}_{i}$</td>
<td>0.645***</td>
<td>0.604*</td>
<td>0.668*</td>
<td>0.396</td>
<td>0.604***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.175)</td>
<td>(0.320)</td>
<td>(0.403)</td>
<td>(0.335)</td>
<td>(0.187)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># obs.</td>
<td>49,469</td>
<td>15,354</td>
<td>64,823</td>
<td>64,823</td>
<td>64,822</td>
<td>64,823</td>
<td></td>
</tr>
<tr>
<td>Ind.&Year F.E.</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>—</td>
<td>—</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Ind.×Year F.E.</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>4-digit</td>
<td>2-digit</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Overid. J-test χ^2</td>
<td>2.26</td>
<td>0.49</td>
<td>5.62</td>
<td>—</td>
<td>4.96</td>
<td>5.42</td>
<td>4.98</td>
</tr>
<tr>
<td>[p-value]</td>
<td>[0.32]</td>
<td>[0.78]</td>
<td>[0.23]</td>
<td>—</td>
<td>[0.29]</td>
<td>[0.25]</td>
<td>[0.29]</td>
</tr>
<tr>
<td>Weak IV F-test</td>
<td>87.4</td>
<td>40.3</td>
<td>67.2</td>
<td>211.7</td>
<td>69.3</td>
<td>77.7</td>
<td>77.9</td>
</tr>
</tbody>
</table>

Notes: The definition of Large, in columns 1–5 is based on employment size and in columns 6–7 is based on firm’s sectoral market share, as described in the text. All specifications include variable Large, in levels, and observations are weighted with lagged domestic firm sales. Regressions in columns 1–3 and 6–7 include 4-digit industry and year fixed effects, with robust standard errors clustered at the industry level, and the instrument set is as in Table 1. Column 4 includes 4-digit industry×year fixed effects and drops the competitor price variables, with standard errors clustered at the firm level; this specification is exactly identified with two endogenous variables and two instruments Δmc_{it} and $\Delta mc_{it} \times \text{Large}_{i}$ (hence no overid J-test). Column 5 is the same as column 3, but with 2-digit industry×year fixed effects. Appendix Table A3 reports the first stages.

measurement of an appropriate competitor price index. In column 5, we re-estimate column 3 adding in broader 2-digit industry×year fixed effects, to both control for sectoral demand shocks and directly identify the strategic complementarity coefficient on the competitor price changes. We find the results are almost identical to the baseline column 3.

In the last two columns of Table 2 we re-estimate the specification in column 3 using alternative definitions of large firms based on a firm’s market share within its respective 4-digit industry: in column 6, we define large firms to be those in the top 20% of their 4-digit industry by domestic sales; and in column 7 those with average market shares exceeding 2% within their industry. Both cases yield similar results.

Since the variation in Δp_{-it} is predominantly at the industry-year level (accounting for more than 90% of the variation), the strategic complementarity elasticity is identified largely from the panel data variation, and thus Δp_{-it} has to be excluded when the 4-digit industry×year fixed effects are included into the regression. The own pass-through elasticity, however, can be identified from the within-industry-year variation in Δmc_{it}. Under the assumptions of Proposition 2, strategic complementarities can be recovered from these estimates using the parameter restriction (10), which implies an insignificant strategic complementarity elasticity of 0.06 for small firms and a significantly larger elasticity of 0.36 for large firms.

Appendix Table A2 provides evidence that these heterogeneity results are not driven by spurious correlations in the data. In particular, we check that the large-firm results are not driven by exporters or multinationals and the small-firm results are not driven by non-importers. In addition, Appendix Table A3 reports the first-stage regressions corresponding to columns 1–3 of Table 2, showing consistent patterns for both small and large firms.
Our results suggest there is substantial heterogeneity in firms’ pass-through elasticities and strategic complementarities in price setting. Namely, the small firms exhibit nearly complete pass-through of cost shocks ($\alpha \approx 1$) and almost no strategic complementarities in price setting ($\gamma \approx 0$), consistent with the constant-markup behavior of monopolistic competitors under CES demand. Indeed, this corresponds to the predicted behavior of firms with nearly zero market shares in the oligopolistic competition model of Section 2. At the same time, the large firms behave very differently, exhibiting both incomplete pass-through of cost shocks (around 0.5) and strong strategic complementarities in price setting (around 0.6). Since these largest firms account for the majority of market sales, their behavior drives the average elasticities across all of manufacturing in the baseline results in Table 1.

3.3 Threats to identification

We now explore and address the possible threats to our baseline IV identification strategy. Although our baseline instruments rely on different sources of variation and jointly pass the overidentification tests, one may still be concerned with the validity of each of the instruments separately. We address this by considering alternative instrument sets with the aim of excluding potential sources of endogeneity in the baseline specification. We show that our results are not sensitive to dropping any one instrument, as well as to replacing them with alternative, more conservative, instruments. Since the potential source of endogeneity for different subsets of instruments is not the same, the robustness of our results across different sets of instruments adds confidence about the validity of our identification strategy (this argument is developed further, in a different context, by Duranton and Turner 2012).

The theoretical framework of Section 2 implies that the residual term ε_{it} in the estimating equation (13) is a transformation of the firm-specific demand shifters. Therefore, the two main identification concerns are the presence of correlated demand (and cost) shocks at the industry level and at the firm level. Correlated aggregate shocks that simultaneously raise the prices of inputs and output across industries could arise, for example, due to aggregate or sector-specific business cycle fluctuations or global shifts in demand. Some of this is already absorbed by the year and industry fixed effects in our baseline specification. Furthermore, specifications in columns 4 and 5 of Table 2 include a very rich set of interaction year × industry fixed effects, which absorb all correlated time-varying industry-level demand and cost shocks. Nevertheless, residual endogeneity concerns remain at the micro level, arising from the within-industry or within-firm correlations. From this perspective, we consider the robustness of each of the baseline instruments in turn.

First, we address a potential endogeneity concern with the instrument for the eurozone competitor prices $\Delta p_{E, it}$, which comprises the changes in export prices of eurozone countries to destinations other than Belgium as a proxy for the marginal costs of eurozone producers. If demand shocks are correlated across Belgium and other eurozone countries, this may invalidate $\Delta p_{E, it}$. To mitigate this concern, we replace the baseline $\Delta p_{E, it}$ with a similarly constructed instrument that only uses export prices to destinations outside the eurozone in column 1 of Table 3. We see that there is no change in the point estimates compared to the baseline specification in column 4 of Table 1. As a further check, column 2

19

These large firms also have higher accounting profits and profit margins, in line with the predictions of the theory and consistent with their price setting being profit maximizing.
For example, an increase in demand for the product of the firm may require it to purchase more inputs, related demand shocks for the product of the firm’s marginal cost, \(\Delta mc_{it} \). In particular, if demand shocks are correlated between product \(j \in D_i \), this may result in \(\Delta mc_{it}^* \) being correlated with the residual \(\varepsilon_{it} \). In column 3 of Table 3, we simply drop \(\Delta mc_{it}^* \) from the instrument set. This leads to little change from the baseline results, yet doubles the standard error on the competitor price index.

Third, one might be concerned about the endogeneity of our main instrument for the firm’s own marginal cost, \(\Delta mc_{it}^* \), which is constructed using changes in the individual imported input prices of Belgian firms. The identification threat here could be of a similar nature as for \(\Delta mc_{it}^* \), namely correlated demand shocks for the product of firm \(i \) and its own imported inputs, which simultaneously raise \(\Delta p_{it} \) and \(\Delta mc_{it}^* \). But, perhaps more importantly, one should be concerned about various feedback mechanisms, where endogeneity arises due to the firm upgrading the quality of its product, affecting simultaneously its output and input prices, or due to upward sloping firm-level supply curves for inputs. For example, an increase in demand for the product of the firm may require it to purchase more inputs, leading the input suppliers to raise their prices in response.

We address this set of concerns in columns 4–7 of Table 3, where we reconstruct both baseline instruments \(\Delta mc_{it}^* \) and \(\Delta mc_{it}^* \). In column 4, we replace both the firm-level marginal cost instrument \(\Delta mc_{it}^* \) and the domestic competitors’ marginal cost instrument \(\Delta mc_{it}^* \) with the corresponding firm-level exchange rate based instruments \(\Delta e_{it} \) and \(\Delta e_{it}^* \), which are plausibly exogenous to the price setting of the firm. Specifically, in parallel with (19), we construct these instruments by weighting the bilateral exchange rate changes with firm expenditure shares on imported inputs from respective source countries, \(\Delta e_{it} \equiv \phi_{it} \sum_m \omega_{im} \Delta e_{mt} \), where \(m \) indicates the source country for each imported input.
of firm i. The competitor instrument Δe_{-it} is then constructed analogously to Δmc^{*}_{-it} in (20). In this specification, we find very similar point estimates to the baseline, however, imprecisely estimated. What is important to note about this instrument set is that, by excluding all Belgian firm-level price changes and relying exclusively on the exchange rate variation, we have lost instruments that proxy for the bulk of imported inputs — from within the eurozone.\footnote{The only instrument that contains price changes, rather than exchange rate changes, is Δp^{E}_{it}, but these are product-level prices that proxy for competition from the eurozone, and there is no proxy for imported inputs from the eurozone.}

We compensate for the lack of exchange rate variation within the eurozone by constructing two new instruments to proxy for the imported inputs from eurozone countries without relying on the actual prices paid by Belgian firms. In columns 5 and 6, we use country-specific export price changes from eurozone countries to destinations other than Belgium and outside the eurozone, respectively. We aggregate these price changes using Belgian firm-level expenditure shares on corresponding imported inputs.\footnote{In parallel with Δmc^{*}_{it} in (19), which comprises the price changes of imported inputs from all countries, we construct a separate new instrument Δp^{M}_{it} to proxy for the component of the firm’s marginal cost arising from the eurozone-imported inputs, where we replace the firm-level import price changes Δv_{it} with the average product-level export prices from the eurozone countries: $\Delta p^{M}_{it} \equiv \phi_{it} \sum_{m \in E} \omega_{cit} \Delta p^{X}_{kst}(m)$, where E is the set of the eurozone-sourced inputs, ω_{cit} are still the firm-level import expenditure weights, $k(m)$ and $s(m)$ denote the source country and industry of input m, and Δp^{X}_{kst} is the change in the export price index from eurozone country k in industry s to all destinations other than Belgium in column 5 and outside the eurozone in column 6. Using Δp^{M}_{it}, we construct the domestic competitors’ price instrument Δp^{M}_{-it} by analogy with (20), which should be noted is distinct from the instrument p^{E}_{it} in (21) for eurozone competitors. Finally, for column 7, we additionally replace ω_{cit} with time-invariant $\bar{\omega}_{cit}$, which are time-averaged at the firm level.}

This restores the significance levels of the two coefficients of interest with little change in their magnitudes. In column 7, we re-estimate the specification from column 6, but now with time-invariant firm weights in all of the instruments, thereby excluding all Belgian firm-time variation from the instrument set.

Finally, in column 8 of Table 3, we revert back to our baseline instrument set but drop our proxy for the marginal costs of non-eurozone competitors $\Delta e_{X_{-it}}$ — the only instrument in the baseline set that was constructed using exchange rate movements. This specification, therefore, excludes any potential macroeconomic endogeneity that could arise from exchange rate variation. We find that the point estimates are unchanged relative to the baseline, but again with somewhat larger standard errors. Overall, the similarity in the estimation results across the different specifications in Table 3 helps alleviate the concerns about the validity of the instruments.

In all of these robustness checks, with some excluding firm-level price variation from the instrument set and others excluding exchange rate variation, we reach the same qualitative conclusions as in the baseline case and, if anything, the estimates of strategic complementarities become somewhat stronger. Therefore, we view our baseline estimates of strategic complementarities as conservative.

3.4 Additional robustness

We now provide a number of additional robustness checks to address other potential concerns with the baseline results, which include quality upgrading by firms, multiproduct firms, and alternative measures of the competitor price index.
Table 4: Robustness: quality and productivity upgrading

<table>
<thead>
<tr>
<th>Dep. var.: (\Delta p_{it})</th>
<th>Rauch index</th>
<th>Firm R&D</th>
<th>TFP</th>
<th>Labor productivity</th>
<th>Skill share</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta mc_{it})</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td></td>
<td>0.654***</td>
<td>0.721***</td>
<td>0.489*</td>
<td>0.672***</td>
<td>0.670***</td>
</tr>
<tr>
<td></td>
<td>(0.175)</td>
<td>(0.151)</td>
<td>(0.258)</td>
<td>(0.116)</td>
<td>(0.118)</td>
</tr>
<tr>
<td>(\Delta mc_{it} \times R_i)</td>
<td>(0.215)</td>
<td>(0.213)</td>
<td>(0.283)</td>
<td>(0.283)</td>
<td></td>
</tr>
<tr>
<td>(\Delta p_{it})</td>
<td>(0.191)</td>
<td>(0.207)</td>
<td>(0.346)</td>
<td>0.448***</td>
<td>0.450***</td>
</tr>
<tr>
<td></td>
<td>(0.191)</td>
<td>(0.247)</td>
<td>(0.360)</td>
<td>(0.122)</td>
<td>(0.124)</td>
</tr>
<tr>
<td>(\Delta log(TFP_{it}))</td>
<td></td>
<td></td>
<td></td>
<td>0.074***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.018)</td>
<td></td>
</tr>
<tr>
<td>(\Delta log(\frac{VA_{it}}{L_{it}}))</td>
<td></td>
<td></td>
<td></td>
<td>0.076***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.018)</td>
<td></td>
</tr>
<tr>
<td>(\Delta \text{Skill share}_{it})</td>
<td></td>
<td></td>
<td></td>
<td>-0.065</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.051)</td>
<td></td>
</tr>
</tbody>
</table>

obs. 64,823 64,823 15,354 64,247 64,405 61,004

Notes: All regressions are counterpart to column 4 of Table 1. In column 1, \(R_i \) is a dummy for whether firm-product \(i \) is in a differentiated sector according to the Rauch classification. In columns 2 and 3, \(R_i \) is a dummy for whether firm \(i \) records any positive R&D expenditure during the sample; column 3 limits the sample to the large firms only (as in column 2 of Table 2). Columns 4–6 add controls for firm-level changes in measured log TFP, log value added per worker and skill share of non-production workers, respectively.

Quality and productivity

There may still be remaining concern about the correlation between the residual term and the firm’s imported input prices that could arise if a firm were to endogenously adjust quality and/or productivity in response to changes in its own input costs or in its competitors’ prices, and violate the orthogonality of the instruments with \(\varepsilon_{it} \).\(^{33}\) If endogenous quality upgrading were to bias our results, we would expect this to be more likely in industries where the scope for quality upgrading is high. In column 1 of Table 4, we address this concern by checking if the coefficients in differentiated industries, according to the Rauch classification, differ with those in homogeneous industries, as we expect the scope for quality upgrading to be higher in differentiated industries (see e.g. Fan, Li, and Yeaple 2018). We find no statistically differential effects for differentiated versus homogeneous industries.\(^{34}\)

Another way of identifying industries with possibly elastic quality adjustment is to use measures of R&D intensity, as in Fan, Li, and Yeaple (2018) and Verhoogen (2008) at the industry level. We extend this approach by using firm-level R&D data, and compare R&D-intensive firms with the non-R&D-intensive firms. Again, if quality upgrading were biasing our results, we would expect to find evidence of that bias for firms that were engaging in R&D. To identify these firms, we create a firm-level

\(^{33}\)Note that the change in productivity and in the input mix are not part of our instrument set, and therefore are not a direct concern on its own, if demand shifter (quality) shocks and imported input price changes are not correlated.

\(^{34}\)We also checked if there were any differential effects for high vs low elasticity of substitution industries using estimates from Broda and Weinstein (2006). Again, we found no statistical differences in either of the coefficients.
indicator equal to 1 if the firm ever had positive expenditures on R&D during our sample period.\footnote{These data come from ECOOM (https://www.ecoom.be/en/services/rd). Because there was a change in the way these data were collected in 2002, we cannot use the time variation so we assume that firms that engaged in R&D in any year are R&D-intensive over the whole sample period.} We interact this dummy with the firm’s marginal cost and competitor price variables in column 2 of Table 4. Both interaction terms are insignificant but the point estimates suggest effects for R&D-intensive firms similar to large firms, which is not surprising given that large firms are the more R&D intensive firms. So in column 3, we re-estimate column 2 for the subset of large firms, defined as those with average employment above 100.\footnote{Few firms report positive R&D expenditure, and even in the large-firm subsample only about half of the observations have an R&D dummy equal to 1.} The interactive coefficients are again insignificant and now much closer to zero in magnitude, suggesting that quality upgrading is unlikely to be biasing our results.

An additional way to check for quality-upgrading bias is to control for the change in the measures of firm productivity, with the premise that productivity changes and quality upgrading are correlated. In column 4, we find a positive significant coefficient on the log change in measured (revenue-based) TFP, but its inclusion leaves the coefficients on marginal costs and competitor prices unchanged. Firms with an increase in measured TFP start charging higher prices, possibly because of higher quality (or higher markups), but this does not affect the elasticities \(\alpha \) and \(\gamma \) we estimate, consistent with the assumption of the validity of our instruments. Similarly, replacing the change in TFP with a change in the labor productivity (value added per worker) in column 5 leads to the same conclusion. In column 6, we control for the change in the skill composition of the labor force, defined as the number of managers and nonproduction workers as a share of the total labor force. We find the coefficient on the change in the skill share is insignificant and leaves the coefficients on the key variables of interest unchanged.\footnote{We also check whether currency movements, which were used as instruments in some specifications, are associated with systematic change in the set of imported inputs, which could in turn affect the quality of output, measured marginal costs and prices. We find no evidence of such extensive margin adjustment at the annual frequency that we focus on. Similarly, we show that the firm’s import intensity \(\phi_{it} \) is not sensitive to exchange rate movements at the annual frequency, as 90% of the variation in \(\phi_{it} \) is explained by firm fixed effects. We report these results in the Online Appendix Tables O4 and O5.}

Multiproduct firms An important potential concern is that the marginal cost variable is constructed at the firm level, whereas our unit of observation is at the firm-product level, resulting in measurement error biasing downwards the coefficient on the own marginal cost. It is generally difficult to assign costs across products within firms. To check that this multiproduct issue is not biasing our results, we conduct a number of robustness tests in Table 5. First, in columns 1 and 2, we restrict the sample to the firm’s largest product in terms of domestic sales, defined at the PC 8-digit in column 1 and at the NACE 4-digit in column 2.\footnote{We prefer this approach over limiting the sample to single-product firms only, as single-product firms constitute a very selected sample of small firms. We report the results from the sample of single-product firms in the Online Appendix Table O3. Also note that the products dropped by multiproduct firms account for 10% of the observations, but only 3% of the value, suggesting that multiproduct firms drop peripheral products, consistent with the literature.} If present, the measurement error from assigning the inputs proportionally to all products of the firm should be considerably smaller in these specifications. We find no change in the results relative to our baseline, suggesting at most a limited role for a potential measurement error bias. Nonetheless, we provide further robustness checks in columns 3 and 4, where we construct a firm-product level measure of \(\Delta m_{it} \) by apportioning inputs to products using the IO tables, as in Manova.\footnote{We also check whether currency movements, which were used as instruments in some specifications, are associated with systematic change in the set of imported inputs, which could in turn affect the quality of output, measured marginal costs and prices. We find no evidence of such extensive margin adjustment at the annual frequency that we focus on. Similarly, we show that the firm’s import intensity \(\phi_{it} \) is not sensitive to exchange rate movements at the annual frequency, as 90% of the variation in \(\phi_{it} \) is explained by firm fixed effects. We report these results in the Online Appendix Tables O4 and O5.}
Table 5: Robustness: alternative samples and variables

<table>
<thead>
<tr>
<th>Dep. var.: Δp_{it}</th>
<th>Main product</th>
<th>IO-table input allocation</th>
<th>Two-period differences</th>
<th>Finer industries</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Δmc_{it}</td>
<td>0.555***</td>
<td>0.631***</td>
<td>0.744***</td>
<td>0.663***</td>
</tr>
<tr>
<td></td>
<td>(0.145)</td>
<td>(0.126)</td>
<td>(0.162)</td>
<td>(0.161)</td>
</tr>
<tr>
<td>Δp_{-it}</td>
<td>0.498***</td>
<td>0.538***</td>
<td>0.387***</td>
<td>0.385*</td>
</tr>
<tr>
<td></td>
<td>(0.192)</td>
<td>(0.177)</td>
<td>(0.135)</td>
<td>(0.210)</td>
</tr>
</tbody>
</table>

obs. 27,031 48,284 64,823 64,823 51,322 64,350 62,713

Notes: All regressions are counterpart to column 4 of Table 1. Columns 1 and 2 include only observations for the firm’s largest product in terms of domestic sales: column 1 at the 8-digit product category level and column 2 at the 4-digit industry level. Columns 3 and 4 construct a firm-product level measure of Δmc_{it} by apportioning inputs to products using IO tables (weighted and simple averages of firm inputs in column 3 and 4, respectively). Column 5 is in two-period (year) differences. Columns 6 and 7 define all competition variables relative to 5- and 6-digit industries, respectively.

and Yu (2017). Since the IO tables are far more aggregated than the import data, we aggregate firm inputs up to the IO level using firm-expenditure weighted averages in column 3 and simple input count averages in column 4. The competitor marginal cost is also reconstructed using these new firm-product level measures. We again find no material change in our baseline results.

Dynamic price setting Our theoretical framework of Section 2 relies on the assumption of static flexible price setting. If, instead, prices were set dynamically, as for example in sticky price models, the markups of firms could mechanically move with shocks, resulting in incomplete pass-through of marginal cost shocks. More generally, with sticky prices we would expect the price changes to be on average smaller for any given set of shocks, as some firms fail to adjust prices. Consequently, we would expect downward biased estimates for both elasticities, with less biased estimates over longer horizons, as more firms have time to fully adjust their prices (see Gopinath and Itskhoki 2010). Column 5 of Table 5 re-estimates the baseline specification with all of the variables constructed using two-year differences instead of the baseline annual differences, to address the concern of price stickiness and other types of dynamic considerations in price setting. We find that the coefficients in the specification with bi-annual differences are very similar to the baseline, albeit somewhat less precisely estimated as the sample size shrinks, with the sum of the two elasticities still close to one. This suggests that price stickiness and other dynamic considerations in price setting do not bias our baseline annual-frequency results in a major way.

Competitor price index There may be a number of potential concerns arising from the construction of the price index. First is the definition of an industry. If it is too broad, the competitor price index may not accurately reflect the relevant competition and could lead to biased estimates. In our baseline, we define an industry at the 4-digit NACE level, which divides the 1,500 8-digit products in our sample into about 160 industries. In columns 6 and 7 of Table 5, we redefine the competition variables at

39Our estimated elasticities are still informative even when price setting is dynamic, as they can be used for indirect inference in the context of a dynamic model. It is also possible to generalize our framework to explicitly allow for dynamic price setting, which however would result in an estimating equation that is specific to a particular dynamic model.
Table 6: Robustness: alternative measures of competitor prices

<table>
<thead>
<tr>
<th>Dep. var.: Δp_{it}</th>
<th>Placebo with random industry assignment</th>
<th>Largest competitor(s)</th>
<th>Placebo with Δmc_{it}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Δmc_{it}</td>
<td>0.949***</td>
<td>0.647***</td>
<td>0.652***</td>
</tr>
<tr>
<td></td>
<td>(0.101)</td>
<td>(0.139)</td>
<td>(0.114)</td>
</tr>
<tr>
<td>Δp_{-it}</td>
<td></td>
<td></td>
<td>0.487***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.159)</td>
</tr>
<tr>
<td>$S_{-it}^L \cdot \Delta p_{L_{-it}}$</td>
<td>0.470**</td>
<td>0.394*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.238)</td>
<td>(0.223)</td>
<td></td>
</tr>
<tr>
<td>$(1 - S_{-it}^L) \cdot \Delta p_{-it}^L$</td>
<td>0.477***</td>
<td>0.639***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.161)</td>
<td>(0.245)</td>
<td></td>
</tr>
<tr>
<td>$\Delta \tilde{p}_{-it}$</td>
<td>0.036</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.114)</td>
<td>(0.094)</td>
<td></td>
</tr>
<tr>
<td>Δmc_{-it}</td>
<td></td>
<td></td>
<td>-0.220</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.424)</td>
</tr>
<tr>
<td># obs.</td>
<td>64,823</td>
<td>64,823</td>
<td>64,823</td>
</tr>
</tbody>
</table>

Notes: All regressions build on the baseline specification in column 4 of Table 1. Columns 1 and 2 add a randomly constructed price index $\Delta \tilde{p}_{-it}$ for fictitious competitors randomly assigned to the industry. Column 3 (4) splits the competitor price index into the price changes for the largest competitor(s) $\Delta p_{L_{-it}}$ and the other competitors Δp_{-it}^L, as described in the text and footnote 40. Column 5 includes domestic competitor marginal costs Δmc_{-it}.

Second, one might worry that the positive coefficient on the competitor price index arises from a mechanical relationship due to the correlated price changes. We alleviate this concern by showing that the positive coefficient disappears if we were to construct the competitor price index from fictitious industries. We estimate these placebo regressions by randomly assigning each firm-product-year to one of 8-digit products, and then calculate a counterfactual industry-year competitor price index and associated instruments using this random set of firms within each NACE 4-digit industry. We find, in column 1 of Table 6, that the coefficient on such a competitor price index (which we denote $\Delta \tilde{p}_{-it}$) is estimated to be 0.04 with a standard error of 0.11. When we additionally control for the actual competitor price index (Δp_{-it}), in column 2, the coefficient on the counterfactual competitor price index drops to 0.004 with a standard error of 0.094, that is a very precisely estimated zero. We also note, from comparing columns 1 and 2, that when the true competitor price index is omitted, the regression erroneously recovers a nearly complete pass-through of 0.95 on firms’ own marginal cost shocks.

Third, we check the validity of our baseline measurement of the competitor price index Δp_{-it}, which relied on Proposition 2 and aggregated all competitor price changes weighting by their market shares. Instead, firms may put a higher or lower weight on prices of a particular subset of competitors, e.g. the largest firms in the industry. In column 3 of Table 6, we test the null of Proposition 2 by splitting the competitor price index Δp_{-it} into the largest competitor $\Delta p_{L_{-it}}$ and all other competitors Δp_{-it}^L and premultiply them by their respective market shares, to test whether the firm is equally sensitive
to the two resulting variables. Both estimated coefficients are significant, close to 0.5, and nearly indistinguishable quantitatively. In column 4, we redefine $\Delta p_{L}^{L_{it}}$ to correspond to all firms within-industry with at least 2% market share. In this case, we find that the coefficient on the large firms is somewhat smaller (equal to 0.4) than that on the other firms (equal to 0.6), although the difference is not statistically significant. These results confirm that the importance of competitors is appropriately proxied by their market shares, consistent with Proposition 2 and the construction of our baseline competitor price index Δp_{-it}.

Finally, column 5 includes the marginal cost index for the firm’s competitors Δmc_{-it}, which according to Proposition 1 should have no effect on firm pricing once we control for competitor prices Δp_{-it}. This theoretical prediction is again borne out by the data.

In sum, we find strong robust evidence of positive strategic complementarities, with substantial heterogeneity across small and large firms.

4 Exchange Rate Depreciation and Domestic Price Inflation

We now apply the general framework of the earlier section, with our elasticity estimates, to study the effects of an exchange rate depreciation on aggregate domestic prices and markups. We use this framework to study the underlying transmission mechanism from firm-level shocks to sector-level price and markup adjustment. In particular, we show that the transmission of shocks into aggregate prices depends not just on the presence of strategic complementarities, but more importantly on the heterogeneity in markup variability across firms of the sort we document in Section 3. We study under what circumstances aggregate markups fall in response to an exchange rate depreciation and act to mute the response of domestic price inflation, thereby shedding light on the low exchange rate pass-through observed in the data (see e.g. Goldberg and Campa 2010).

4.1 From micro to macro

We start with the firm-level price setting behavior and show how import intensities and strategic complementarities of individual firms serving the home market aggregate up and shape the price and markup responses at the aggregate (sectoral) level. Towards this goal, we specialize the price change decomposition in equation (4) to the case of an exchange rate shock $d_{it} > 0$, corresponding to a domestic currency depreciation. The projection of equation (4) onto the exchange rate shock can be written as:

$$
\psi_{it} \equiv \left\{ \frac{dp_{it}}{de_{it}} \right\} = \frac{1}{1 + \Gamma_{it}} \cdot \left\{ \frac{dmc_{it}}{de_{it}} \right\} + \frac{\Gamma_{-it}}{1 + \Gamma_{it}} \cdot \left\{ \frac{dp_{-it}}{de_{it}} \right\},
$$

(22)

where expectations are taken over possible realizations of the firms’ idiosyncratic shocks. We assume that idiosyncratic demand shocks are not systematically correlated with the exchange rate shock.

Formally, the decomposition of the full competitor price index is as follows: $\Delta p_{-it} = S_{L}^{S_{it}} \Delta p_{L}^{S_{it}} + (1 - S_{L}^{S_{it}}) \Delta p_{-it}$, where $S_{L}^{S_{it}} = \max_{j \neq i} S_{jt}/(1 - S_{it})$, where j denotes firm’s competitors within a 4-digit industry.

Our framework is suitable for the analysis of any shock that affects marginal costs differentially across firms, for example, import tariffs or the “rise of China” (i.e., the productivity growth in a major trade partner).
i.e. \(\mathbb{E}\{ \frac{d\varepsilon_{it}}{de_t} \} = 0 \), which is a realistic assumption in the context of individual products in differentiated industries.

In (22), \(\psi_{it} \) denotes firm \(i \)'s exchange rate pass-through (ERPT), \(\Psi_{-it} \) is the ERPT into its competitor prices, and \(\varphi_{it} \) is its marginal cost sensitivity (or exposure) to the exchange rate. We assume that the conditions of Proposition 2 apply, and thus we have \(\Psi_{-it} = \sum_{j \neq i} \frac{S_{it}}{S_{jt}} \psi_{jt} \) and \(\Gamma_{it} = \Gamma_{-it} \), consistent with our empirical estimates. These restrictions prove useful for tractable aggregation. To further simplify the analysis, we make a strong assumption that \(\varphi_{it} \) can be proxied by the import intensity of firm \(i \), \(\phi_{it} \), which we observe in the data. That is, we assume that a firm’s exposure to the exchange rate \(\varphi_{it} \) reflects its share of foreign value added in total variable costs.\(^{42} \) While we view this as a natural assumption for our baseline quantification, the theoretical results below apply more generally for any structure of cost shocks \(\{\varphi_{it}\} \), which may differ from the observable expenditure shares \(\{\phi_{it}\} \).

We are interested in characterizing the aggregate ERPT:

\[
\Psi_t \equiv \mathbb{E}\left\{ \frac{dp_t}{de_t} \right\} = \sum_{i=1}^{N} S_{it} \psi_{it}, \tag{23}
\]

where \(dp_t = \sum_{i=1}^{N} S_{it} dp_{it} \) is the sectoral price inflation and \(N \) is the total number of firms in the sector, including both domestic and foreign firms. The aggregate cost sensitivity to the exchange rate is a similarly weighted average across firms:

\[
\varphi_t \equiv \mathbb{E}\left\{ \frac{dmc_t}{de_t} \right\} = \sum_{i=1}^{N} S_{it} \varphi_{it}. \tag{24}
\]

We view \(\varphi_t \) as the foreign value added content of the aggregate sectoral output, embodied partly in output supplied by the foreign firms and partly in foreign intermediate inputs used by the domestic firms. In a competitive model with marginal cost pricing, \(\varphi_t \) is a sufficient statistic for ERPT, as it does not matter whether foreign value added reaches the domestic market in the form of output or intermediate inputs. As we will shortly see, this distinction, and in particular the distribution of \(\{\varphi_{it}\} \) across firms, matter a lot in a world of imperfect competition with strategic complementarities in pricing.

The difference between \(\Psi_t \) and \(\varphi_t \) captures the aggregate markup response to the shock, which aggregates the markup responses of individual firms, \(\Psi_t - \varphi_t = \sum_{i=1}^{N} S_{it} (\psi_{it} - \varphi_{it}) \). The firm-level markup adjustment can be expressed, using (22) and (23), as follows:

\[
\mathbb{E}\left\{ \frac{d\mu_{it}}{de_t} \right\} = \psi_{it} - \varphi_{it} = -\kappa_{it}(\varphi_{it} - \Psi_t), \quad \text{where} \quad \kappa_{it} \equiv \frac{\Gamma_{it}}{1 - S_{it} + \Gamma_{it}}. \tag{25}
\]

\(^{42} \) There are a number of caveats to this assumption. First, the pass-through into foreign input prices may be incomplete; there may be correlated adjustment in the prices of domestically-produced inputs; or some of the foreign inputs may reach non-importing home firms via domestic wholesalers. While these factors could raise or lower the level of aggregate ERPT, our qualitative conclusions about the aggregate markup adjustment still hold provided the ranking of \(\varphi_{it} \) across firms remains unchanged. Second, exchange rate movements may trigger firms to adjust their cost structure, including sources of intermediate inputs, or to invest in quality and productivity-upgrading. While such changes are likely to occur over longer horizons and in response to larger exchange rate devaluations, they are less prevalent for typical exchange rate movements at the annual frequency, which is our focus here. Still, our main results apply more generally, provided \(\varphi_{it} \) is reinterpreted to capture both the intensive and extensive margin responses over longer horizons.
Note that $\kappa_{it} \in [0, 1)$ increases in the markup elasticity Γ_{it} and captures the elasticity of the firm’s price to the sectoral price index, while $1 - \kappa_{it}$ is the firm’s own cost pass-through elasticity holding the sectoral price index constant.\footnote{Elasticities κ_{it} and $(1 - \kappa_{it})$ differ from those we estimate in Section 3 when firms are large, i.e. $S_{it} > 0$, while under monopolistic competition (with $S_{it} \to 0$ for all i) they are the same. Formally, $1 - \kappa_{it}$ and $1/(1 + \Gamma_{it})$ both capture dp_{it}/dmc_{it}, where the former holds the full price index constant ($dp_{it} = 0$), while the latter holds the competitor price index constant ($dp_{-it} = 0$).}$ It follows from (25) that a firm reduces its markup if $\varphi_{it} > \Psi_{t}$, that is if its costs are affected more by the shock than the average price, and hence the firm loses its competitive standing in the industry.

We now explore the conditions when the aggregate (industry) markup declines in response to an exchange rate depreciation, muting the aggregate ERPT, $\Psi_{t} < \varphi_{t}$. We assume a stable set of N firms operating in the industry, without entry or exit, in line with the medium-run focus of our analysis. Under these assumptions, we prove the following main result:

Proposition 3 The equilibrium exchange rate pass-through into the sectoral price level is given by:

$$
\Psi_{t} = \frac{1}{1 - \bar{\kappa}_{t}} \sum_{i=1}^{N} S_{it}(1 - \kappa_{it}) \varphi_{it} = \varphi_{t} - \frac{\text{cov}(\kappa_{it}, \varphi_{it})}{1 - \bar{\kappa}_{t}},
$$

where $\bar{\kappa}_{t} = \sum_{j=1}^{N} S_{jt} \kappa_{jt}$ and $\text{cov}(\kappa_{it}, \varphi_{it}) = \sum_{i=1}^{N} S_{it}(\kappa_{it} - \bar{\kappa}_{t}) \varphi_{it}$ is a sales-weighted covariance. Proposition 3 shows that, in general, in the presence of strategic complementarities, $\kappa_{it} = \frac{\Gamma_{it}}{1-S_{it}+\Gamma_{it}} \neq 0$, the aggregate pass-through into prices Ψ_{t} differs from that into costs φ_{t}. This, however, requires heterogeneity in both the cost shocks φ_{it} and the markup elasticities Γ_{it}, as well as a correlation between them, as we highlight in the following two corollaries. In the first corollary, we consider two special cases where the aggregate markup does not change in response to cost shocks.

Corollary 1 (i) If $\varphi_{it} \equiv \bar{\varphi}_{t}$, constant across all firms i, then $\Psi_{t} = \bar{\varphi}_{t}$ (aggregate ERPT is complete) and all individual markups and the aggregate markup remain unchanged, independently of $\{S_{it}, \Gamma_{it}\}_{i=1}^{N}$.

(ii) For any cost shock profile $\{\varphi_{it}\}_{i=1}^{N}$, if $\kappa_{it} = \frac{\Gamma_{it}}{1-S_{it}+\Gamma_{it}} = \text{const}$ for all firms i, then $\Psi_{t} = \bar{\varphi}_{t}$ and the aggregate markup is constant, even if all $\Gamma_{it} > 0$ and individual markups adjust to the shock.

The first part of Corollary 1 emphasizes that the presence of strategic complementarities ($\Gamma_{it} > 0$) in itself is insufficient to lead to markup adjustment, even at the individual firm level, if firms face common (aggregate) cost shocks. The firm’s direct response to a cost shock may be incomplete, with a pass-through elasticity of $1/(1 + \Gamma_{it})$, but there are further rounds of adjustment as firms respond to changes in their competitors’ prices. When all firms face the same shock, the fixed point equilibrium outcome is the complete pass-through of the cost shock into prices, which leaves relative prices unchanged. As a result, there is no change in firms’ relative competitiveness, and hence no markup adjustment in response to such shocks.\footnote{In the long run, as the industry responds to the cost shock with entry and exit of firms, the average markup may change even under the conditions of Corollary 1.}

Interestingly, from the second part of Corollary 1, even if firms were hit by heterogeneous cost shocks, the aggregate markup would not change in the absence of firm-level heterogeneity in markup...
elasticities. This would occur, for example, under monopolistic competition (with $N \to \infty$ and $S_{it} \to 0$ for all i) and a common markup elasticity $\Gamma_{it} = \Gamma$ for all firms i, which implies $\kappa_{it} = \frac{\Gamma}{1+\Gamma}$ is constant. This nests the conventional CES case, but it is considerably more general, as it does not require $\Gamma = 0$. Indeed, with $\Gamma > 0$, Corollary 1 allows for arbitrary strong strategic complementarities and incomplete pass-through at the firm level. With some firms more exposed to the cost shock than others (e.g., foreign versus home firms), their competitive standing in the industry changes, and they adjust their markups differentially. In particular, as some firms gain sales shares and increase their markups, other firms lose sales shares and reduce their markups. With a common markup elasticity, the individual markup increases and decreases exactly offset each other, and the aggregate markup remains unchanged.

The second part of Corollary 1 is a powerful, and perhaps surprising, implication of Proposition 3, as it suggests that the effects of strategic complementarities may well wash out in the aggregate, resulting in exactly zero adjustment to the aggregate markup, despite the arbitrary heterogeneity in the cost shocks $\{\varphi_{it}\}$ across firms. In order for markups to adjust at the aggregate level in response to a cost shock, there must be a systematic heterogeneity in markup elasticities Γ_{it}, correlated with the exposure to the cost shock φ_{it} across firms, as we illustrate in:

Corollary 2 If Γ_{it} and φ_{it} are increasing with firm size S_{it}, then $\Psi_t < \varphi_t$ and the aggregate markup in the home market declines in response to an exchange rate depreciation, muting the exchange rate pass-through into domestic price inflation.

The condition of Corollary 2 implies $\text{cov}(\kappa_{it}, \varphi_{it}) > 0$, and thus by Proposition 3 $\Psi_t < \varphi_t$. The evidence in Section 3 shows that this case is indeed empirically relevant: we find that large firms have large markup elasticities, and these are also the import intensive firms (see Appendix Table A1). Corollary 2 suggests that it is specifically this type of interaction between strategic complementarities and firm heterogeneity that causes a muted price response to exchange rate fluctuations in the aggregate. Intuitively, if the large firms are the ones that are most affected by the shock, they will adjust their markups such that the cost shock is only partially passed through to prices. Since the small firms have low exposure to the shock and almost no strategic complementarities, this set of firms will not suffi-

45 Although the reallocation of sales shares across firms with different levels of markups is potentially an important source of change in the average markup in the economy, this composition effect does not directly contribute to the aggregate pass-through into prices in (23) and (26), conditional on the measured marginal cost shocks $\{\varphi_{it}\}$, however, this reallocation may have an indirect general equilibrium effect on marginal costs via factor prices, as explored in Bagace and Farhi (2018).

46 To gain intuition for this case, consider the direct and the indirect effects of price adjustment, represented respectively by $(1 - \kappa)\varphi_t$ and $\kappa\varphi_t$ at the firm level. When κ is the same for all firms, the aggregation implies $\Psi_t = (1 - \kappa)\varphi_t + \kappa\varphi_t$, and hence $\Psi_t = \varphi_t$ independently of the value of κ. In words, in the aggregate, the partial direct response to the shock, $(1 - \kappa)\varphi_t$, is complemented by the strategic-complementarity-driven indirect response of all firms, $\kappa\varphi_t$, which by the equilibrium fixed point ensures complete aggregate pass-through, $\Psi_t = \varphi_t$, and hence no aggregate markup adjustment. Stronger strategic complementarities (higher κ), reduce the direct (pass-through) response to the shock, but increase the indirect (strategic complementarity) response, leaving the aggregate pass-through unchanged.

47 This result in Corollary 1 has been noted in the exchange rate pass-through literature (see Burstein and Gopinath 2014, Itskhoki and Mukhin 2017). It also resonates with the elusive pro-competitive effects of trade in ACDR, yet their result of no aggregate markup adjustment is obtained under very different conditions. The ACDR result operates via the extensive margin adjustment in general equilibrium, in an environment with Pareto-distributed firm productivities, no input-output linkages, and a demand system with a choke-off price, binding for some firms. Our result instead holds in any partial equilibrium with a given number of firms, independently of what happens to factor prices in general equilibrium, and independently from the input-output structure and the productivity distribution across firms.
ciently increase markups to offset the large firms’ adjustment. Therefore, the reduction in the large firms’ markups translates into a reduction in the aggregate markup.48

The conventional view is that a currency depreciation gives a competitive edge to the domestic firms, which allows them to raise markups in the domestic market in response to higher prices of foreign competitors. Indeed, this holds true if all firms share the same markup elasticity, as in the second part of Corollary 1. However, this is not the case in general, and in particular under the conditions of Corollary 2, the average markup of the home firms may decline in response to a home currency depreciation.49 We explore this possibility below using a quantitative model and find that, in contrast with the conventional view, a decrease in the average markup of the home firms is indeed the likely outcome.

The new results in Proposition 3 have important implications for the international transmission of shocks into the relative price levels across countries. Markup adjustment at the firm level and the resulting violations of the law of one price across markets have been emphasized by the pricing-to-market literature.50 Our results, however, suggest that in the absence of heterogeneity in markup elasticities, firm-level pricing-to-market does not translate into changes in aggregate markups across markets, and hence has no effect on the relative price levels across countries. In other words, the presence of the micro-level pricing-to-market does not ensure, in general, the violations of the purchasing power parity (PPP) at the aggregate. It is the heterogeneity in markup variability across firms, in particular of the sort we document in the data, which is necessary for the pricing-to-market mechanism to have aggregate consequences for the relative price levels and the real exchange rate, and hence contribute to the explanation of the PPP puzzle (Rogoff 1996).

4.2 Quantitative model

We now study the response of markups to an exchange rate depreciation in a quantitative industry equilibrium model, disciplined using Belgian manufacturing data. We adopt the Atkeson and Burstein (2008) model of oligopolistic competition under nested-CES demand and explore robustness in a model of monopolistic competition with non-CES (Kimball) demand in Appendix D. In these models, firm-level markup elasticities \(\Gamma_{it} \) emerge endogenously as an outcome of an industry price-setting game given the structure of demand and competition. We relegate the full setup and calibration of the models to Appendix D, and provide here only a brief description and a summary of our findings.

48The result that a small number of large firms exerts an aggregate impact is reminiscent of the granularity literature following Gabaix (2011), which however typically assumes no markups (for an exception, see Gaubert and Itskoki 2018).

49Formally, one can aggregate (25) across home firms to see that a necessary condition for the average home markup to decline is an existence of some domestic firm(s) with an exposure to the foreign inputs in excess of the aggregate pass-through into prices, \(\varphi_{it} > \Psi_t \). Empirically, this condition is easily met, as some of the largest domestic firms indeed rely heavily on foreign-sourced intermediate inputs. In Appendix C, we develop a simple analytical example of an industry with three types of firms — small and large home firms and large foreign firms — serving the home market. In addition to the conditions of Corollary 2, this example emphasizes that for the average markup of the home firms to decline, a considerable portion of foreign value added in the sector must come in the form of intermediate inputs used in production by large home firms, rather than as imported competing output goods.

50Consistent with pricing-to-market, we find that the large firms reduce markups in the home market in response to a home currency depreciation, while these same firms increase markups considerably in the foreign destinations, as we show in Amiti, Itskoki, and Konings (2014).
Table 7: Strategic complementarities in the quantitative model

<table>
<thead>
<tr>
<th>Dep. var.: Δp_{it}</th>
<th>All</th>
<th>Small</th>
<th>Large</th>
<th>Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δmc_{it}</td>
<td>0.532</td>
<td>0.899</td>
<td>—</td>
<td>0.900</td>
</tr>
<tr>
<td>$\Delta mc_{it} \times \text{Large}_{it}$</td>
<td>—</td>
<td>—</td>
<td>0.424</td>
<td>—</td>
</tr>
<tr>
<td>Δp_{-it}</td>
<td>0.417</td>
<td>0.060</td>
<td>—</td>
<td>0.066</td>
</tr>
<tr>
<td>$\Delta p_{-it} \times \text{Large}_{it}$</td>
<td>—</td>
<td>—</td>
<td>0.529</td>
<td>0.335</td>
</tr>
</tbody>
</table>

Note: The regressions parallel those in column 4 of Table 1 and columns 1, 2 and 4 of Table 2. As in the data, the observations include only home firms, while Δp_{-it} includes both home and foreign competitors of the firm. Large_{it} is a dummy for whether the firm belongs to the top 20% of home firms by home-market sales within each industry (as in column 6 of Table 2). Observations are weighted by firm sales. Regressions include industry and year fixed effects, and are IV regressions using $\phi_i \Delta e_t$ and $\phi_{-i} \Delta e_t$ as instruments. The reported coefficients are averaged over 20 simulations, each with 50 industries and 11 years of observations, to eliminate small sample variation.

We consider an industry with N firms with marginal costs given by:

$$MC_{it} = \frac{W_t^{1-\phi_i} (V_t^* E_t) \phi_i}{A_{it}}$$ \hspace{1cm} (27)

where W_t is the price index of domestic inputs, V_t^* is the foreign-currency price index of foreign inputs, E_t is the nominal exchange rate with an increase in E_t indicating a depreciation of the home currency, and A_{it} is the idiosyncratic firm productivity, which we assume is drawn from a Pareto distribution. The firm specific parameter ϕ_i captures the exposure of the firm to foreign inputs, and we assume it is constant over the medium run that we focus on. We assume that the home and foreign firms differ in their exposure to foreign inputs, with $\phi_i \equiv \phi^*$ for all foreign firms and $\phi_i < \phi^*$ for home firms and varying with the size of the home firms, as in the data. Lastly, only a subset of the most productive foreign firms can enter the home market, in line with the empirical evidence on firm selection into exporting.

We focus on a partial industry equilibrium with exogenous idiosyncratic productivity and exchange rate shocks. We assume that the log of the exchange rate follows a random walk and the logs of firm-level productivities follow a random walk with drift and idiosyncratic shocks, which maintains the stability of the cross-sectional productivity distribution (as in Gabaix 2009). Consistent with the evidence on exchange rate disconnect, we assume that the prices of local inputs W_t and V_t^* are not correlated with the exchange rate shock, and we normalize them to $W_t = V_t^* = 1$.\footnote{See Itskhoki and Mukhin (2017) for a fully-specified model of exchange rate disconnect, driven by shocks to the exchange rate in the financial markets, which exhibits similar properties in general equilibrium. One can adopt alternative assumptions about ERPT into local input prices W_t and V_t^*, however, since this does not change the heterogeneity profile of $\{\phi_{it}\}$ across firms, it is inconsequential for the pattern of markup adjustment, which is our focus here.} Under these assumptions, the firms’ marginal cost exposure to exchange rates equals their foreign input shares, $\varphi_i = \phi_i$, as we assumed in the analysis above.

Given the demand and marginal costs, firms play a Cournot price setting game, resulting in the optimal markup pricing, as characterized in Section 2. We calibrate the parameters of the model to be broadly in line with the features of a typical Belgian manufacturing industry. In particular, we set the
elasticity of demand to match the pass-through estimates in Section 3 and the Pareto shape parameter of the productivity distribution to ensure that 20% of the largest home firms account for 60% of the total home-firm sales. We set \(\{ \phi_i \} \) so that the average home firm’s exposure to foreign inputs is \(\bar{\phi}_D = 0.2 \), and the correlation between \(\phi_i \) and \(S_i \) across home firms within industries is 0.3, as in our data. This results in the average import intensity of 0.25 for the largest 20% of firms and 0.125 for the remaining small firms. Finally, we choose the number of foreign firms so that they account for 20% of the domestic market sales and set \(\phi^* \equiv 0.7 \), to match the foreign firms’ ERPT into export prices of about 50%.

Table 7 shows how the calibrated model with CES demand and Cournot competition accurately matches our empirical estimates from Section 3. Indeed, the model captures nearly complete cost pass-through and zero strategic complementarities typical of the small firms, and strong strategic complementarities and incomplete own cost pass-through exhibited by the large firms. As a result, the model is capable of reproducing the empirical patterns of markup elasticities across firms \(\{ \Gamma_i \} \), and it is calibrated to match the variation in market shares and import intensities \(\{ S_i, \phi_i \} \), providing the necessary ingredients for a counterfactual analysis of exchange rate depreciations.

Table 8 reports the effects of a 10% home currency depreciation on costs, markups and prices across various subsets of firms. We find that a depreciation leads to a fall in the aggregate industry markup, with the average pass-through into home prices \(\Psi = 0.24 \), below the pass-through into costs \(\bar{\phi} = 0.3 \). That is, markup adjustment attenuates the aggregate pass-through into domestic prices by about 20%.

This underscores the quantitative relevance of Proposition 3 and Corollary 2. Furthermore, the calibrated model predicts a decline in the markups of the home firms on average, with the fall in the large firms’ markups more than offsetting the increase in the small firms’ markups. We further illustrate this heterogeneity in the markup adjustment across firms of different size in the Appendix Figure A2. We reach similar conclusions in an alternative quantitative model with Kimball demand and monopolistic competition (see Appendix D and, in particular, Appendix Table A4).

Finally, our modeling approach can be used to analyze alternative counterfactual industries to determine the direction of aggregate markup adjustment in response to a variety of international shocks. In general, relative to the baseline case, aggregate markups fall by a larger amount in industries with less direct foreign competition in the output market and more import-intensive large domestic firms.52

52The opposite case, where the presence of strategic complementarities leads to an increase in the aggregate markup, obtains if the small firms were relatively more exposed to the international shock than large firms. However, the selection of the large firms into importing makes this alternative case unlikely in practice.
Indeed, the exposure of the large domestic firms to the foreign shocks through the imported inputs channel is key for the downward aggregate markup adjustment in the home market and the muted response of the home price level. This result highlights how the channel by which foreign value added reaches the home market affects the extent of the aggregate markup adjustment. In industries where foreign competition in the output market is high and imported input intensities are low, aggregate markup adjustment is close to zero as the increase in the domestic firms’ markups offsets the decline in the foreign firms’ markups. In contrast, in industries with high imported input intensities and low foreign competition, the large domestic firms also reduce their markups leading to a decline in the aggregate markup, provided the heterogeneity in strategic complementarities is positively correlated with the import intensities. In this case, the greater the heterogeneity, the stronger the markup adjustment and the lower is the pass-through into the domestic price level.

5 Conclusion

In this paper, we provide a direct estimate of strategic complementarities in price setting. We find that a firm increases its price by an average of 4% in response to a 10% increase in the prices of its competitors, holding its own marginal cost constant, and thus due entirely to the markup adjustment. Furthermore, there is considerable heterogeneity in the strength of strategic complementarities across firms. Small firms show no strategic complementarities and a complete pass-through of their cost shocks into prices, in line with constantmarkup pricing behavior, as is characteristic of monopolistic competitors under CES demand. In contrast, large firms exhibit strong strategic complementarities and incomplete pass-through. We estimate these elasticities within a general theoretical framework, using a new rich micro dataset with information on firm marginal costs and competitor prices. We develop an instrumental variable identification strategy to estimate the properties of firm markups without imposing strong structural assumptions on demand, competition or production.

These results have important implications for the aggregate markup response to international shocks. Interestingly, the presence of strategic complementarities per se at the micro-level is not sufficient to generate movements in aggregate markups. If the strategic complementarity elasticity is the same across all firms, an international shock results in zero aggregate markup adjustments irrespective of the strength of strategic complementarities. In particular, the fall in foreign firms’ markups is exactly offset by the rise in domestic markups, or vice versa. A novel finding from our analysis is that heterogeneity in markup elasticities across firms is necessary for any aggregate markup adjustment. We show that an exchange rate depreciation in a typical Belgian manufacturing industry, where large firms import a substantial share of their intermediate inputs, results in a fall in aggregate markups. In this case, the large domestic firms, in fact, decrease their markups, thereby attenuating the aggregate exchange rate pass-through into domestic prices.
A Additional Empirical and Quantitative Results

Table A1: Summary statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>5 pctl</th>
<th>Mean</th>
<th>Median</th>
<th>95 pctl</th>
<th>St.dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firm-product variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δp_{it}</td>
<td>0.363</td>
<td>0.013</td>
<td>0.003</td>
<td>0.400</td>
<td>0.235</td>
</tr>
<tr>
<td>Δp_{-it}</td>
<td>0.061</td>
<td>0.012</td>
<td>0.008</td>
<td>0.093</td>
<td>0.054</td>
</tr>
<tr>
<td>S_{it}</td>
<td>0.000</td>
<td>0.010</td>
<td>0.001</td>
<td>0.044</td>
<td>0.039</td>
</tr>
<tr>
<td>Firm-level variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L_{it}</td>
<td>9.9</td>
<td>168.9</td>
<td>36.1</td>
<td>666.8</td>
<td>515.1</td>
</tr>
<tr>
<td>Δmc_{it}</td>
<td>0.262</td>
<td>0.022</td>
<td>0.015</td>
<td>0.330</td>
<td>0.212</td>
</tr>
<tr>
<td>Δmc^*_{it}</td>
<td>0.030</td>
<td>0.002</td>
<td>0.000</td>
<td>0.041</td>
<td>0.029</td>
</tr>
<tr>
<td>ϕ_{it}</td>
<td>0.000</td>
<td>0.148</td>
<td>0.109</td>
<td>0.452</td>
<td>0.156</td>
</tr>
<tr>
<td>ϕ^X_{it}</td>
<td>0.000</td>
<td>0.032</td>
<td>0.003</td>
<td>0.168</td>
<td>0.071</td>
</tr>
<tr>
<td>Industry-level variables (NACE 4-digit)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\max_{i\in D} S_{it}$</td>
<td>0.013</td>
<td>0.098</td>
<td>0.063</td>
<td>0.313</td>
<td>0.110</td>
</tr>
<tr>
<td>$\sum_{i\in D} S_{it}$</td>
<td>0.111</td>
<td>0.565</td>
<td>0.588</td>
<td>0.901</td>
<td>0.238</td>
</tr>
<tr>
<td>$\sum_{i\in F} S_{it}$</td>
<td>0.080</td>
<td>0.369</td>
<td>0.315</td>
<td>0.864</td>
<td>0.236</td>
</tr>
<tr>
<td>$\sum_{i\in X} S_{it}$</td>
<td>0.003</td>
<td>0.092</td>
<td>0.066</td>
<td>0.273</td>
<td>0.090</td>
</tr>
<tr>
<td># of firms</td>
<td>6</td>
<td>65</td>
<td>40</td>
<td>310</td>
<td>80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fraction of firms with ϕ_{it} (or ϕ^X_{it}) > 0</th>
<th>Average across firms</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Large</td>
</tr>
<tr>
<td>ϕ_{it}</td>
<td>0.701</td>
</tr>
<tr>
<td>ϕ^X_{it}</td>
<td>0.576</td>
</tr>
</tbody>
</table>

Notes: The table reports percentiles, means and standard deviations of the main variables used in the analysis, as defined in the text. Additionally: L_{it} denotes firm employment; ϕ_{it} and ϕ^X_{it} are the firm expenditure shares (in total variable costs) on foreign intermediate inputs from outside Belgium and from outside the eurozone, respectively; D, F and X correspond to the sets of domestic, all foreign and foreign non-eurozone firms, respectively. The statistics characterize our sample distributions across observations, which are at the firm-product-year level, except the ’# of firms’, which is at the industry-year level.

The lower panel reports averages across firm-year observations; Large (Small) firms are based on the average employment cutoff of 100 employees, as in columns 1 and 2 of Table 2.

Table A2: Robustness: large and small firms

<table>
<thead>
<tr>
<th>Sample</th>
<th>Large firms</th>
<th>Small firms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Export share < 0.1</td>
<td>FDI share < 0.005</td>
<td>ϕ_i > 0</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Δmc_{it}</td>
<td>0.648***</td>
<td>0.518**</td>
</tr>
<tr>
<td>(0.227)</td>
<td>(0.220)</td>
<td>(0.158)</td>
</tr>
<tr>
<td>Δp_{-it}</td>
<td>0.441**</td>
<td>0.550***</td>
</tr>
<tr>
<td>(0.187)</td>
<td>(0.188)</td>
<td>(0.202)</td>
</tr>
<tr>
<td># obs.</td>
<td>7,941</td>
<td>14,389</td>
</tr>
</tbody>
</table>

Notes: Large and small sample based on employment ≥100 threshold, as in columns 1 and 2 of Table 2. Column 1 only includes large firms with the share of export in total sales less than 10%. Column 2 only includes large firms with related-party foreign sales or purchases less than 0.005% of their total sales. Column 3 and 4 only include firms with positive imports of intermediates from outside Belgium and outside eurozone, respectively. See online appendix Table O7 for additional checks.
Table A3: First-stage results

<table>
<thead>
<tr>
<th></th>
<th>Column (1)</th>
<th>Column (2)</th>
<th>Column (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Δmc_{it}</td>
<td>Δp_{-it}</td>
<td>Δmc_{it}</td>
</tr>
<tr>
<td>Δmc_{it}</td>
<td>0.54***</td>
<td>0.12***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.09)</td>
<td>(0.03)</td>
<td></td>
</tr>
<tr>
<td>$\Delta mc_{it} \times \text{Large}_i$</td>
<td></td>
<td>0.59***</td>
<td>0.18***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.15)</td>
<td>(0.04)</td>
</tr>
<tr>
<td>Δe_{-it}^X</td>
<td>-0.24</td>
<td>0.45***</td>
<td>-0.25</td>
</tr>
<tr>
<td></td>
<td>(0.20)</td>
<td>(0.15)</td>
<td>(0.34)</td>
</tr>
<tr>
<td>$\Delta e_{-it}^X \times \text{Large}_i$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δmc_{-it}</td>
<td>0.71***</td>
<td>0.68***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.20)</td>
<td>(0.14)</td>
<td></td>
</tr>
<tr>
<td>$\Delta mc_{-it} \times \text{Large}_i$</td>
<td></td>
<td>0.30**</td>
<td>0.52***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.14)</td>
<td>(0.10)</td>
</tr>
<tr>
<td>Δp_{-it}^E</td>
<td>0.16***</td>
<td>0.15***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.06)</td>
<td>(0.05)</td>
<td></td>
</tr>
<tr>
<td>$\Delta p_{-it}^E \times \text{Large}_i$</td>
<td></td>
<td>0.23***</td>
<td>0.32***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.06)</td>
<td>(0.05)</td>
</tr>
</tbody>
</table>

Notes: The table reports the first stage results for the IV regressions in columns 1–3 of Table 2. See note to Tables 1 and 2.
Figure A1: Cost pass-through and strategic complementarity elasticities for different employment-size cutoffs

Note: The figure reports the results for firms with average employment below the following 8 cutoffs: 100, 200, 300, 400, 500, 600, 1,000, and 8,500 (corresponding to the full sample). The left panel reports the fraction of observations and domestic sales accounted for by the firms below each of the employment cutoffs, illustrating the very skewed firm-size distribution in the data. The right panel re-estimates the specification in column 1 of Table 2 under different employment cutoffs, and plots the estimated elasticities $\hat{\alpha}$ and $\hat{\gamma}$ (and the respective 95% confidence intervals) against the shares of sales accounted for by the firms in each subsample (corresponds to the red solid line in the left figure). Note that the very first (left) points correspond to the estimates in column 1 of Table 2, while the very last (right) points to those in column 4 of Table 1.

Figure A2: ERPT and markup adjustment, by size bins of home firms

Note: Simulated currency depreciation counterfactual, as in Table 8. The figure plots average ERPT (Ψ_J, blue bars) by bins of home firms based on within-industry market shares, as well as the markup adjustment ($\Psi_J - \bar{\varphi}_J$, red bars), and the difference between the two is the direct cost shock ($\bar{\varphi}_J$). As in the Belgian data, firms with less than 1% market shares within their industries account for almost 60% of the count of firms, but less than 20% of domestic-firm home market sales; the bin of the largest firms with more than 10% market shares account for 2% of firm count and almost 20% of home market sales.
B Data Appendix

Data Sources The production data (PRODCOM) report production values and quantities at the firm-product level in the manufacturing sector, where the product is defined at the PC 8-digit. It is a survey of all firms with a minimum of 10 employees, covering at least 90% of production in each NACE 4-digit (that is, the first 4 digits of the PC 8-digit code), which includes around 1,700 manufacturing product codes in any one year. We only keep PC codes that are classified as manufactured goods — these are products for which the first 4-digits of the PC8 codes are in the range of 1500 to 3699. We drop all PC8 codes in petroleum (NACE 2-digit code 23) and industrial services. Firms are required to report total values and quantities but are not required to report the breakdown between domestic and exports. Therefore, to get a measure of domestic values and quantities we merge on the export data from customs and subtract total export values and quantities from total production values and quantities sold. One complication in constructing domestic sales is the issue of carry-along-trade (see Bernard, Blanchard, Van Beveren, and Vandebussche 2012), arising when firms export products that they do not themselves produce. To address this issue we drop all observations for which exports of a firm in period t are greater than 95% of production sold (dropping 11% of the observations and 15% of revenues, which amounts to a much lower share of domestic value sold since most of these revenues come from exports).

The international data comprise transactions on intra-EU trade data collected by the Intrastat Inquiry and the extra-EU transactions data by Customs. These data are reported at the firm level by destination and source country for each product classified at the 8-digit combined nomenclature (CN) in values and quantities, with around 10,000 distinct products. The first 6-digits of the CN codes correspond to the World Harmonized System (HS). All transactions that involve a change of "ownership with compensation" (codes 1 and 11) are in our sample. These data include all extra-EU transactions of firms with trade greater than 1,000 euros or whose weights are more than 1,000 kilograms - these thresholds were reduced in 2006; and intra-EU trade with a higher threshold of 250,000 euros, with both these thresholds raised somewhat in 2006.

The firm characteristics data are available on an annual frequency at the firm level, with each firm reporting their main economic activity within a 5-digit NACE industry. However, there is no product level data within firms available from this source.

Merging the trade and production data The production and trade data are easily merged using a unique firm identifier. But the merging of the firm’s products in the production and customs data is a bit more complicated.

First, we had to aggregate the monthly PRODCOM data to the annual frequency. To avoid large jumps in annual values due to nonreporting for some months by some firms, we only keep a firm’s observation in year t if there was positive production reported for at least one product in each month. In some cases the firm reported positive values but the quantities were missing. For these cases, in order to construct domestic unit values we impute the quantity sold from the average value to quantity ratio in the months where both values and quantities were reported - this only affected 3% of the observations, accounting for 1% of the production value. With this adjustment, we aggregated the data to the annual
Second, there is the task of converting the highly disaggregated trade data that is at the CN 8-digit level with the more aggregated PC 8-digit PC codes. To match these two datasets, we use the concordance provided by Eurostat - these mappings may be one-to-one, many-to-one, one-to-many, or many-to-many. We use the files developed by Van Beveren, Bernard, and Vandenbussche (2012) to identify these mappings. While CN-to-PC conversion is straightforward for one-to-one and many-to-one mappings, conversion for one-to-many and many-to-many mappings required grouping of some PC codes. There were 77 such groupings, which account for approximately 4% of the observations and production value.

Third, in order to construct the domestic unit values, where we net out exports from total production values and quantities, we need to ensure that the quantities in the two datasets are comparable. So we drop observations where the units that match in the two datasets are less than 95% of the total export value and the firm’s export share is greater than 5% within a firm-PC-year observation. The rationale for doing this is that if the export share (exports as a ratio of production) is really small then the domestic unit value won’t be affected very much if we don’t subtract all of the firm’s exports.

Fourth, some PC codes change over time. Here, we only make an adjustment if the code is a one-to-one change between two years. We do not take into account changes in PC codes that involve splitting into multiple codes or multiple PC codes combining into one code. Effectively, these changes in the PC codes are treated as though they are new products.

C Derivations and Proofs

Proof of Proposition 1 Consider the profit maximization problem of the firm written in the conjectural variation form:

\[
\max_{p_i, p_{-i}} \left\{ \exp \{ p_i + q_i(p_i, p_{-i}; \xi) \} - TCI_i \left(\exp \{ q_i(p_i, p_{-i}; \xi) \} \right) \right\} \text{ s.t } h_{-i}(p_i, p_{-i}; \xi) = 0, \tag{A1}
\]

where \(p_i \) and \(q_i \) are log price and log quantity demanded of the firm, \(TCI_i(\cdot) \) is the total cost function (in levels), and \(h_{-i}(\cdot) \) is the conjectural variation vector function with elements given by \(h_{ij}(\cdot) \) for \(j \neq i \); we omit \(t \) subscript for brevity. Note that this formulation nests monopolistic competition, oligopolistic Bertrand competition, and oligopolistic Cournot competition, as long as the demand system is invertible. In particular, to capture firm behavior under monopolistic and oligopolistic Bertrand competition, we choose the conjectural variation function:

\[
h_{-i}(p_i, p_{-i}; \xi) = p_{-i} - p_{-i}^*, \tag{A2}
\]

Indeed, this corresponds to the assumption of the firm that its price choice \(p_i \) leads to no adjustment in the prices of its competitors which are set at \(p_{-i} = p_{-i}^* \). The case of Cournot competition requires choosing \(h_{-i}(\cdot) \) such that it implies \(q_{-i} \equiv q_{-i}^* \) for some given \(q_{-i}^* \) vector. Provided an invertible
demand system, this can be simply ensured by choosing:

\[
h_{-i}(p_i, p_{-i}; \xi) = -(q_{-i}(p_i, p_{-i}; \xi) - q^*_{-i}). \quad (A3)
\]

Therefore, we can capture the firm behavior under competition in both prices and quantities with a conditional profit maximization with respect to prices (A1). The analysis can be generalized beyond the cases in (A2)–(A3) by considering a general differentiable function \(h_{-i}(\cdot) \).

We introduce the following notation:

1. \(e^{p_i + \mu_i} \lambda_{ij} \) for \(j \neq i \) is the set of Lagrange multipliers for the constraints in (A1);

2. \(\zeta_{ijk}(p; \xi) \equiv \partial h_{ij}(p; \xi)/\partial p_k \) is the elasticity of the conjectural variation function, with \(\zeta_{ijj}(\cdot) > 0 \) as a normalization and the matrix \(\{\zeta_{ijk}(\cdot)\}_{j,k \neq i} \) having full rank, which is trivially the case for (A2) and is satisfied for (A3) due to the assumption of demand invertibility;

3. \(\epsilon_i(p; \xi) \equiv -\partial q_i(p; \xi)/p_i > 0 \) and \(\delta_{ij}(p; \xi) \equiv \partial q_i(p; \xi)/p_j \) for \(j \neq i \) are the own and cross price elasticities of demand.

We can then write the first-order conditions for (A1), after simplification, as:

\[
\begin{align*}
(1 - \epsilon_i + \epsilon_i e^{-\mu_i}) + \sum_{k \neq i} \lambda_{ik} \zeta_{iki} &= 0, \\
(-\delta_{ij} + \delta_{ij} e^{-\mu_i}) + \sum_{k \neq i} \lambda_{ik} \zeta_{ikj} &= 0,
\end{align*}
\]

where \(\mu_i \equiv p_i - m_{ci} \) is the log markup and \(m_{ci} \equiv \log(\partial TC_i/\partial Q_i) \) is the log marginal cost. Using these conditions to solve out the Lagrange multipliers, we obtain the expression for the optimal markup of the firm:

\[
\mu_i = \log \frac{\sigma_i}{\sigma_i - 1}, \quad (A4)
\]

where \(\sigma_i \) is the perceived elasticity of demand given by (using vector notation):

\[
\sigma_i \equiv \epsilon_i - \zeta_i' Z_i^{-1} \delta_i, \quad (A5)
\]

where \(\zeta_i \equiv \{\zeta_{iji}\}_{j \neq i} \) and \(\delta_i \equiv \{\delta_{ij}\}_{j \neq i} \) are \((N - 1) \times 1\) vectors and \(Z_i \equiv \{\zeta_{ijk}\}_{j \neq i, k \neq i} \) is \((N - 1) \times (N - 1)\) matrix of cross-price elasticities, which has full rank (under the market competition structures we consider) due to the demand invertibility assumption.

Recall that \(\zeta_{ijk}, \epsilon_i \) and \(\delta_{ij} \) are all functions of \((p; \xi) \), and therefore \(\sigma_i \equiv \sigma_i(p; \xi) \). Consequently, (A4) defines the log markup function:

\[
M_i(p; \xi) \equiv \log \frac{\sigma_i(p; \xi)}{\sigma_i(p; \xi) - 1},
\]

and the optimal price of the firm solves the following fixed point equation:

\[
\tilde{p}_i = M_i(\tilde{p}_i, p_{-i}; \xi) + m_{ci}
\]
we have: of the competitor price change index (6) and the properties of the log expenditure function such that the pro/f_it-maximizing price of the /f_irm solves

$$\text{Proof of Proposition 2}$$

κ
form and solving it for

$$\text{In words, the perceived elasticity of demand in this case simply equals the partial price elasticity of the residual demand of the firm.}$$

In the case of oligopolistic quantity (Cournot) competition, we have ζijk = εj for k = j and ζijk = −δjk for j ≠ k. Therefore, in this case we can rewrite (A5) as:

$$\text{Proof of Proposition 2}$$ If qi = qi(pi, z; ξ), then following the same steps as above, we can show that there exists a markup function:

$$\mu_i = M_i(p_i, z; \xi) \equiv \log \frac{\sigma_i(p_i, z; \xi)}{\sigma_i(p_i, z; \xi) - 1},$$

such that the profit-maximizing price of the firm solves \(\hat{p}_i = mc_i + M_i(\hat{p}_i, z; \xi) \). Using the definition of the competitor price change index (6) and the properties of the log expenditure function \(z = z(p; \xi) \), we have:

$$\omega_{ij} = \frac{\partial M_i(p_i, z; \xi)/\partial p_j}{\sum_{k \neq i} \partial M_i(p_i, z; \xi)/\partial p_k} = \frac{\partial M_i(p_i, z; \xi)/\partial z \cdot S_j}{\partial M_i(p_i, z; \xi)/\partial z \cdot \sum_{k \neq i} S_k} = \frac{S_j}{1 - S_i},$$

where we make use of Shephard’s lemma (Envelope condition) for the log expenditure function \(\partial z/\partial p_j = S_j \) and \(\sum_{k \neq i} S_k = 1 - S_i \). Consequently, the competitor price index is given by (8).

If a stronger condition \(\sigma_i = \sigma_i(p_i - z; \xi) \) is satisfied, then:

$$\mu_i = M_i(p_i - z; \xi) \equiv \log \frac{\sigma_i(p_i - z; \xi)}{\sigma_i(p_i - z; \xi) - 1},$$

completing the proof of Proposition 1. ■
and, using the definitions of Γ_i and Γ_{-i} in (5), we have:

\[
\Gamma_i = -\frac{dM_i(p_i - z; \xi)}{dp_i} = -\frac{\partial M_i(p_i - z; \xi)}{\partial p_i} - \frac{\partial M_i(p_i - z; \xi)}{\partial z} \frac{\partial z}{\partial p_i} = -\frac{\partial M_i(p_i - z; \xi)}{\partial (p_i - z)}(1 - S_i),
\]

\[
\Gamma_{-i} = \sum_{j \neq i} \frac{\partial M_i(p_i - z; \xi)}{\partial p_j} = \frac{\partial M_i(p_i - z; \xi)}{\partial z} \sum_{j \neq i} S_j = \Gamma_i.
\]

This completes the proof of the proposition. ■

Note that condition in (ii) in the proposition is stronger than the condition in (i). For example, when $\sigma_i(p; \xi) = -\partial q_i(p; \xi)/\partial p_i$, we have that $\sigma_i = \sigma_i(p_i - z; \xi)$ implies $q_i = q_i(p_i, z; \xi)$. The converse is not true, e.g. if $q_i(p_i, z; \xi)$ is not homothetic of degree one in the levels of (p_i, z).

Derivations for oligopolistic competition under CES demand Instead of following the standard approach, we derive the results for the Atkeson-Burstein model using the more general Propositions 1 and 2, and their proofs above. We write the nested CES demand schedule in logs:

\[
q_i = \log \xi_i + d_s + (\rho - \eta)z - \rho p_i, \quad (A8)
\]

where $\eta \geq 1$ and $\rho > \eta$ are the elasticities of substitution across industries and within-industry across products, respectively; $d_s = \log (\bar{w}_s P^\rho Y)$ is the industry demand shifter, where \bar{w}_s is the exogenous shifter, Y is the nominal income in the economy and P is the log aggregate price index, and no firm is large enough to affect Y and P; finally, $z = p_s$ is the log expenditure function equal to the industry price index and given by:

\[
z = \frac{1}{1 - \rho} \log \sum_{i=1}^N \exp\{\log \xi_i + (1 - \rho)p_i\}. \quad (A9)
\]

Shephard’s lemma can be verified to hold for z directly from (A9):

\[
\frac{\partial z}{\partial p_i} = e^{\log \xi_i + (1 - \rho)(p_i - z)} = \frac{e^{p_i + q_i}}{\sum_{j=1}^N e^{p_j + q_j}} = S_i,
\]

where the second equality uses demand equation (A8) and the last equality is the definition of the revenue market share S_i. Furthermore, we can use this result to decompose the change in the industry price index as follows:

\[
dz = \sum_{j=1}^N S_j dp_j = S_i dp_i + (1 - S_i) dp_{-i}, \quad \text{where} \quad dp_{-i} = \sum_{j \neq i} \frac{S_j}{1 - S_i} dp_j,
\]

which corresponds to the index of competitor price changes in (8).

We now calculate σ_i for both cases of Bertrand and Cournot competition:

\[\text{In fact, in this case, such decomposition is also available for the level of the price index, which is a special property in the CES case: } Z = \left[\xi_i P_i^{1-\rho} + (1 - \xi_i) P_{-i}^{1-\rho}\right]^{1/(1-\rho)} \text{ and } P_{-i} = \left[\sum_{j \neq i} \xi_j/(1 - \xi_i) P_j^{1-\rho}\right]^{1/(1-\rho)}.\]
1. **Price competition (Bertrand)** Recall from (A6) that under Bertrand competition, we simply have
\[\sigma_i = \epsilon_i, \]
where
\[\epsilon_i = \frac{d q_i}{d p_i} = \rho - (\rho - \eta) e^{\log(1 - \rho)(p_i - z)}, \]
and therefore the conditions for both parts of Proposition 2 apply in this case. We rewrite:
\[\epsilon_i = \rho - (\rho - \eta) S_i = \rho(1 - S_i) + \eta S_i. \quad (A10) \]
Taking stock, we have \(\epsilon_i = \epsilon_i(p_i - z; \xi_i) \) given the parameters of the model \((\rho, \eta)\), and
\[\mu_i = M_i(p_i - z; \xi_i) = \log \frac{\epsilon_i(p_i - z; \xi_i)}{\epsilon_i - 1}. \]
Using the steps of the proof of part (ii) of Proposition 2, we can calculate:
\[\Gamma_i = -\frac{d \mu_i}{d p_i} = -\frac{\partial \mu_i}{\partial p_i} - \frac{\partial \mu_i}{\partial z} S_i = \frac{(\rho - \eta)(\rho - 1)S_i(1 - S_i)}{\epsilon_i(\epsilon_i - 1)}, \]
\[\Gamma_{-i} = \frac{\partial \mu_i}{\partial z} \cdot (1 - S_i) = \Gamma_i. \]
In the case of Cobb-Douglas industry aggregator \((\eta = 1)\), this simplifies to \(\Gamma_i = \Gamma_{-i} = \frac{(\rho - 1)S_i}{1 + (\rho - 1)(1 - S_i)} \), which is monotonically increasing in \(S_i \).

2. **Quantity competition (Cournot)** Next consider the case of Cournot competition. Here we follow the steps of the proof of Proposition 1, and first calculate:
\[\delta_{ij} = \frac{d q_i}{d p_j} = \frac{\partial q_i}{\partial z} \frac{\partial z}{d p_j} = (\rho - \eta)S_j \quad \text{and} \quad \zeta_{ijk} = \left\{ \begin{array}{ll}
\epsilon_j = \rho - (\rho - \eta)S_j, & \text{if } k = j, \\
-\delta_{jk} = -(\rho - \eta)S_j, & \text{if } k \neq j.
\end{array} \right. \]
We could directly use this to solve for \(\zeta_i^t Z_i^{-1} \delta_i \) in (A5). Instead, we calculate \(\kappa_i = \zeta_i^t Z_i^{-1} \), where the elements are \(\kappa_{ij} = d p_j / d p_i \big|_{d q_k = 0, k \neq i} \). We do this by noting that:
\[d q_j = (\rho - \eta)d z - \rho d p_j = 0, \quad j \neq i, \]
implies \(d p_j = (\rho - \eta) / \rho \cdot d z \) for all \(j \neq i \). This makes it easy to solve for \(d z \) as a function of \(d p_i \):
\[d z = \sum_j S_j d p_j = S_i d p_i + \frac{\rho - \eta}{\rho} (1 - S_i) d z \quad \Rightarrow \quad d z = \frac{\rho S_i}{\rho - (\rho - \eta)(1 - S_i)}, \]
and the expressions for \(\kappa_{ij} = d p_j / d p_i = (\rho - \eta)S_i / [\rho - (\rho - \eta)(1 - S_i)] \) for all \(j \neq i \) follow.
Substituting this into (A7), we have:

\[
\sigma_i = \epsilon_i - \sum_{j \neq i} \delta_{ij} \kappa_{ij} = \left[\rho - (\rho - \eta)S_i \right] - \frac{(\rho - \eta)^2 S_i}{\rho - (\rho - \eta)(1 - S_i)} \sum_{j \neq i} S_j
\]

\[
= \rho - (\rho - \eta)S_i \left[1 + \frac{(\rho - \eta)(1 - S_i)}{\rho - (\rho - \eta)(1 - S_i)} \right]
\]

\[
= \frac{\rho \eta}{\rho S_i + \eta(1 - S_i)} \left[\frac{1}{\rho} (1 - S_i) + \frac{1}{\eta} S_i \right]^{-1},
\]

replicating (11), which is the conventional expression from Atkeson and Burstein (2008). Again, we have \(\sigma_i = \sigma_i(p_t - z; \xi_i) \) and \(\mu_i = \mathcal{M}_i(p_t - z, \xi_i) = \log \frac{\sigma_i(p_t - z; \xi_i)}{\sigma_i(p_t - z; \xi_i) - 1} \), satisfying the conditions in both parts of Proposition 2. The remaining derivation of the expression for \(\Gamma_i = \Gamma_{-i} \) parallels that in the case of the Bertrand competition above, and results in expressions (12) in the text.

Note the qualitative similarity between the price and quantity oligopolistic competition, where in the former \(\sigma_i \) is a simple average of \(\rho \) and \(\eta \) with a weight \(S_i \) on \(\rho \), and in the latter \(\sigma_i \) is a corresponding harmonic average, with the same monotonicity properties, given the values of \(\rho \) and \(\eta \). In both cases, \(\Gamma_i = \Gamma_{-i} = \Gamma(S_i) \), which is a monotonically increasing function of \(S_i \) at least on \(S_i \in [0, 0.5] \) for any values of the parameters.

Reduced-form of the model We start with the price decomposition (4) and, under the assumptions of Propositions 2, solve for the reduced form of the model. First, we rewrite (4) as:

\[
\left[1 + \frac{\Gamma_{it}}{1 + \Gamma_{it}} \frac{S_{it}}{1 - S_{it}} \right] dp_{it} = \frac{1}{1 + \Gamma_{it}} dmc_{it} + \frac{\Gamma_{it}}{1 + \Gamma_{it}} \frac{dp_{it}}{1 - S_{it}} + \epsilon_{it}, \quad \text{(A11)}
\]

where we used the decomposition \(dp_{it} = \sum_{j=1}^{N} S_{jt} dp_{jt} = (1 - S_{it}) dp_{-it} + S_{it} dp_{it} \). Aggregating (A11) across \(i = 1..N \) and solving for \(dp_{it} \), we have:

\[
dp_{it} = \frac{1}{\sum_{i=1}^{N} \frac{S_{it}}{1 + \Gamma_{it}}} \sum_{i=1}^{N} \left[\frac{S_{it}}{1 + \Gamma_{it}} dmc_{it} + \frac{S_{it}}{1 + \frac{S_{it}}{1 + \tilde{\Gamma}_{it}}} \epsilon_{it} \right], \quad \text{(A12)}
\]

where \(\tilde{\Gamma}_{it} \equiv \frac{\Gamma_{it}}{1 - S_{it}} \) and we have used the fact that \(\sum_{i=1}^{N} \frac{S_{it}}{1 + \Gamma_{it}} = 1 - \sum_{i=1}^{N} \frac{S_{it}}{1 + \Gamma_{it}} \).

Substituting the solution for \(dp_{it} \) back into (A11), we obtain the reduced form of the model:

\[
dp_{it} = \frac{1}{1 + \tilde{\Gamma}_{it}} dmc_{it} + \frac{\tilde{\Gamma}_{it}}{1 + \tilde{\Gamma}_{it}} \sum_{j=1}^{N} \frac{S_{jt}}{1 + \tilde{\Gamma}_{jt}} \sum_{j=1}^{N} \left[\frac{S_{jt}}{1 + \tilde{\Gamma}_{jt}} dmc_{jt} + \frac{S_{jt}}{1 + \frac{S_{jt}}{1 + \tilde{\Gamma}_{jt}}} \epsilon_{jt} \right] + \frac{\tilde{\epsilon}_{it}}{1 + \frac{S_{it}}{1 + \tilde{\Gamma}_{it}}},
\]

which we can simplify to

\[
dp_{it} = a_{it} dmc_{it} + b_{it} dmc_{-it} + \tilde{\epsilon}_{it}, \quad \text{(A13)}
\]
with coefficients given by:

\[
a_{it} \equiv \frac{1}{1 + \Gamma_{it}} S_{it} + \sum_{j \neq i} \frac{S_{jt}}{1 + \Gamma_{jt}} \quad \text{and} \quad b_{it} \equiv \frac{\hat{\Gamma}_{it}}{1 + \hat{\Gamma}_{it}} \sum_{j=1}^{N} \frac{S_{jt}}{1 + \Gamma_{jt}},
\]

and the competitor marginal cost index defined as:

\[
dmc_{-it} \equiv \sum_{j \neq i} \omega_{ijt} dmc_{jt}, \quad \text{where} \quad \omega_{ij} \equiv \frac{S_{jt}}{1 + \Gamma_{jt}} \sum_{k \neq i} \frac{S_{kt}}{1 + \Gamma_{kt}}.
\]

This illustrates the complexity of interpreting the coefficients \(a_{it}\) and \(b_{it}\) of the reduced form of the model, as well as calculating an appropriate competitor marginal cost index, even in the special case when Proposition 2 applies.

Estimating the reduced form in equation (A13) requires measures of the full marginal cost for all firms in order to construct \(\Delta mc_{-it}\), whereas we only have comprehensive measures of marginal costs available for the domestic competitors. While this would constitute an omitted variable bias in (A13), it is not a problem for estimating the firm’s best response (13), which only requires an instrument for the full index of competitor price changes \(\Delta p_{-it}\), which we can construct in the data. Furthermore, the coefficients \(\alpha_{it}\) and \(\gamma_{it}\) in (13) have a clear structural interpretation, and a direct relationship with the firm’s markup elasticities \(\Gamma_{it}\) and \(\Gamma^{-}_{it}\). These coefficients have an appealing sufficient statistic property for describing the micro-level and aggregate responses to various shocks, such as an exchange rate shock that we consider in Section 4. In contrast, the reduced-form coefficients \(a_{it}\) and \(b_{it}\) compound the industry equilibrium effects, and are thus much less tractable for structural interpretation.

Proof of Proposition 3 Assume the conditions of Proposition 2 are satisfied, so that \(\Gamma^{-}_{it} = \Gamma_{it}\) and \(dp_{t} = \sum_{i=1}^{N} S_{it}dp_{it}\). Start with the firm-level ERPT expression (22), which we reproduce here as:

\[
\psi_{it} = \frac{1}{1 + \Gamma_{it}} \varphi_{it} + \frac{\Gamma_{it}}{1 + \Gamma_{it}} \Psi_{-it},
\]

Provided the definition of \(\Psi_{-it}\) and \(\Psi_{it}\) in the text, we can rewrite:

\[
\psi_{it} = \frac{1}{1 + \Gamma_{it}/(1 - S_{it})} \varphi_{it} + \frac{\Gamma_{it}/(1 - S_{it})}{1 + \Gamma_{it}/(1 - S_{it})} \Psi_{t},
\]

which corresponds to equation (25) in the text with \(\kappa_{it} \equiv \frac{\Gamma_{it}}{1 - S_{it} + \Gamma_{it}}\). Weighting by \(S_{it}\) and aggregating, we solve for \(\Psi_{t}\):

\[
\Psi_{t} = \frac{1}{\sum_{j=1}^{N} S_{jt} \Gamma_{jt}/(1 - S_{jt})} \sum_{i=1}^{N} \frac{S_{it}}{1 + \Gamma_{it}/(1 - S_{it})} \varphi_{it},
\]

which is equivalent to expression (26), after noticing that \(\sum_{j=1}^{N} S_{jt} \Gamma_{jt}/(1 - S_{jt}) = 1 - \sum_{j=1}^{N} S_{jt} \kappa_{jt}\), confirming the claim in Proposition 3.

\[\blacksquare\]
Aggregate ERPT and markup response with three types of firms Consider a simple stylized example with three types of firms, which captures the essence of a more sophisticated quantitative model in Section 4.2. In particular, we study an industry with small and large home firms, as well as large foreign firms exporting into the home market. We index the three types of firms with \(S \), \(L \) and \(F \), respectively. All firms are small relative to the market, so that \(N \to \infty \) and \(S_i \to 0 \) for all \(i \). The cumulative market share of the small and large home firms is \(\lambda_S \) and \(\lambda_L \), respectively, and the rest of the market is served by the foreign firms with \(\lambda_F = 1 - \lambda_S - \lambda_L \).

To capture in a stylized way the salient features of heterogeneity observed in the Belgian data, we make the following assumptions. The small and large home firms differ in import intensity and markup elasticity, with \(\varphi_S = \Gamma_S = 0 \), reflecting that small firms do not rely on imported inputs and exhibit constant-markup behavior. In contrast, the large home firms have \(\varphi_L = \varphi > 0 \) and \(\Gamma_L = \Gamma > 0 \). Lastly, the foreign firms have \(\varphi_F = \varphi^* > \varphi \), and \(\Gamma_F = \Gamma \), capturing the Melitz (2003) selection effect of the largest firms into exporting. The results below also hold for any \(\Gamma_F \geq \Gamma \).

For our baseline case, we set the foreign share \(\lambda_F = 0 \), and \(\lambda_S = \lambda_L = 0.4 \), so that the small and large home firms split equally the remaining home market. This approximates a typical Belgian manufacturing industry in our sample. We further set \(\varphi = 0.4 \) and \(\Gamma = 1.5 \) for the large home firms. This implies an own cost pass-through, \(\frac{1}{1+\Gamma} \), of 70% on average for home firms, with a 100% pass-through for small firms and a 40% pass-through for large firms, capturing in a stylized way our empirical findings in Section 3. For the foreign firms, we set \(\varphi^* = 0.7 \), implying that 30% of foreign exporters’ production expenditure is on intermediates purchased from the eurozone. Altogether, the share of foreign value added in aggregate output is given by \(\bar{\varphi} = \lambda_L \varphi + \lambda_F \varphi^* = 0.3 \), where a portion \(\lambda_F \varphi^* = 0.14 \) comes in the form of foreign output and a portion \(\lambda_L \varphi = 0.16 \) comes in the form of foreign intermediates used by the large home firms, broadly in line with the Belgian patterns documented by Tintelnot, Kikkawa, Mogstad, and Dhyne (2017).

Using the general result in Proposition 3, we can characterize the aggregate ERPT and study its variation as a function of parameters in our stylized example:

\[
\Psi = \frac{\bar{\varphi}}{1 + \lambda_S \Gamma},
\]

and therefore \(\Psi < \bar{\varphi} \) if \(\lambda_S \Gamma > 0 \). Indeed, in this simple example, \(\lambda_S \Gamma > 0 \) ensures that the conditions of Corollary 2 are satisfied, while whenever \(\lambda_S = 0 \) or \(\Gamma = 0 \), the conditions of Corollary 1 are satisfied instead. This illustrates how the presence of small firms that differ from large firms in terms of both exchange rate exposure \(\varphi \) and strategic complementarities \(\Gamma \) is essential for the aggregate markup adjustment. The larger is the cumulative market share of the small firms \(\lambda_S \), the bigger is the gap between \(\bar{\varphi} \) and \(\Psi \). This is because the prices of the small firms are not sensitive to the exchange rate, and this acts to limit the price adjustment by the large firms that exhibit strategic complementarities. In our baseline, the average exchange rate pass-through into costs is \(\bar{\varphi} = 0.3 \), while the average pass-through into prices is \(\Psi = 0.19 < \bar{\varphi} \). In other words, markup adjustment at the industry level offsets almost 40% of the direct effect of the shock to the marginal cost. This also means that in response to a 10% depreciation, the average industry markup declines by more than one percentage point.
We evaluate the markup adjustment by the subset of the domestic firms. With $\psi_S = \varphi_S = 0$, we have:

\[
\Psi_D - \bar{\varphi}_D = \frac{\lambda_L}{\lambda_S + \lambda_L} (\psi_L - \varphi_L) = \frac{\lambda_L}{\lambda_S + \lambda_L} \Gamma \left[\frac{\varphi}{1 + \lambda_S \Gamma} - \varphi \right],
\]

where $\bar{\varphi}_D = \frac{\lambda_S}{\lambda_S + \lambda_L} \varphi_S + \frac{\lambda_L}{\lambda_S + \lambda_L} \varphi_L = \frac{\lambda_S}{\lambda_S + \lambda_L} \varphi_S$ and similarly for Ψ_D, and we substitute in the solution for $\psi_L = \frac{1}{1 + \Gamma} \varphi_L + \frac{\Gamma}{1 + \Gamma} \Psi$ using (A14). Therefore, a necessary and sufficient condition for the markup of the home firms to decline on average is $\varphi > \bar{\varphi} / (1 + \lambda_S \Gamma)$. Evidently, this is more likely to be the case when strategic complementarities are strong, large home firms rely intensively on foreign inputs, and also face relatively more small domestic competitors than foreign competitors (which reduces $\bar{\varphi}$). In our baseline, $\bar{\varphi}_D = 0.2$ and $\Psi_D = 0.14 < \bar{\varphi}_D$, suggesting a considerable reduction in home firms’ average markups in response to an exchange rate depreciation. This contrasts with the conventional narrative whereby domestic firms increase markups in response to a depreciation. In our example, small domestic firms are not exposed to the exchange rate directly and do not adjust their markups, as they exhibit no strategic complementarities in price setting. The large home firms are, in contrast, strongly exposed to the exchange rate directly, as they import a considerable portion of their inputs. And, since these large home firms compete most intensely against the small home firms (as the cumulative share of foreign firm is only 20%), strategic complementarities compel the large home firms to reduce their markups.

Our conclusion that depreciations lead to lower average markups of the home firms, while contradicting the conventional logic, is rather robust under a variety of alternative scenarios. There are two essential requirements for this to happen. First, a considerable portion of foreign value added in the sector must come not just in the form of output, but also in the form of intermediate inputs, used primarily by the largest home producers. Second, as emphasized in Corollary 2, firms must exhibit differential degrees of strategic complementarity in price setting, which is correlated with the exposure to foreign value added. This heterogeneity requirement is, however, not implausibly stringent. In this three-type economy, $\Psi_D < \bar{\varphi}_D$ still holds true even if we reduce considerably the extent of heterogeneity between small and large home firms, relative to our highly stylized example with $\varphi_S = \Gamma_S = 0$. Therefore, we conclude that our finding that domestic firms reduce their markups on average in response to a home currency depreciation is not merely a curiosity, but indeed a likely empirical outcome.

D General Quantitative Model

Monopolistic competition under CES demand yields constant markups. In this appendix we relax both assumptions, allowing for general non-CES homothetic demand and oligopolistic competition. This model nests both Kimball (1995) and Atkeson and Burstein (2008).

Consider the following aggregator for the sectoral consumption C:

\[
\frac{1}{N} \sum_{i \in \Omega} A_i \left(\frac{NC_i}{\xi_i C} \right) = 1, \quad (A15)
\]

where Ω is the set of products i in the sector with $N = |\Omega|$ denoting the number of goods, and C_i is
the consumption of product i; A_i and ξ_i denote the two shifters (a quality parameter and a demand parameter, respectively); $\Upsilon(\cdot)$ is the demand function such that $\Upsilon(\cdot) > 0$, $\Upsilon'(\cdot) > 0$, $\Upsilon''(\cdot) < 0$, and $\Upsilon(1) = 1$. The two important limiting cases are $N \to \infty$ (corresponding to Kimball monopolistic competition) and $\Upsilon(z) = z^{(\sigma-1)/\sigma}$ (corresponding to the CES aggregator).

Consumers allocate expenditure E to the purchase of products in the sector, and we assume that $E = kP^{1-\eta}$, where P is the sectoral price index and η is the elasticity of substitution across sectors (and k is a sectoral demand shifter exogenous to the within-sector equilibrium outcomes). Formally, we write the sectoral expenditure (budget) constraint as:

$$\sum_{i \in \Omega} P_i C_i = E. \tag{A16}$$

Given prices $\{P_i\}_{i \in \Omega}$ of all products in the sector and expenditure E, consumers allocate consumption $\{C_i\}$ optimally across products within sectors to maximize the consumption index C:

$$\max_{\{C_i\}_{i \in \Omega}} \left\{ C \mid \text{s.t. (A15) and (A16)} \right\}. \tag{A17}$$

The first-order optimality condition for this problem defines consumer demand, and is given by:

$$C_i = \frac{\xi_i C}{N} \cdot \psi \left(\frac{x_i}{P/D} \right), \quad \text{where} \quad x_i = \frac{P_i/\chi_i}{P/D}, \tag{A18}$$

where $\chi_i \equiv A_i/\xi_i$ is the quality parameter and $\psi(\cdot) \equiv \Upsilon'^{-1}(\cdot)$ is the demand curve, while $\xi_i C/N$ is the normalized demand shifter.\(^{54}\) C is sectoral consumption; P is the ideal price index such that $C = E/P$ (hence, P is also the expenditure function) and D is an additional auxiliary variable determined in industry equilibrium, which is needed to characterize demand outside the CES case.\(^{55}\)

Substituting the demand schedule (A18) into the constraints (A15)–(A16), we obtain a system of conditions which determine the equilibrium consumer price level P and the auxiliary variable D.\(^{56}\)

$$\frac{1}{N} \sum_{i \in \Omega} A_i \Upsilon \left(\psi \left(\frac{P_i/\chi_i}{P/D} \right) \right) = 1 \quad \text{and} \quad \frac{1}{N} \sum_{i \in \Omega} \frac{\xi_i P_i}{P} \psi \left(\frac{P_i/\chi_i}{P/D} \right) = 1. \tag{A19}$$

The first condition in (A19) ensures that (A15) is satisfied given the demand (A18), i.e. that C is indeed

\(^{54}\)Note that an increase in χ_i directly reduces the effective price for the good in the eyes of the consumers, which corresponds to a shift along the demand curve. At the same time, an increase in ξ_i (holding χ_i constant), shifts out the demand curve holding the effective price unchanged. This is why we refer to ξ_i as the demand shifter, and χ_i as the quality parameter.

\(^{55}\)Note that the ideal price index P exists since the demand defined by (A15) is homothetic, i.e. a proportional increase in E holding all $\{P_i\}$ constant results in a proportional expansion in C and in all $\{C_i\}$ holding their ratios constant; $1/P$ equals the Lagrange multiplier for the maximization problem in (A17) on the expenditure constraint (A16).

\(^{56}\)In the limiting case of CES, we have $\Upsilon(z) = z^{\sigma-1}$, and hence $\Upsilon'(z) = z^{-1/\sigma}$ and $\psi(x) = \left(\frac{\sigma}{\sigma-1} \right)^{-\sigma} x^{1-\sigma}$. Substituting this into (A19) and taking the ratio of the two conditions immediately pins down the value of $D = (\sigma - 1)/\sigma$, which is a constant independent from $\{P_j\}$. Hence, this auxiliary variable is redundant in the CES case given the value of the elasticity σ. With this D, the price index can be recovered from either condition in (A19), and it takes its usual form: $P = \left[\frac{1}{N} \sum_{j \in \Omega} (A_j^\sigma \xi_j^{\sigma-1}) (P_j^{-1-\sigma}) \right]^{1/(1-\sigma)}$. The case of CES is a knife-edge case in which the demand system can be described with only the price index P, which summarizes all information contained in micro-level prices needed to describe aggregate allocation. More generally, the second auxiliary variable D is needed to characterize the aggregate effects of micro-level heterogeneity. In fact, (P, D) form a sufficient statistic to describe the relevant moments of the price distribution.
attained given the consumption allocation \(\{C_i\} \). The second condition in (A19) ensures that the expenditure constraint (A16) is satisfied given the allocation (A18). Note that this condition simply states that the sum of market shares in the sector equals one, with the market share given by:

\[
S_i \equiv \frac{P_i C_i}{PC} = \frac{\xi_i P_i}{NP} \psi \left(\frac{P_i/\chi_i}{P/D} \right),
\]

(A20)

where we substituted in for \(C_i \) from the demand equation (A18).

Next, we introduce the demand elasticity as a characteristic of the slope of the demand curve \(\psi(\cdot) \):

\[
\sigma_i \equiv \sigma(x_i) = -\frac{d \log \psi(x_i)}{d \log x_i},
\]

(A21)

where \(x_i \) is the effective price of the firm as defined in (A18). Outside the CES case, the demand elasticity is non-constant and is a function of the effective price of the firm. Totally differentiating the two conditions in (A19):

\[
\begin{align*}
\frac{d \log P}{d \log P} &= \sum_{i \in \Omega} S_i \frac{d \log P_i}{d \log P}, \\
\frac{d \log P}{d \log D} &= \sum_{i \in \Omega} S_i \sigma_i \sum_{j \in \Omega} S_j \sigma_j \frac{d \log P_i}{d \log P}.
\end{align*}
\]

Note that the elasticity of demand in this model depends on \(x_i = (P_i/\chi_i)/(P/D) \), and hence \(P/D \) is the sufficient statistic for competitor prices, albeit one that differs from the expenditure function \(P \).

Yet, from the expressions above, we have:

\[
\frac{d \log P}{d \log D} - \frac{d \log P}{d \log P} = \sum_{i \in \Omega} \frac{\sigma_i - \bar{\sigma}}{\sigma} S_i \frac{d \log P_i}{d \log P},
\]

where \(\bar{\sigma} \equiv \sum_{j \in \Omega} S_j \sigma_j \). Therefore, \(\log(P/D) \) and \(\log P \) differ by a second order term in the cross-sectional dispersion of \(x_i \), and hence Proposition 2 applies as a first-order approximation. We verify the precision of this approximation using our calibrated Kimball demand model.

We can now calculate the full effective elasticity of demand, which takes into account the effects of \(P_i \) on \(P \) and \(D \). Substituting \(C = E/P = kP^{-\eta} \) into (A18), we show:

\[
\Sigma_i \equiv -\frac{d \log C_i}{d \log P_i} = \eta S_i + \sigma_i \left(1 - \frac{S_i \sigma_i}{\sum_{j \in \Omega} S_j \sigma_j} \right),
\]

(A22)

which generalizes expression (A10) in the CES case, and also nests the expression for the monopolistic competition case where \(S_i \equiv 0 \). In the general case, the optimal profit-maximizing markup is given by \(\Sigma_i/(\Sigma_i - 1) \), and it can be analyzed in the same way we approached it in Section 2.

The key insight is that the market share channel in (A22) operates exactly in the same way as in the CES model described in Section 2. In the CES model (with \(\sigma_i \equiv \rho \) for all \(i \)), however, this is the only channel of markup variability: as the firm gains market share, it increases its markup (as long as \(\rho > \eta \)), and markups become flatter as all firms become smaller in absolute terms, with the limiting
case of monopolistic competition and constant markups. More generally, with non-CES demand, the markup elasticity also depends on the properties of the $\sigma(\cdot)$ function in (A21), and markups are non-constant even in the limiting case of monopolistic competition with $S_i \equiv 0$, where the variables that affect the curvature of demand (namely, $\sigma'(\cdot)$) determine the variability of the markup. Nonetheless, as long as $\eta < \sigma_i$, an increase in market share S_i leads to a reduction in the effective elasticity of demand Σ_i, emphasizing the general role the market share plays across oligopolistic models. Furthermore, in the limit of monopolistic competition, non-CES demand can exhibits similar qualitative properties of markup variation as the oligopolistic model under CES demand (see e.g. Gopinath and Itskhoki 2010).

Calibration of the CES model
We solve for an industry equilibrium in the domestic market, in which both domestic and foreign firms (exporters) compete together, and the costs of the firms follow exogenous processes disciplined by the data. We analyze simultaneous price setting by firms that are subject to idiosyncratic cost shocks and an aggregate exchange rate shock, affecting firms with heterogeneous intensities. We calibrate the model using data on “typical” Belgian manufacturing industries at NACE 4-digit level of aggregation.

We assume nested CES demand, given in levels by $Q_{it} = \xi_{it} P_{it}^{-\rho} P_t^{\rho-\eta} D$, where D is an exogenous demand shifter and P_t is the sectoral price index, as defined under equation (11) in Section 2. The strategic complementarities in price setting arising due to oligopolistic (quantity) competition under CES demand, following Atkeson and Burstein (2008). This model has a number of desirable properties for our analysis. First, this model, combined with a realistic firm productivity process described below, delivers the empirically accurate fat-tailed distribution of firm market revenues (Zipf’s law). Second, firms with larger market shares charge higher markups and adjust them more intensively in response to shocks, exhibiting greater strategic complementarities in price setting, as we discussed in the text. Third, the model reproduces a large mass of very small firms that charge nearly constant markups and exhibit no strategic complementarities, being effectively monopolistic competitors under constant-elasticity demand. All this is in line with the empirical patterns we document in Section 3.

The empirical success of the Atkeson-Burstein model in matching the firm price behavior relies on the assumptions of Cournot competition and particular values of demand elasticities. We set the elasticity of substitution across 4-digit industries to $\eta = 1$ (corresponding to the Cobb-Douglas aggregator) and within 4-digit industries to $\rho = 10$. This is a conventional calibration in the literature following Atkeson and Burstein (2008), as for example in Edmond, Midrigan, and Xu (2015). In order to reproduce empirical pass-through patterns, the model requires a combination of Cournot competition, a low (effectively Cobb-Douglas) between-industry elasticity and a high within-industry elasticity of demand. Under our baseline parameterization, the largest firm in a typical industry with a market share of 12% has a cost pass-through elasticity of around 0.5, and correspondingly a 0.5 strategic complementarity elasticity, as in this model $\Gamma_{-it} = \Gamma_{it}$. This ensures the model replicates the empirical patterns documented in Section 3, as we illustrated in Table 7 in the text. Any significant departure from this parameterization (towards higher η, lower ρ, or to Bertrand competition) results in a steep drop in the extent of strategic complementarities Γ_{it}, as can be seen in Figure A3, and would lead to the model’s failure in matching the observed empirical patterns.
Figure A3: Markups and pass-through in a calibrated model

Note: Solid blue line corresponds to our benchmark case with Cournot competition, $\rho = 10$ and $\eta = 1$. The other lines correspond to respective departures from the baseline case. Left panel plots markups M_{it} and right panel plots cost pass-through elasticity $1/(1 + \Gamma_{it})$, both as functions of the firm’s market share S_{it} (see expressions in Section 2). In the data, the market share of the largest firm in a typical industry is around 12%, depicted with a vertical dashed line in the right panel.

The marginal costs of the firms are given by (27), where the price index of domestic inputs W_t and the foreign-currency price index of imported inputs V_t^* are assumed to be common across firms within an industry. We assume $\{W_t, V_t^*, \mathcal{E}_t\}$ follow exogenous processes, reflecting our industry equilibrium focus. In particular, we normalize $W_t \equiv V_t^* \equiv 1$, making \mathcal{E}_t the only source of aggregate shocks, which affects firms with heterogeneous intensity ϕ_i. The nominal exchange rate follows a random walk in logs:

$$e_t = e_{t-1} + \sigma_e u_t, \quad u_t \sim \text{iid } \mathcal{N}(0,1), \quad (A23)$$

where $e_t \equiv \log \mathcal{E}_t$ and $\sigma_e = 0.06$ is the standard deviation of the exchange rate innovation, calibrate to match the volatility of the annual trade-weighted euro exchange rate in the data.

We further assume that firm productivities A_{it} follow a random growth process, with $a_{it} \equiv \log A_{it}$ evolving according to a random walk with drift μ and a lower reflecting barrier at a:

$$a_{it} = a + |\mu + a_{i,t-1} + \sigma_a v_{it} - a|, \quad v_{it} \sim \text{iid } \mathcal{N}(0,1) \quad (A24)$$

where σ_a is the standard deviation of the innovation to log productivity. The initial productivities A_{i0} are drawn from a Pareto distribution with the cumulative distribution function $G_0(A) = 1 - (e^A/A)^\theta$, where θ is the shape parameter and a is the lower bound parameter. We set $\mu = -\theta \sigma_a^2/2 < 0$ to ensure that the cross-sectional distribution of productivities stays unchanged over time and given by G_0 (see Gabaix 2009). We normalize $a = 0$, and we set $\sigma_a = 0.03$ to match the short-run and long-run persistence of firm market shares (namely, the cross-sectional standard deviation of ΔS_{it} and correlation of S_{it} and $S_{i,t+12}$). Finally, we set the shape parameter of the Pareto productivity distribution $\theta = 8$, which (in combination with the demand elasticity $\rho = 8$) reproduces simultaneously the Zipf’s law in firm sales within industries and the size of the largest firm across industries, as well as the overall measures of firm concentration. In particular, we ensure that the 20% of the largest firm
account for 60% of the home-market sales, as is the case in the data.

Each industry has domestic and foreign firms, with productivities drawn from the same data generating process. We set the number of domestic firms to 45 and select the number (of top) foreign firms to match the 20% sales share, corresponding to a typical Belgian manufacturing industry. All foreign firms have the same exposure to foreign inputs $\phi_i = \phi^* = 0.7$, reflecting that 30% of their costs come from within the eurozone, and allowing us to match the average exchange rate pass-through into Belgian imports of around 50% (see Table 8). For the domestic firms, we have $\phi_i \in [0, \phi^*]$, positively, yet imperfectly, correlated with firm productivity A_{it}, to match the empirical correlation between ϕ_{it} and S_{it} of 0.3, with the sale-weighted average of import intensity given by $\bar{\phi} = 0.2$.

To calculate the moments in the model, we simulate a large number of industries (10,000) over 13 years, generating a panel of firm marginal costs, prices and market shares, akin to the one we have for the Belgian manufacturing sector. The equilibrium prices are a result of the oligopolistic price setting game in the industry, following (11). For a general equilibrium analysis and a formal estimation of a related model see Gaubert and Itskhoki (2018). We use this simulated dataset to produce the counterfactual results in Tables 7 and 8 in the text.

Calibration of the non-CES (Kimball) model As an alternative quantitative model of variable markups, we consider a monopolistic competition model under non-CES demand. Specifically, we adopt the Klenow and Willis (2016) formulation of the Kimball (1995) demand, given by the following demand schedule (as a special case of (A18) above):

$$C_i = \xi_i \psi \left(\frac{\xi_i P_i}{P/D} \right) C_i \text{, where } \psi(x) = \left[1 - \varepsilon \log \left(\frac{\sigma}{\sigma-1} x \right) \right]^\sigma/\varepsilon,$$

where σ and ε control the elasticity and the super-elasticity (elasticity of the elasticity) of the demand schedule respectively:

$$\tilde{\sigma}(x_i) = -\frac{\partial \log \psi(x_i)}{\partial \log x_i} = \frac{\sigma}{1 - \varepsilon \log \left(\frac{\sigma}{\sigma-1} x_i \right)} \quad \text{and} \quad \tilde{\varepsilon}(x_i) = \frac{\partial \log \tilde{\sigma}(x_i)}{\partial \log x_i} = \frac{\varepsilon}{1 - \varepsilon \log \left(\frac{\sigma}{\sigma-1} x_i \right)}.$$

Therefore, for $\varepsilon > 0$, this demand features an increasing elasticity of demand with the firm’s price, and hence a decreasing markup given by $\frac{\tilde{\sigma}(x_i)}{\tilde{\sigma}(x_i)-1}$. The limiting case with $\varepsilon \to 0$ corresponds to the CES demand with a constant elasticity σ.

The elasticity of the markup with respect to both P_i and price index P is given by:

$$\Gamma_i = \Gamma_{-i} = -\frac{\partial \log \tilde{\sigma}(x_i)}{\partial \log P_i} = \frac{\tilde{\varepsilon}(x_i)}{\tilde{\sigma}(x_i)-1} = \frac{\varepsilon}{\sigma - 1 + \varepsilon \log \left(\frac{\sigma}{\sigma-1} x_i \right)}.$$

is decreasing in the price of the firm (and hence increasing in market share). Also note that the markup elasticity for an average firm (with $\frac{\sigma}{\sigma-1} x_i = 1$) is given by $\bar{\Gamma} = \frac{\varepsilon}{\sigma-1}$, and is particularly sensitive to the curvature of demand parameter ε (the elasticity of the elasticity). Lastly, the demand aggregator in (A15) which generates this demand is given by $\Upsilon(z) = 1 + \frac{\sigma-1}{\varepsilon} e^{\sigma/\varepsilon} \left[\Gamma \left(\frac{\sigma}{\varepsilon}, \frac{1}{\varepsilon} \right) - \Gamma \left(\frac{\varepsilon/\sigma}{\varepsilon}, \frac{\varepsilon/\sigma}{\varepsilon} \right) \right]$, where
Table A4: Quantitative model with Kimball demand: strategic complementarities and ERPT

Panel A: Price change regressions as in Table 7

<table>
<thead>
<tr>
<th>Dep. var.</th>
<th>All</th>
<th>Small</th>
<th>Large</th>
<th>Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δmc_{it}</td>
<td>0.618</td>
<td>0.704</td>
<td></td>
<td>0.704</td>
</tr>
<tr>
<td>Δmc_{it} × Large_{it}</td>
<td>—</td>
<td>—</td>
<td>0.576</td>
<td>—12.8</td>
</tr>
<tr>
<td>Δp_{it}</td>
<td>0.289</td>
<td>0.237</td>
<td></td>
<td>0.238</td>
</tr>
<tr>
<td>Δp_{it} × Large_{it}</td>
<td>—</td>
<td>—</td>
<td>0.339</td>
<td>0.101</td>
</tr>
</tbody>
</table>

Panel B: ERPT decomposition as in Table 8

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>Home</th>
<th>Large</th>
<th>Small</th>
<th>Foreign</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{\varphi}_J)</td>
<td>0.300</td>
<td>0.200</td>
<td>0.245</td>
<td>0.122</td>
<td>0.700</td>
</tr>
<tr>
<td>(\Psi_J)</td>
<td>0.249</td>
<td>0.196</td>
<td>0.224</td>
<td>0.150</td>
<td>0.456</td>
</tr>
<tr>
<td>(\Psi_J - \hat{\varphi}_J)</td>
<td>—0.051</td>
<td>—0.004</td>
<td>—0.021</td>
<td>0.028</td>
<td>—0.244</td>
</tr>
</tbody>
</table>

\[\Gamma(a, b) = \int_b^{\infty} t^{a-1} e^{-t} \, dt \] is the incomplete Gamma-function. With this, \(P \) and \(P/D \) are determined by solving for the fixed point in (A19).

We assume the same cost and productivity structure as in the Atkeson-Burstein simulation, and in addition we choose the demand shifter \(\xi_i \) to be correlated with firm productivity in order to match the fat-tailed sales distribution in the data.\(^{57}\) We target the same set of moments in the calibration. In particular, we set \(\sigma = 5 \) and \(\varepsilon = 1.6 \) to match the variability of markups and the resulting own cost pass-through and strategic complementarity elasticites. We report these results in the left panel of Table A4, which parallels Table 7 in the text for the Atkeson-Burstein calibration. As discussed in footnote 57, the Kimball model can reproduce the average pass-through and strategic complementarity elasticities, but has a hard time simultaneously capturing the extent of heterogeneity across firms in these elasticities and the fatness of the right tail of the sales distribution. Therefore, our calibration of the Kimball model ends up understating the amount of heterogeneity in the strategic complementarities across firms. Nonetheless, it captures the qualitative patterns of our estimates in Tables 1–2 of Section 3.

Finally, the right panel of Table A4 reports the results of the exchange rate depreciation counterfactual in the calibrated Kimball model, as in Table 8 in the text for the Atkeson-Burstein calibration. The two quantitative models agree on the patterns of price and markup adjustment in response to an exchange rate depreciation: the average industry markup declines, small home firms increase markups, while foreign and large home firms reduce their markups, and the markups of all home firms decline on average. However, since the Kimball model does not capture the full extent of heterogeneity in markup elasticities across firms, it produces somewhat more muted movements in aggregate and group-specific markups. Overall, these results illustrate the robustness of the predicted patterns of markup adjustment in response to exchange rate shocks across different models of variable markups, as long as the models are disciplined by the same empirical patterns of markup variability documented in Section 3.

\(^{57}\)Our empirical analysis emphasizes three key features of the data: (i) no strategic complementarities and complete pass-through exhibited by the bulk of small firms; (ii) strong strategic complementarities and incomplete pass-through exhibited by the largest firms; (iii) extremely fat-tailed distribution of firm sales (market shares), referred to as the Zipf’s law. We show that the oligopolistic CES model is successful in capturing all of these facts, which at the same time proves to be challenging for the monopolistic competition models with non-CES demand. First, capturing fact (i) requires that demand is asymptotically constant elasticity (CES) as the price of the firm increases and the firm becomes small. Otherwise, the model would produce counterfactual incomplete pass-through for the small firms. Second, jointly capturing facts (ii) and (iii) is another challenge. While non-CES demand can easily produce significant markup variability, resulting in incomplete pass-through and strategic complementarities, this is achieved by means of a declining curvature in demand, resulting in increasing optimal markups and prices, limiting optimal sales of the firm and hence curbing the fatness of the tail of the sales distribution. Avoiding this requires the use of demand shifters \(\xi_i \), correlated with firm productivity.
References

economics, 98(1), 60–77.

com/site/davidbaqaee/.

of Political Economy, forthcoming.

BERMAN, N., P. MARTIN, AND T. MAYER (2012): "How do different exporters react to exchange rate changes?",

Working Papers No. 18246.

121(2), 541–85.

Paper No. 22943.

6(1), 201–227.

Econometrica, 84(2), 445–510.

102(6), 2437–2471.

Review, 67(3), 297–308.

1407–1440.

American Economic Review, 105(10), 3183–221.

