Optimal Development Policies with Financial Frictions

Oleg Itskhoki
Princeton

Benjamin Moll
Princeton

École Polytechnique
June 2015
Questions

1 Normative:
 - Is there a role for governments to accelerate economic development by intervening in product and factor markets?
 - Taxes? Subsidies? If so, which ones?

2 Positive:
 - Most emerging economies pursue active development and industrial policies
 - Under which circumstances may such policies be justified?
Historical accounts of development policies

<table>
<thead>
<tr>
<th>Uniform</th>
<th>Targeted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rough period</td>
<td>Suppressed wages</td>
</tr>
<tr>
<td>Japan 1950-70</td>
<td>√</td>
</tr>
<tr>
<td>Korea 1960-80</td>
<td>√</td>
</tr>
<tr>
<td>Taiwan 1960-80</td>
<td>√</td>
</tr>
<tr>
<td>Malaysia 1960-90</td>
<td>√</td>
</tr>
<tr>
<td>Singapore 1960-90</td>
<td>√</td>
</tr>
<tr>
<td>Thailand 1960-90</td>
<td>√</td>
</tr>
<tr>
<td>China 1980-?</td>
<td>√</td>
</tr>
</tbody>
</table>

- **Example of wage suppression: South Korea**
 - official upper limit on real wage growth: nominal wage growth $< 80\%$ (inflation + productivity growth)
 - Park Chung Hee: 1965 “year to work”

- not in table: exchange rate policies
Historical accounts of development policies

<table>
<thead>
<tr>
<th></th>
<th>Uniform</th>
<th>Targeted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rough period</td>
<td>Suppressed wages</td>
</tr>
<tr>
<td>Japan</td>
<td>1950-70</td>
<td>√</td>
</tr>
<tr>
<td>Korea</td>
<td>1960-80</td>
<td>√</td>
</tr>
<tr>
<td>Taiwan</td>
<td>1960-80</td>
<td>√</td>
</tr>
<tr>
<td>Malaysia</td>
<td>1960-90</td>
<td>√</td>
</tr>
<tr>
<td>Singapore</td>
<td>1960-90</td>
<td>√</td>
</tr>
<tr>
<td>Thailand</td>
<td>1960-90</td>
<td>√</td>
</tr>
<tr>
<td>China</td>
<td>1980-?</td>
<td>√</td>
</tr>
</tbody>
</table>

Detailed discussion of sources in Appendix of future draft. E.g. for China:

- **Example of wage suppression: South Korea**
 - official upper limit on real wage growth: nominal wage growth < 80% (inflation + productivity growth)
 - Park Chung Hee: 1965 “year to work”, 1966 “year of harder work”

- not in table: exchange rate policies
Questions

- All these policies are “crazy” from neoclassical perspective
- This paper: some of them may be justified under particular circumstances
What We Do

• Optimal Ramsey policy in a standard growth model with financial frictions
 ① one-sector economy: uniform policies
 ② multi-sector economy: targeted policies

• Environment similar to a wide class of development models
 — financial frictions ⇒ capital misallocation ⇒ low productivity

• but more tractable ⇒ Ramsey problem feasible: $G_t(a, z) \to \bar{a}_t$

• Features:
 — Collateral constraint: firm’s scale limited by net worth
 — Financial wealth affects economy-wide labor productivity
 — Pecuniary externality: high wages hurt profits and wealth accumulation
Main Findings

1. Optimal uniform policy in one-sector model
 - *pro-business* (*pro-output*) policies for developing countries, during early transition when entrepreneurs are undercapitalized
 - *pro-labor* policy for developed countries, close to steady state
 - Rationale: dynamic externality akin to learning-by-doing, but operating via misallocation of resources

2. Optimal targeted and exchange rate policies in multi-sector model
 - favor comparative advantage sectors and speed up transition
 - compress wages in tradable sectors if undercapitalized...
 - ... but whether this results in depreciated real exchange rate is instrument-dependent
One-Sector Economy

Workers: representative household with wealth (bonds) \(b \)

\[
\max \left\{ c(\cdot), \ell(\cdot) \right\} \int_0^\infty e^{-\rho t} u(c(t), \ell(t)) \, dt,
\]

s.t. \(c(t) + b(t) \leq w(t)\ell(t) + r(t)b(t) \)
One-Sector Economy

1. **Workers**: representative household with wealth (bonds) \(b \)

\[
\max_{\{c(\cdot), \ell(\cdot)\}} \int_0^\infty e^{-\rho t} u(c(t), \ell(t)) \, dt,
\]

s.t. \(c(t) + \dot{b}(t) \leq w(t)\ell(t) + r(t)b(t) \)

2. **Entrepreneurs**: heterogeneous in wealth \(a \) and productivity \(z \)

\[
\max_{\{c_e(\cdot)\}} \mathbb{E}_0 \int_0^\infty e^{-\delta t} \log c_e(t) \, dt
\]

s.t. \(\dot{a}(t) = \pi_t(a(t), z(t)) + r(t)a(t) - c_e(t) \)

\[
\pi_t(a, z) = \max_{n \geq 0, \ 0 \leq k \leq \lambda a} \left\{ A(t)(zk)^\alpha n^{1-\alpha} - w(t)n - r(t)k \right\}
\]

- Collateral constraint: \(k \leq \lambda a, \ \lambda \geq 1 \)
- Idiosyncratic productivity: \(z \sim iid\text{Pareto}(\eta) \)
Policy functions

- **Profit maximization:**

 \[
 k_t(a, z) = \lambda a \cdot 1\{z \geq z(t)\},
 \]

 \[
 n_t(a, z) = \left(\frac{1 - \alpha}{w(t)} A \right)^{1/\alpha} z k_t(a, z),
 \]

 \[
 \pi_t(a, z) = \left[\frac{z}{z(t)} - 1 \right] r(t) k_t(a, z),
 \]

 where

 \[
 \alpha A^{1/\alpha} \left(\frac{1 - \alpha}{w(t)} \right)^{1-\alpha/\alpha} z(t) = r(t)
 \]

- **Wealth accumulation:**

 \[
 \dot{a} = \pi_t(a, z) + (r(t) - \delta) a
 \]
Aggregation

• Output:

\[y = A \left(\frac{\eta}{\eta - 1} z \right)^\alpha \cdot \kappa^{\alpha} \ell^{1 - \alpha} \]

• Capital demand:

\[\kappa = \lambda x z^{-\eta} , \]

where aggregate wealth \(x(t) \equiv \int a \, dG_t(a, z) \) evolves:

\[\dot{x} = \Pi + (r - \delta) x , \]
Aggregation

- **Output:**
 \[y = A \left(\frac{\eta}{\eta - 1} z \right)^\alpha \cdot \kappa^\alpha \ell^{1-\alpha} \]

- **Capital demand:**
 \[\kappa = \lambda x z^{-\eta}, \]

where aggregate wealth \(x(t) \equiv \int adG_t(a, z) \) evolves:

\[\dot{x} = \Pi + (r - \delta)x, \]

- **Lemma:** *National income accounts*

 \[w\ell = (1 - \alpha)y, \quad r\kappa = \alpha \frac{\eta - 1}{\eta} y, \quad \Pi = \frac{\alpha}{\eta} y. \]
General equilibrium

1. **Small open economy:** \(r(t) \equiv r^* \)
 and \(\kappa(t) \) is perfectly elastically supplied

 - Lemma:
 \[
 y = y(x, \ell) = \Theta x^\gamma \ell^{1-\gamma}, \quad \gamma = \frac{\alpha/\eta}{(1 - \alpha) + \alpha/\eta}
 \]
 and \(z^n \propto (x/\ell)^{1-\gamma} \)
General equilibrium

1. **Small open economy**: \(r(t) \equiv r^* \)
 and \(\kappa(t) \) is perfectly elastically supplied

 - **Lemma**:
 \[
y = y(x, \ell) = \Theta x^\gamma \ell^{1-\gamma}, \quad \gamma = \frac{\alpha/\eta}{(1 - \alpha) + \alpha/\eta}
 \]
 and \(z^\eta \propto (x/\ell)^{1-\gamma} \)

2. **Closed economy**: \(\kappa(t) = b(t) + x(t) \)
 and \(r(t) \) equilibrates capital market

 - **Lemma**:
 \[
y = y(x, \kappa, \ell) = \Theta_c (x\kappa^{\eta-1})^{\alpha/\eta} \ell^{1-\alpha}
 \]
 and \(z^\eta = \lambda x/\kappa \)
Excess Return of Entrepreneurs

- Key to understanding all policy interventions: entrepreneurs earn higher return than workers
 - not only individually
 \[
 R(z) = r \left(1 + \lambda \left[\frac{z}{z} - 1 \right]^+ \right) \geq r
 \]
 - but also on average
 \[
 \mathbb{E} R(z) = r + \frac{\alpha y}{\eta x} > r
 \]

- Could generate Pareto improvement with transfer from workers to all entrepreneurs at \(t = 0 \) + reverse transfer at later date
 - essentially allows planner to sidestep friction
 - perhaps not feasible, e.g. for political economy reasons

Next: explore alternative policies
Excess Return of Entrepreneurs

- Key to understanding all policy interventions: entrepreneurs earn higher return than workers
 - not only individually
 \[
 R(z) = r \left(1 + \lambda \left[\frac{z}{z} - 1 \right]^{+} \right) \geq r
 \]
 - but also on average
 \[
 \mathbb{E}R(z) = r + \frac{\alpha y}{\eta x} > r
 \]
- Could generate Pareto improvement with
 - transfer from workers to all entrepreneurs at \(t = 0 \)
 + reverse transfer at later date
 - essentially allows planner to sidestep friction
 - perhaps not feasible, e.g. for political economy reasons
- Next: explore alternative policies
Optimal Ramsey Policies in a Small Open Economy

- Start with three policy instruments:
 1. $\tau_\ell(t)$: labor supply tax
 2. $\tau_b(t)$: worker savings tax
 3. $T(t)$: lump-sum tax on workers; GBC: $\tau_\ell w \ell + \tau_b b = T$
Optimal Ramsey Policies
in a Small Open Economy

• Start with three policy instruments:
 1. $\tau_\ell(t)$: labor supply tax
 2. $\tau_b(t)$: worker savings tax
 3. $T(t)$: lump-sum tax on workers; GBC: $\tau_\ell \ell + \tau_b b = T$

Lemma (Primal Approach)

Any aggregate allocation $\{c, \ell, b, x\}_{t \geq 0}$ satisfying

$$c + \dot{b} = (1 - \alpha) y(x, \ell) + r^* b$$
$$\dot{x} = \frac{\alpha}{\eta} y(x, \ell) + (r^* - \delta)x$$

can be supported as a competitive equilibrium under appropriately chosen policies $\{\tau_\ell, \tau_b\}_{t \geq 0}$.
Optimal Ramsey Policies

• **Benchmark:** zero weight on entrepreneurs

• **Planner’s problem:**

\[
\max_{\{c, \ell, b, x\}_{t \geq 0}} \int_{0}^{\infty} e^{-\rho t} u(c, \ell) dt
\]

subject to

\[
c + \dot{b} = (1 - \alpha)y(x, \ell) + r^* b,
\]

\[
\dot{x} = \frac{\alpha}{\eta} y(x, \ell) + (r^* - \delta)x,
\]

and denote by \(\nu \) the co-state for \(x \) (shadow value of wealth)

• **Isomorphic to learning-by-doing externality**
Optimal Ramsey Policies
Characterization

• **Inter-temporal** margin undistorted:

\[
\frac{\dot{u}_c}{u_c} = \rho - r^* \quad \Rightarrow \quad \tau_b = 0
\]

• **Intra-temporal** margin distorted:

\[
-\frac{u_{\ell}}{u_c} = \left[1 + \gamma(\nu - 1)\right](1 - \alpha)\frac{y}{\ell} \quad \Rightarrow \quad \tau_{\ell} = \gamma - \gamma \cdot \nu
\]

• Two confronting objectives:

1. **Monopoly effect**: increase wages by limiting labor supply

2. **Dynamic productivity externality**: accumulate \(x \) by subsidizing labor supply to increase future labor productivity

• Which effect dominates and when?
Optimal Ramsey Policies

Characterization

- ODE system in \((x, \nu)\) with a side-equation:

\[
\begin{align*}
\dot{x} &= \frac{\alpha}{\eta} y(x, \ell) + (r^* - \delta)x, \\
\dot{\nu} &= \delta \nu - (1 - \gamma + \gamma \nu) \frac{\alpha}{\eta} \frac{y(x, \ell)}{x}, \\
- \frac{u_\ell}{u_c} &= (1 - \gamma + \gamma \nu)(1 - \alpha) \frac{y(x, \ell)}{\ell}, \\
\tau_\ell &= \gamma - \gamma \cdot \nu
\end{align*}
\]
Optimal Ramsey Policies

Characterization

- ODE system in \((x, \tau_\ell)\) with a side-equation:

\[
\begin{align*}
\dot{x} &= \frac{\alpha}{\eta} y(x, \ell) + (r^* - \delta)x, \\
\dot{\tau}_\ell &= \delta(\tau_\ell - \gamma) + \gamma(1 - \tau_\ell) \frac{\alpha}{\eta} \frac{y(x, \ell)}{x}, \\
\ell &= \ell(x, \tau_\ell; \bar{\mu})
\end{align*}
\]

- **Proposition:** Assume \(\delta > \rho = r^*\). Then:

1. unique steady state \((\bar{x}, \bar{\tau}_\ell)\), globally saddle-path stable
2. starting from \(x_0 \leq \bar{x}\), \(x\) and \(\tau_\ell\) increase to \((\bar{x}, \bar{\tau}_\ell)\)
3. labor supply subsidized \((\tau_\ell < 0)\) when \(x\) is low enough and taxed in steady state: \(\bar{\tau}_\ell = \frac{\gamma}{\gamma + (1 - \gamma)\delta/\rho} > 0\)
4. intertemporal margin not distorted, \(\tau_b \equiv 0\)
Optimal Ramsey Policies

Phase diagram

Optimal Trajectory

\(\dot{x} = 0 \)

\(\dot{\tau}_\ell = 0 \)
Optimal Ramsey Policies

Time path

(a) Labor Tax, τ_ℓ

(b) Entrepreneurial Wealth, x

- Equilibrium
- Planner
Deviations from laissez-faire
Optimal Ramsey Policies

Discussion

• Many alternative implementations

• common feature: make workers work hard even though firms pay low wages
 1. Subsidy to labor supply or demand
 2. Non-market implementation: e.g., forced labor
 3. Non-tax market regulation: e.g., via bargaining power of labor

• Interpretation:
 — Pro-business (or wage suppression, or pro-output) policies
 — Policy reversal to pro-labor for developed countries

• Intuition: pecuniary externality
 — High wage reduces profits and slows down wealth accumulation
Optimal Policy with Transfers

• Generalized planner’s problem:

\[
\max_{\{c, \ell, b, x, \varsigma x\}_{t \geq 0}} \int_0^\infty e^{-\rho t} u(c, \ell) \, dt
\]

subject to

\[
c + \dot{b} = (1 - \alpha)y(x, \ell) + r^*b - \varsigma x x,
\]

\[
\dot{x} = \frac{\alpha}{\eta} y(x, \ell) + (r^* + \varsigma x - \delta)x,
\]

\[
s \leq \varsigma x(t) x(t) \leq S
\]

• Three cases:

1. \(s = S = 0 \): just studied
2. \(S = -s = +\infty \) (unlimited transfers)
3. \(0 < S, -s < \infty \) (bounded transfers)

• Why bounded transfers?
Unlimited Transfers

(a) Transfer, ς_x

-\(0\) to \(0.03\)

Equilibrium Planner

(b) Entrepreneurial Wealth, \(x\)

-\(0\) to \(1\)

Equilibrium Planner
Bounded Transfers

(a) Labor Tax, τ_ℓ

(b) Entrepreneurial Wealth, x

Equilibrium
Planner, No Transf.
Planner, Lim. Transf.
Additional Tax Instruments

• Additional policy instruments, all affecting entrepreneurs and financed by a lump-sum tax on workers

1. $\varsigma_\pi(t)$: profit subsidy
2. $\varsigma_y(t)$: revenue subsidy
3. $\varsigma_w(t)$: wage bill subsidy
4. $\varsigma_k(t)$: capital (credit) subsidy

• Budget set of entrepreneurs:

$$\dot{a} = (1 + \varsigma_\pi)\pi(a, z) + (r^* + \varsigma_x)a - c_e,$$
$$\pi(a, z) = \max_{\substack{n \geq 0, \\ 0 \leq k \leq \lambda a}} \left\{ (1 + \varsigma_y)A(zk)^\alpha n^{1-\alpha} - (1 - \varsigma_w)w\ell - (1 - \varsigma_k)r^*k \right\}$$
Additional Tax Instruments

- Generalize output function

\[y(x, \ell) = \left(\frac{1 + \varsigma_y}{1 - \varsigma_k} \right)^{\gamma(\eta - 1)} \Theta x^{\gamma \ell^{1-\gamma}} \]

- Proposition:

 (i) Profit subsidy \(\varsigma_\pi \), as well as \(\varsigma_y = -\varsigma_k = -\varsigma_w \), has the same effect as a transfer from workers to entrepreneurs, and dominates other tax instruments.

 (ii) When a transfer cannot be engineered, all available policy instruments are used to speed up the accumulation of entrepreneurial wealth.

- E.g.: \(\varsigma_k, \varsigma_w \propto \gamma(\nu - 1) \)

- Pro-business policy bias during early transition
Multi-Sector Economy: Targeted Policies

- Want framework for thinking about policies targeted to particular sectors
 - arguably most prevalent type of development policy

- Generalize framework to multiple sectors
 - both tradable and non-tradable sectors

- In addition to sectoral policies, also explore implications for real exchange rate
Multi-Sector Economy: Households

- Households have preferences
 \[\int_{0}^{\infty} e^{-\rho t} u(c_0, c_1, \ldots, c_N) dt \]
 - goods 0, \ldots, k: tradable
 - goods k + 1, \ldots, N: not tradable
 - good 0 is numeraire \(\Rightarrow p_0 = 1 \)
Multi-Sector Economy: Households

- Households have preferences
 \[\int_0^\infty e^{-\rho t} u(c_0, c_1, \ldots, c_N) dt \]
 - goods 0, \ldots, k: tradable
 - goods k + 1, \ldots, N: not tradable
 - good 0 is numeraire \(\Rightarrow p_0 = 1 \)

- Inelastically supply \(L \) units of labor, split across sectors
 \[\sum_{i=0}^{N} \ell_i = L \]

- Budget constraint
 \[\sum_{i=0}^{N} (1 + \tau_i^c) p_i c_i + \dot{b} \leq (r - \tau^b) b + \sum_{i=0}^{N} (1 - \tau_i^\ell) w_i \ell_i + T \]

- As before, can extend to additional tax instruments
• Within each sector, everything as before

• Output in sector i:

$$y_i(x_i, \ell_i; p_i) = \Theta_i x_i^{\gamma_i} \ell_i^{1-\gamma_i} p_i^{\gamma_i(\eta_i-1)},$$

where

$$\gamma_i = \frac{\alpha_i/\eta_i}{1 - \alpha_i + \alpha_i/\eta_i} \quad \text{and} \quad \Theta_i = \frac{r}{\alpha_i} \left[\frac{\eta_i \lambda_i}{\eta_i - 1} \left(\frac{\alpha_i A_i}{r} \right)^{\eta_i/\alpha_i} \right]^{\gamma_i}$$

• Wealth accumulation

$$\dot{x}_i = \frac{\alpha_i}{\eta_i} p_i y_i(x_i, \ell_i; p_i) + (r - \delta)x_i$$
Optimal Targeted Ramsey Policies

- Planner’s Problem:

\[
\max_{\{x_i, \ell_i\}_{i=0}^N, \{p_i\}_{i=k+1}^N} \int_0^\infty e^{-\rho t} u(c_0, \ldots, c_N) dt \quad \text{s.t.}
\]

\[
\dot{b} = rb + \sum_{i=0}^N (1 - \alpha_i) p_i y_i(x_i, \ell_i, p_i) - \sum_{i=0}^N p_i c_i
\]

\[
\dot{x}_i = \frac{\alpha_i}{\eta_i} p_i y_i(x_i, \ell_i, p_i) + (r - \delta) x_i, \quad i = 0, \ldots, N
\]

\[
c_i = y_i(x_i, \ell_i, p_i), \quad i = k + 1, \ldots, N
\]

\[
L = \sum_{i=0}^N \ell_i
\]
Optimal Targeted Ramsey Policies

• Optimal taxes

\[\tau^b = 0, \]

\[\tau_i^c = \frac{1}{\eta_i - 1}(1 - \nu_i), \quad i = k + 1, \ldots, N \]

\[\tau_i^\ell = \gamma_i \left(1 - \nu_i - \frac{\eta_i}{\alpha_i} \tau_i^c\right) = \begin{cases}
\gamma_i(1 - \nu_i), & i = 1, \ldots, k, \\
-\tau_i^c, & i = k + 1, \ldots, N \end{cases} \]

• Explore two special cases

1. all sectors are tradable: implications of comparative advantage
2. one tradable, one non-tradable sector: implications for RER
All Sectors are Tradable
Comparative advantage and industrial policies

- International prices \(\{ p_i^* \} \)
- Sectoral revenues: \(p_i^* y_i = \Theta_i^* x_i \gamma_i \ell_i^{1-\gamma_i} \), \(\Theta_i^* = (p_i^*)^{\gamma_i \eta_i / \alpha_i} \Theta_i \)

- Comparative advantage:
 - Long run (latent): \(\Theta_i^* \)
 - Short run (actual): \(\Theta_i^* x_i^{\gamma} \)
All Sectors are Tradable
Comparative advantage and industrial policies

- International prices \(\{p_i^*\} \)
- Sectoral revenues: \(p_i^* y_i = \Theta_i^* x_i^{\gamma_i} \ell_i^{1-\gamma_i}, \Theta_i^* = \left(p_i^*\right)^{\gamma_i \eta_i / \alpha_i} \Theta_i \)
- Comparative advantage:
 - Long run (latent): \(\Theta_i^* \)
 - Short run (actual): \(\Theta_i^* x_i^{\gamma} \)
- Optimal policy: favors the (latent) comparative advantage sector and speeds up the transition
All Sectors are Tradable
Comparative advantage and industrial policies

- Sector one has (latent) comparative advantage: $p_1^*\Theta_1 > p_2^*\Theta_2$
- Optimal policy speeds up the transition
- Potentially measurable sufficient statistic: $\gamma_i \cdot \nu_i$, where

$$\dot{\nu}_i - \delta \nu_i = - \left(1 - \alpha_i + \frac{\alpha_i}{\eta_i} \nu_i\right) p_i \frac{\partial y_i}{\partial x_i}$$
Non-tradables and the RER

- Consider economy with two sectors
 - sector 0 produces tradable good, \(p_0 = 1 \)
 - sector 1 produces non-tradable good

- For simplicity \(u(c_0, c_1) = \text{CES}(\theta) \)

- What are implications of optimal policy for real exchange rate

\[
\text{RER} = \left(p_0^{1-\theta} + p_1^{1-\theta} \right)^{\frac{1}{1-\theta}}
\]

- Intuition: if want to subsidize tradables \(\Rightarrow \) compress economy-wide \(w \propto p_1 \Rightarrow \text{RER depreciates} \)
 - see e.g. Rodrik (2008)
Non-tradables and the RER

- Consider economy with two sectors
 - sector 0 produces tradable good, \(p_0 = 1 \)
 - sector 1 produces non-tradable good

- For simplicity \(u(c_0, c_1) = CES(\theta) \)

- What are implications of optimal policy for real exchange rate

\[
RER = \left(\frac{1}{\theta} \right)^{\frac{1}{1-\theta}} (p_0^{1-\theta} + p_1^{1-\theta})
\]

- Intuition: if want to subsidize tradables \(\Rightarrow \) compress economy-wide \(w \propto p_1 \Rightarrow RER \text{ depreciates} \)
 - see e.g. Rodrik (2008)

- We find: \textbf{robust} policy recommendation = compress \textbf{wages} in \textbf{tradable} sector if that sector is undercapitalized.

- instead implications for RER are \textit{instrument-dependent}
 - if can differentially tax T and NT labor, RER \textbf{appreciates}
 - conjecture: if instead cannot differentially subsidize T and NT \(\Rightarrow \) RER depreciates (i.e. intuition correct)
Non-tradables and the RER

(a) Sectoral Wealth, x_i

(b) Cons Tax on NT Sector

(c) Labor Tax on NT Sector

(d) Emp Share in T Sector

(e) Sectoral Wage

(f) Producer Price RER
Non-tradables and the RER

- Planner subsidizes NT demand (thereby increasing NT producer price) and taxes NT labor supply

- Intuition: try to mimic transfer (equivalent to output subsidy + taxes on both labor and capital)

- **Conjecture:** if planner cannot differentially subsidize sectors
 \[\Rightarrow \] RER depreciates
Other Extensions

1. Positive Pareto weight on entrepreneurs

\[\tau_\ell = \gamma [1 - \nu - \omega/x] \]

2. Closed economy

3. Persistent productivity shocks
Closed Economy

- Planner’s problem:

$$\max_{\{c,\ell,\kappa,b,x,\varsigma\}} \int_0^\infty e^{-\rho t} u(c, \ell) \mathrm{d}t$$

subject to

$$\dot{b} = \left[(1 - \alpha) + \alpha \frac{\eta - 1}{\eta} \frac{b}{\kappa}\right] y(x, \kappa, \ell) - c - \varsigma x x,$$

$$\dot{x} = \left[\frac{\alpha}{\eta} + \alpha \frac{\eta - 1}{\eta} \frac{x}{\kappa}\right] y(x, \kappa, \ell) + (\varsigma x - \delta)x,$$

$$\kappa = x + b$$
Closed Economy

- Planner’s problem:

\[
\max_{\{c, \ell, \kappa, b, x, s_x\}_{t \geq 0}} \int_0^\infty e^{-\rho t} u(c, \ell) dt
\]

subject to

\[
\dot{\kappa} = y(x, \kappa, \ell) - c - \delta x,
\]

\[
\dot{x} = \left[\frac{\alpha}{\eta} + \alpha \frac{\eta - 1}{\eta} \frac{x}{\kappa} \right] y(x, \kappa, \ell) + (s_x - \delta) x
\]

- We study three cases:
 1. Unlimited transfers and \(x, \kappa \geq 0 \) only
 2. Unlimited transfers and \(x \leq \kappa \)
 3. Bounded transfers (limiting case \(s = S = 0 \))
Closed Economy

- Planner’s problem:

$$\max_{\{c, \ell, \kappa, b, x, \varsigma x\}} \int_{0}^{\infty} e^{-\rho t} u(c, \ell) dt$$

subject to

$$\dot{\kappa} = y(x, \kappa, \ell) - c - \delta x,$$

$$\dot{x} = \left[\frac{\alpha}{\eta} + \alpha \frac{\eta - 1}{\eta} \frac{x}{\kappa} \right] y(x, \kappa, \ell) + (\varsigma x - \delta)x$$

- We study three cases:

1. Unlimited transfers and $x, \kappa \geq 0$ only
 - No distortions ($\tau_b = \tau_\ell = 0$) and $x : \frac{\alpha}{\eta} \frac{\varsigma y}{x} = \delta$

2. Unlimited transfers and $x \leq \kappa$
 - No labor supply distortion ($\tau_\ell = 0$); subsidized savings: $\tau_b \geq 0$

3. Bounded transfers (limiting case $s = S = 0$)
 - Both labor supply and savings are distorted: $\tau_\ell, \tau_b \propto (1 - \nu)$
Conclusion

• **Optimal Ramsey** policy in standard growth model with financial frictions

• **Main Lesson from one-sector model**: *pro-business* policies accelerate economic development and are welfare-improving
 — during initial transitions, and not in steady states
 — when business sector is undercapitalized

• **Main Lesson from multi-sector model**:
 — favor *comparative advantage* sectors and speed up transition
 — implications for RER are instrument-dependent

• Although stylized, model points towards a measurable sufficient statistic: $\gamma_i \cdot \nu_i$, where

$$\dot{\nu}_i - \delta \nu_i = - \left(1 - \alpha_i + \frac{\alpha_i}{\eta_i} \nu_i \right) p_i \frac{\partial y_i}{\partial x_i}$$