Mussa Puzzle Redux

Oleg Itskhoki
itskhoki@Princeton.edu

Dmitry Mukhin
dmitry.mukhin@Yale.edu

Rutgers University
March, 2019
Mussa Puzzle

- **Real exchange rate (RER):**

\[Q_t = \frac{E_t P^*_t}{P_t} \]

or in log changes

\[\Delta q_t = \Delta e_t + \pi_t^* - \pi_t \]

(a) Nominal exchange rate, \(\Delta e_t\)

(b) Real exchange rate, \(\Delta q_t\)

Note: US vs the rest of the world (G7 countries except Canada plus Spain), monthly.
Mussa Puzzle

- **Real exchange rate (RER):**

\[Q_t = \frac{\varepsilon_t P^*_t}{P_t} \]

or in log changes

\[\Delta q_t = \Delta e_t + \pi^*_t - \pi_t \]

(a) Inflation rate, \(\pi_t \)

(b) Consumption growth, \(\Delta c_t \)

Note: rest of the world (G7 countries except Canada plus Spain), monthly and quarterly.
Mussa Puzzle Redux

- Mussa puzzle is some of the most convincing evidence for monetary non-neutrality (Nakamura and Steinsson, 2018)
 - with monetary neutrality, RER should not be affected by a change in the monetary rule
 - timing and the sharp discontinuity in the behavior of ERs

- The combined evidence does not favor sticky prices over flexible prices, but rather rejects both types of models.
Mussa Puzzle Redux

- Mussa puzzle is some of the most convincing evidence for monetary non-neutrality (Nakamura and Steinsson, 2018)
 - with monetary neutrality, RER should not be affected by a change in the monetary rule
 - timing and the sharp discontinuity in the behavior of ERs

- Mussa fact is further interpreted as direct evidence in favor of nominal rigidities in price setting (sticky prices)
Mussa Puzzle Redux

- Mussa puzzle is some of the most convincing evidence for monetary non-neutrality (Nakamura and Steinsson, 2018)
 - with monetary neutrality, RER should not be affected by a change in the monetary rule
 - timing and the sharp discontinuity in the behavior of ERs

- Mussa fact is further interpreted as direct evidence in favor of nominal rigidities in price setting (sticky prices)

- We argue this latter conclusion is not supported by the data: no contemporaneous change in properties of macro variables
 1. neither nominal, like inflation
 2. nor real, like consumption, output or net exports

Is it an extreme form of neutrality?
Mussa Puzzle Redux

• Mussa puzzle is some of the most convincing evidence for monetary non-neutrality (Nakamura and Steinsson, 2018)
 — with monetary neutrality, RER should not be affected by a change in the monetary rule
 — timing and the sharp discontinuity in the behavior of ERs

• Mussa fact is further interpreted as direct evidence in favor of nominal rigidities in price setting (sticky prices)

• We argue this latter conclusion is not supported by the data: no contemporaneous change in properties of macro variables
 ① neither nominal, like inflation
 ② nor real, like consumption, output or net exports

Is it an extreme form of neutrality?

• The combined evidence does not favor sticky prices over flexible prices, but rather rejects both types of models
Intuition

- Real exchange rate:

\[q_t = e_t + p_t^* - p_t \] (1)

- IRBC (flex prices): no change in \(\Delta q_t \), change in \(\pi_t - \pi_t^* \propto \Delta e_t \)

- NKOE (sticky prices): change in \(\Delta q_t \propto \Delta e_t \)

\[\Delta q_t \neq e_t + p_t^* - p_t \]

generally derives from international risk sharing condition, but does not rely on (perfect) risk sharing

\[\Delta q_t \]

does not depend on exchange rate regime

\[\Delta q_t \]

falsifies both sticky-price and flexible-price models
Intuition

• Real exchange rate:

\[q_t = e_t + p_t^* - p_t \] \hspace{1cm} (1)

× IRBC (flex prices): no change in \(\Delta q_t \), change in \(\pi_t - \pi_t^* \propto \Delta e_t \)

✓ NKOE (sticky prices): change in \(\Delta q_t \propto \Delta e_t \)

• Cointegration relationship between consumption and RER:

\[\varsigma(c_t - c_t^*) = q_t - \zeta_t \] \hspace{1cm} (2)

1. generally derives from international risk sharing condition, but does not rely on (perfect) risk sharing

2. under a variety of circumstances \(\zeta_t \) does not depend on exchange rate regime

3. falsifies both sticky-price and flexible-price models
Relationship with ER Disconnect

- Exchange rate disconnect is a combination of:
 1. Meese-Rogoff (1983) puzzle
 2. PPP puzzle (Rogoff 1996)
 5. Forward-premium puzzle (Fama 1984)

- Itskhoki and Mukhin (2017) propose a solution with emphasis:
 1. Home bias in consumption
 2. Financial shocks as the main driver of exchange rates
 3. Taylor rule inflation targeting

- This is insufficient to explain Mussa puzzle, which involves a sharper experiment—a change in the monetary regime—even under the “disconnect conditions,” a switch in the monetary regime would result in a change in macro volatility.
Relationship with ER Disconnect

• Exchange rate disconnect is a combination of:
 1. Meese-Rogoff (1983) puzzle
 2. PPP puzzle (Rogoff 1996)
 5. Forward-premium puzzle (Fama 1984)

• Itskhoki and Mukhin (2017) propose a solution with emphasis:
 1. Home bias in consumption
 2. Financial shocks as the main driver of exchange rates
 3. Taylor rule inflation targeting
Relationship with ER Disconnect

• Exchange rate disconnect is a combination of:
 1. Meese-Rogoff (1983) puzzle
 2. PPP puzzle (Rogoff 1996)
 5. Forward-premium puzzle (Fama 1984)

• Itskhoki and Mukhin (2017) propose a solution with emphasis:
 1. Home bias in consumption
 2. Financial shocks as the main driver of exchange rates
 3. Taylor rule inflation targeting

• This is insufficient to explain Mussa puzzle, which involves a sharper experiment — a change in the monetary regime — even under the “disconnect conditions,” a switch in the monetary regime would result in a change in macro volatility
Relationship with ER Disconnect

\[\Delta q_t: \]

\[\begin{array}{c|c|c}
1960 & 1965 & 1970 \\
\hline
-0.15 & 0 & 0.15 \\
\end{array} \]

⇒ IRBC (flex prices)

\[\begin{array}{c|c|c}
1975 & 1980 & 1985 \\
\hline
-0.15 & 0 & 0.15 \\
\end{array} \]

⇒ NKOE (sticky prices)

Mussa Redux

ER Disconnect
Relationship with ER Disconnect

\[\Delta q_t : \]

\[\Delta c_t : \]

⇒ \(\times \) IRBC (flex prices)

⇒ \(\times \) NKOE (sticky prices)
Relationship with ER Disconnect

\[\Delta q_t: \]

\[\Delta c_t: \]

⇒ \(\times \) IRBC (flex prices)

⇒ \(\times \) NKOE (sticky prices)

\(\downarrow \)

✓ ER Disconnect
Relationship with ER Disconnect

\[\Delta q_t: \]

\[\Delta c_t: \]

\[\Rightarrow \text{IRBC (flex prices)} \]

\[\Rightarrow \text{NKOE (sticky prices)} \]

\[\downarrow \text{Mussa Redux} \quad \downarrow \text{ER Disconnect} \]
Mussa Puzzle Redux
Resolution

- **Segmented financial markets**
 - a particular type of financial friction
 - ER risk is held in a concentrated way by specialized financiers, and is not smoothly distributed across agents in the economy

- **Modified UIP conditions**:
 \[
 \frac{i_t - i^*_t - \mathbb{E}_t \Delta e_{t+1}}{\omega \sigma^2_e} = \psi_t - b_{t+1}
 \]
Mussa Puzzle Redux
Resolution

- **Segmented financial markets**
 - a particular type of financial friction
 - ER risk is held in a concentrated way by specialized financiers, and is not smoothly distributed across agents in the economy

- **Modified UIP conditions:**
 \[
 \frac{i_t - i_t^* - \mathbb{E}_t \Delta e_{t+1}}{\omega \sigma_e^2} = \psi_t - b_{t+1}
 \]

- **Changes in nominal exchange rate volatility,** \(\sigma_e^2 \equiv \text{var}_t(\Delta e_{t+1}) \), are consequential for real allocations
 - an alternative source of monetary non-neutrality
 - this mechanism is sufficient to explain the Mussa puzzle
 - sticky prices are neither necessary, nor sufficient
Related literature

- **Empirics:**

- **Theory:**

- **Additional empirical moments:**
 - Colacito and Croce (2013), Devereux and Hnatkovska (2014), Berka, Devereux and Engel (2018)
EMPIRICAL PATTERNS
Data

• Two datasets:
 1. **IFM’s International Financial Statistics**: monthly data on exchange rates, inflation and production index
 2. **OECD**: quarterly data on consumption, GDP and trade
 — real variables, seasonally-adjusted
 — net exports: \(nx \equiv (X - M)/(X + M) \)
 — Log changes are annualized to make measures of volatility comparable across variables

• Dating the end of Bretton Woods:
 — “Nixon shock” in 1971:08 and the end of BW in 1973:02
 — 1967–1971: a number of devaluations (UK, Spain, France) and a revaluation (Germany)

• Countries: France, Germany, Italy, Japan, Spain and the UK. Also Canada.
Macroeconomic volatility

Note: triangular moving average estimates of standard deviations over time, 1973:01 as a break point.
Macroeconomic volatility

Δq_t

$\pi_t - \pi_t^*$

$\Delta c_t - \Delta c_t^*$

$\Delta y_t - \Delta y_t^*$

$\Delta gdp_t - \Delta gdp_t^*$

nx_t

Note: triangular moving average estimates of standard deviations over time, 1973:01 as a break point.
Macroeconomic volatility

\[\Delta q_t \]

\[\pi_t \]

\[\Delta c_t \]

\[\Delta y_t \]

\[\Delta gdp_t \]

\[nx_t \]

Note: triangular moving average estimates of standard deviations over time, 1973:01 as a break point.
Change in Macro Volatility

(a) Δq_t

(b) $\pi_t - \pi_t^*$

(c) $\Delta c_t - \Delta c_t^*$

(d) Δgdp_t

(e) π_t

(f) Δc_t

*Ratios of standard deviations under floating ($\geq 73:02$) and peg ($\leq 71:08$) regimes with 90% HAC conf. intervals
Correlations

(a) \((\Delta q_t, \Delta e_t)\)

(b) \((\bullet, \pi_t - \pi^*_t)\)

(c) \((\Delta q_t, \Delta c_t - \Delta c^*_t)\)

Note: Triangular moving average correlations, treating 1973:01 as the end point for the two regimes
Correlations

(a) $(\Delta q_t, \Delta e_t)$

(b) $(\bullet, \pi_t - \pi_t^*)$

(c) $(\Delta q_t, \Delta c_t - \Delta c_t^*)$

(d) $(\Delta q_t, \Delta nx_t)$

(e) $(\Delta gdp_t, \Delta c_t)$

(f) $(\Delta gdp_t, \Delta gdp_{tUS})$

Note: Triangular moving average correlations, treating 1973:01 as the end point for the two regimes.
CONVENTIONAL MODELS: FALSIFICATION
“Conventional” Models

- **Definition**: *if prices were flexible, a switch in the monetary regime would not affect real variables*
 - hence, only the sticky-price version of these models is relevant

- Two-country New Keynesian Open Economy model
 - with producer-currency (PCP) Calvo price stickiness
 - with productivity and ‘financial’ shocks
 - flexible wages, no capital, no intermediates

- Monetary policy (‘primal approach’):
 - Foreign: inflation targeting $\pi_t^* \equiv 0$
 - Home:
 - ‘float’ is inflation targeting, $\pi_t \equiv 0$
 - ‘peg’ is $\Delta e_t \equiv 0$
Model setup I

- Households:

\[
\max \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left(\frac{1}{1 - \sigma} C_t^{1-\sigma} - \frac{1}{1 + \phi} L_t^{1+\phi} \right)
\]

s.t. \(P_t C_t + \sum_{j \in J_t} \Theta^j_t B^j_{t+1} \leq W_t L_t + \sum_{j \in J_{t-1}} e^{-\zeta^j_t} D^j_t B^j_t + \Pi_t + T_t \)

 - CES aggregator across products with elasticity \(\theta > 1 \)
 - home bias with expenditure share on foreign varieties \(\gamma \in (0, \frac{1}{2}) \)
Model setup I

- **Households:**

 \[
 \max \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left(\frac{1}{1-\sigma} C_t^{1-\sigma} - \frac{1}{1+\varphi} L_t^{1+\varphi} \right)
 \]

 s.t. \[P_t C_t + \sum_{j \in J_t} \Theta^j_t B_{t+1}^j \leq W_t L_t + \sum_{j \in J_{t-1}} e^{-\zeta^j_t} D_t^j B_t^j + \Pi_t + T_t \]

 - CES aggregator across products with elasticity \(\theta > 1 \)
 - home bias with expenditure share on foreign varieties \(\gamma \in (0, \frac{1}{2}) \)

- **Optimality conditions:**

 \[
 C_t^\sigma L_t^\varphi = \frac{W_t}{P_t},
 \]

 \[
 C_{Ft}(i) = \gamma \left(\frac{P_{Ft}(it)}{P_t} \right)^{-\theta} C_t,
 \]

 \[
 \Theta^j_t = \beta \mathbb{E}_t \left\{ \left(\frac{C_{t+1}}{C_t} \right)^{-\sigma} \frac{P_t}{P_{t+1}} e^{-\zeta^j_{t+1}} D_t^j \right\}
 \]
Model setup II

- Production:
 \[Y_t(i) = e^{a_t} L_t(i) \Rightarrow MC_t = e^{-a_t} W_t \]

- Profits:
 \[\Pi_t(i) = (P_{Ht}(i) - MC_t) \left(C_{Ht}(i) + C^*_H(i) \right) \]

- Calvo price setting:
 \[\bar{P}_{Ht}(i) = \arg \max E_t \sum_{k=0}^{\infty} (\beta \lambda)^k \left(\frac{C_{t+k}}{C_t} \right)^{-\sigma} \frac{P_t}{P_{t+k}} \Pi_{t+k}(i) \]

- Domestic and export prices:
 \[P_{Ht}(i) = \begin{cases}
 P_{H,t-1}(i), & \text{w/prob } \lambda \\
 \bar{P}_{Ht}, & \text{o/w}
 \end{cases} \quad \text{and} \quad P_{Ht}(i)^* = P_{Ht}(i)/\mathcal{E}_t \]
Model Setup III

- Fiscal authority:

\[T_t = \sum_{j \in J_{t-1}} (1 - e^{-\zeta_t^j}) D_t^j B_t^j \]

- Monetary authority:

\[i_t = \rho_m i_{t-1} + (1 - \rho_m) \left[\phi_p \pi_t + \phi_e (e_t - \bar{e}) \right] + \sigma_m \varepsilon^m_t \]

- limiting case: (i) \(\phi_p \to \infty \Rightarrow \pi_t \equiv 0 \) or (ii) \(\phi_e \to \infty \Rightarrow \Delta e_t \equiv 0 \)
Model Setup III

• Fiscal authority:

\[T_t = \sum_{j \in J_{t-1}} (1 - e^{-\zeta^j_t}) D^j_t B^j_t \]

• Monetary authority:

\[i_t = \rho_m i_{t-1} + (1 - \rho_m) [\phi_\pi \pi_t + \phi_e (e_t - \bar{e})] + \sigma_m \varepsilon^m_t \]

— limiting case: (i) \(\phi_\pi \to \infty \Rightarrow \pi_t \equiv 0 \) or (ii) \(\phi_e \to \infty \Rightarrow \Delta e_t \equiv 0 \)

• Market clearing in labor and product market:

\[L_t = e^{-a_t} \int_0^1 Y_t(i) \, di \quad \text{and} \quad C_{H_t}(i) + C^*_{H_t}(i) = Y_t(i) \]

and financial market:

\[B^j_{t+1} + B^j_{t+1} = 0 \quad \forall j \in J_t \cap J^*_t \quad \text{given price } \Theta^j_t \]
International Equilibrium

- International risk sharing:

\[E_t \left\{ \left[\left(\frac{C_{t+1}}{C_t} \right)^{-\sigma} - \left(\frac{C_{t+1}^*}{C_t^*} \right)^{-\sigma} \right] \frac{Q_t}{Q_{t+1}} e^{\tilde{z}_t} \right\} \frac{D^j_{t+1}}{P_{t+1}/P_t} = 0 \quad \forall j \in J_t \cap J^*_t \]
International Equilibrium

- **International risk sharing:**

\[
\mathbb{E}_t \left\{ \left(\frac{C_{t+1}}{C_t} \right)^{-\sigma} - \left(\frac{C^*_t}{C^*_t} \right)^{-\sigma} \frac{Q_t}{Q_{t+1}} e^{\tilde{\xi}_{t+1}} \right\} \frac{D_{t+1}^j}{P_{t+1}/P_t} = 0 \quad \forall j \in J_t \cap J^*_t
\]

- **Country budget constraint:**

\[
B_{t+1} - R_t B_t = NX_t,
\]

where
\[
B_{t+1} \equiv \sum_{j \in J_t} \Theta_t^j B_{t+1}^j \quad \text{and} \quad R_t \equiv \frac{\sum_{j \in J_{t-1}} D_t^j B_t^j}{\sum_{j \in J_{t-1}} \Theta_{t-1}^j B_t^j}
\]

- **and net exports are given by:**

\[
NX_t = P_{H_t} C^*_{H_t} - \mathcal{E}_t P^*_{F_t} C_{F_t} = \gamma \frac{P^\theta_t C_t}{(\mathcal{E}_t P^*_{F_t})^{\theta-1}} \left[e^{\tilde{\xi}_t} S_t^{\theta-1} Q_t \frac{C^*_t}{C_t} - 1 \right]
\]

where terms of trade
\[
S_t \equiv \frac{\mathcal{E}_t P^*_{F_t}}{P_{H_t}} \approx Q_t^{1-2\gamma}
\]
Cointegration Relationship

Limiting cases

- **Financial autarky:** \(NX_t \equiv 0 \) results in

\[
c_t - c_t^* = \frac{2(1 - \gamma)\theta - 1}{1 - 2\gamma} q_t + \tilde{\xi}_t
\]
Cointegration Relationship

Limiting cases

- **Financial autarky**: \(NX_t \equiv 0 \) results in

\[
c_t - c^*_t = \frac{2(1 - \gamma)\theta - 1}{1 - 2\gamma} q_t + \tilde{\xi}_t
\]

- **Complete markets**: \(j \in J_t \cap J^*_t \) for each state of the world

\[
\sigma(\Delta c_t - \Delta c^*_t) = \Delta q_t + \tilde{\zeta}_t
\]
Cointegration Relationship

Limiting cases

- **Financial autarky**: $NX_t \equiv 0$ results in

 $$c_t - c_t^* = \frac{2(1 - \gamma)\theta - 1}{1 - 2\gamma} q_t + \tilde{\xi}_t$$

- **Complete markets**: $j \in J_t \cap J_t^*$ for each state of the world

 $$\sigma(\Delta c_t - \Delta c_t^*) = \Delta q_t + \tilde{\zeta}_t$$

- **Cole-Obstfeld**: perfect risk sharing w/out financial market

 $$\sigma = \frac{1 - 2\gamma}{2(1 - \gamma)\theta - 1}$$

 (in particular, $\sigma = \theta = 1$)
General asset market

- Assume:
 - A foreign (US) risk-free bond $\in J_t \cap J^*_t$
 - Log-linear approximate solution
 - ‘conventional’
 - second-order (risk premia) terms are small
 - we allow for risk-sharing wedges instead
General asset market

• Assume:
 ○ A foreign (US) risk-free bond $\in J_t \cap J_t^*$
 ○ Log-linear approximate solution
 — ‘conventional’
 — second-order (risk premia) terms are small
 — we allow for risk-sharing wedges instead

• Dynamic equilibrium system:

$$\mathbb{E}_t \left\{ \sigma (\Delta c_{t+1} - \Delta c^*_{t+1}) - \Delta q_{t+1} \right\} = \psi_t,$$

$$\beta b_{t+1} - b_t = \gamma \left[\frac{2(1-\gamma)}{1-2\gamma} q_t - (c_t - c^*_t) \right]$$

• where $\psi_t \equiv -\mathbb{E}_t \Delta \zeta_{t+1}$ is the UIP shock:

$$i_t - i^*_t - \mathbb{E}_t \Delta e_{t+1} = \psi_t$$

and we assume ψ_t follows AR(1)
General asset market

• Assume:
 ○ A foreign (US) risk-free bond $\in J_t \cap J^*_t$
 ○ Log-linear approximate solution
 — ‘conventional’
 — second-order (risk premia) terms are small
 — we allow for risk-sharing wedges instead

• Dynamic equilibrium system:

$$\sigma(c_t - c^*_t) - q_t = -\frac{\psi_t}{1 - \rho} + m_t, \quad \Delta m_t = u_t$$

$$\beta b_{t+1} - b_t = \gamma \left[\frac{2(1-\gamma)^{\theta-1}}{1-2\gamma} q_t - (c_t - c^*_t) \right]$$

• where $\psi_t \equiv -\mathbb{E}_t \Delta \zeta_{t+1}$ is the UIP shock:

$$i_t - i^*_t - \mathbb{E}_t \Delta e_{t+1} = \psi_t$$

and we assume ψ_t follows AR(1)
Price dynamics

- Open economy Phillips curve:

\[
(1 - \beta L^{-1})[\pi_t - \pi^*_t - 2\gamma \Delta e_t] = \kappa [(c_t - c^*_t) + \gamma \kappa_q q_t - \kappa_a \tilde{a}_t]
\]
Price dynamics

- **Open economy Phillips curve:**

\[(1 - \beta L^{-1})[\pi_t - \pi^*_t - 2\gamma \Delta e_t] = \kappa [(c_t - c^*_t) + \gamma \kappa q q_t - \kappa a \tilde{a}_t]\]

- **Lemma 1:** The equilibrium dynamics of the RER:

\[\Delta q_t = \beta \mathbb{E}_t \Delta q_{t+1} - \sigma k_R [(c_t - c^*_t) + \gamma \kappa q q_t - \kappa a \tilde{a}_t],\]

under both monetary regimes, \(R \in \{\text{float, peg}\}\), where

\[k_R = \begin{cases} \frac{\kappa}{\sigma}, & R = \text{peg}, \\ \frac{1}{2\gamma} \frac{\kappa}{\sigma}, & R = \text{float}. \end{cases}\]

- Recall that under peg \(\Delta e_t = \pi^*_t \equiv 0\) and \(\Delta q_t = -\pi_t\), and under float \(\pi_t = \pi^*_t \equiv 0\) and \(\Delta q_t = \Delta e_t\)
Empirical Falsification

Proposition 1: Eqm relationship between \((c_t - c_t^*)\) and \(q_t\) does **not** depend on the exchange rate regime under any of:

1. **international financial autarky**
2. **complete asset markets (with risk-sharing wedges)**
3. **generalized Cole-Obstfeld case**
4. **in the limit of both fully fixed and fully flexible prices**
5. **in the limit of perfect patience, \(\beta \to 1\)**
6. **in the limit of persistent shocks, \(\rho \to 1\)**

• The process for \(\sigma(c_t - c_t^*) - q_t\) is independent of the ER regime

• In particular, \(\text{var}(\sigma(\Delta c_t - \Delta c_t^*) - \Delta q_t)\) should not change
Empirical Falsification

Figure: Change in $\text{std}(\sigma(\Delta c_t - \Delta c^*_t) - \Delta q_t)$ from peg to float

(a) Different values of σ
(b) Across countries, $\sigma = 2$

Note: Ratio of $\text{std}(\sigma(\Delta c_t - \Delta c^*_t) - \Delta q_t)$ under float vs under peg with HAC 90% confidence intervals
ALTERNATIVE MODEL OF NON-NEUTRALITY
Alternative Model

- Emphasize financial frictions instead of nominal rigidities
- A particular model of UIP deviations:
 - segmented asset markets
 - limits to arbitrage and risk premium
Segmented Financial Market

Three types of agents

- **Households** in each country hold local-currency bonds only, B_{t+1} and B^*_{t+1} respectively, and $J_t \cap J^*_t = \emptyset$

 \[
 \frac{B_{t+1}}{R_t} - B_t = NX_t \quad \text{and} \quad \frac{B^*_{t+1}}{R^*_t} - B^*_t = -NX_t/E_t
 \]
Segmented Financial Market

Three types of agents

- **Households** in each country hold local-currency bonds only, B_{t+1} and B^*_{t+1} respectively, and $J_t \cap J^*_t = \emptyset$

\[
\frac{B_{t+1}}{R_t} - B_t = NX_t \quad \text{and} \quad \frac{B^*_{t+1}}{R^*_t} - B^*_t = -NX_t/E_t
\]

- **Noise (liquidity) traders** with an exogenous demand:

\[
\frac{N^*_{t+1}}{R^*_t} = n (e^{\psi_t} - 1) \quad \text{and} \quad \frac{N_{t+1}}{R_t} = -E_t \frac{N^*_{t+1}}{R^*_t}
\]
Segmented Financial Market

Three types of agents

- **Households** in each country hold local-currency bonds only, B_{t+1} and B^*_t respectively, and $J_t \cap J^*_t = \emptyset$

 \[
 \frac{B_{t+1}}{R_t} - B_t = NX_t \quad \text{and} \quad \frac{B^*_{t+1}}{R^*_t} - B^*_t = -NX_t/E_t
 \]

- **Noise (liquidity) traders** with an exogenous demand:

 \[
 \frac{N^*_{t+1}}{R^*_t} = n \left(e^{\psi_t} - 1 \right) \quad \text{and} \quad \frac{N_{t+1}}{R_t} = -E_t \frac{N^*_{t+1}}{R^*_t}
 \]

- **Financial intermediaries** invest in a **carry trade** strategy:

 \[
 \max_{d^*_{t+1}} \mathbb{E}_t \left\{ -\frac{1}{\omega} \exp \left(-\omega \frac{\tilde{R}^*_{t+1}}{P^*_{t+1}} d^*_{t+1} \right) \right\}, \quad \tilde{R}^*_{t+1} = R^*_t - R_t \frac{E_t}{E_{t+1}}
 \]

 - m symmetric intermediaries

 - $\frac{D^*_{t+1}}{R_t} = md^*_{t+1}$ foreign bond and $\frac{D_{t+1}}{R_t} = -E_t \frac{D^*_{t+1}}{R^*_t}$ home bond
Segmented Financial Market

Three types of agents

- **Households** in each country hold local-currency bonds only, B_{t+1} and B^*_t respectively, and $J_t \cap J^*_t = \emptyset$

$$\frac{B_{t+1}}{R_t} - B_t = NX_t \quad \text{and} \quad \frac{B^*_{t+1}}{R^*_t} - B^*_t = -NX_t/E_t$$

- **Noise (liquidity) traders** with an exogenous demand:

$$\frac{N^*_{t+1}}{R^*_t} = n (e^{\psi_t} - 1) \quad \text{and} \quad \frac{N_{t+1}}{R_t} = -E_t \frac{N^*_{t+1}}{R^*_t}$$

- **Financial intermediaries** invest in a **carry trade** strategy:

$$\max_{d^*_t} \mathbb{E}_t \left\{ -\frac{1}{\omega} \exp \left(-\omega \frac{\tilde{R}^*_{t+1}}{P^*_{t+1}} d^*_t \right) \right\}, \quad \tilde{R}^*_{t+1} = R^*_t - R_t \frac{E_t}{E_{t+1}}$$

- m symmetric intermediaries
- $\frac{D^*_{t+1}}{R^*_t} = m d^*_{t+1}$ foreign bond and $\frac{D_{t+1}}{R_t} = -E_t \frac{D^*_{t+1}}{R^*_t}$ home bond

- **Market clearing**: $B^*_{t+1} + D^*_{t+1} + N^*_{t+1} = 0$
Segmented Financial Market
Equilibrium

- **Lemma 2**: (i) *Optimal portfolio choice of intermediaries:*

\[
d_{t+1}^* = - \frac{i_t - i_t^* - \mathbb{E}_t \Delta e_{t+1}}{\omega \sigma_e^2}
\]

where \(i_t \equiv \log R_t\) and \(\sigma_e^2 \equiv \text{var}_t(\Delta e_{t+1})\).
Segmented Financial Market
Equilibrium

• **Lemma 2**: (i) *Optimal portfolio choice of intermediaries:*

\[d_{t+1}^* = -\frac{i_t - i_t^* - \mathbb{E}_t \Delta e_{t+1}}{\omega \sigma_e^2} \]

where \(i_t \equiv \log R_t \) and \(\sigma_e^2 \equiv \text{var}_t(\Delta e_{t+1}) \).

(ii) *Equilibrium in the financial market:*

\[i_t - i_t^* - \mathbb{E}_t \Delta e_{t+1} = \chi_1 \psi_t - \chi_2 b_{t+1} \]

where \(\chi_1 = \frac{n}{m} \omega \sigma_e^2 \) and \(\chi_2 = \frac{\bar{Y}}{m} \omega \sigma_e^2 \).

• Exchange rate regime changes \(\sigma_e^2 \equiv \text{var}_t(\Delta e_{t+1}) \), and hence affects equilibrium in the financial market
 — a source of **non-neutrality**, even without nominal rigidities
• **Lemma 3:** *RER follows an ARMA(2,1) process*

\[
(1 - \delta L)q_t = \frac{1}{1 + \gamma \sigma \kappa_q} \frac{\beta \delta}{1 - \beta \rho \delta} \left[(1 - \beta^{-1} L) \chi_1 \psi_t
\right.
\n\left. + \left(\frac{(\beta \delta)^{-1} - 1}{1 + \frac{\chi}{\kappa_q}} (1 - \rho \delta L) + (1 - \rho)(1 - \beta^{-1} L) \right) \sigma \kappa_a \tilde{a}_t \right]
\]

where \(\delta \in (0, 1] \) and \(\delta \to 1 \) as \(\chi_2 \to 0 \).
Exchange Rate Process

- **Lemma 3**: RER follows an ARMA(2,1) process

\[
(1 - \delta L)q_t = \frac{1}{1 + \gamma \sigma \kappa_q} \frac{\beta \delta}{1 - \beta \rho \delta} \left[(1 - \beta^{-1} L) \chi_1 \psi_t + \left(\frac{(\beta \delta)^{-1} - 1}{1 + \frac{\chi}{\gamma \sigma \kappa_q}} (1 - \rho \delta L) + (1 - \rho) (1 - \beta^{-1} L) \right) \sigma \kappa_a \tilde{a}_t \right]
\]

where \(\delta \in (0, 1] \) and \(\delta \to 1 \) as \(\chi_2 \to 0 \).

- **Proposition 2**: A change in the ER regime results in:

 1. an increase in volatility of both nominal and real exchange rates, arbitrary large when \(\rho \approx 1 \)

 2. a change in the behavior of the other macro variables, which is vanishingly small when \(\gamma \approx 0 \).
• persistent ψ_t and \tilde{a}_t shocks both lead to a near-random-walk exchange rate response

• when $\chi_1 > 0$: ψ_t dominates the variance of Δq_t as $\rho \to 1$

• when $\chi_1 = 0$: Δq_t only responds to \tilde{a}_{t+1} shocks
Macro Volatility

- Product-market relationship between consumption and RER:
 (i) labor market clearing: \(\sigma \tilde{c}_t + \varphi \tilde{y}_t = (1 + \varphi) \tilde{a}_t - \gamma q_t \)
 (ii) goods market clearing: \(\tilde{y}_t = (1 - 2\gamma) \tilde{c}_t + 2 \theta \gamma q_t \)

- Equilibrium relationship

\[
ct - c_t^* = \frac{1+\varphi}{\sigma+(1-2\gamma)\varphi} \tilde{a}_t - \frac{2\theta(1-\gamma)\varphi+1}{\sigma+(1-2\gamma)\varphi} \frac{2\gamma}{1-2\gamma} q_t
\]

- when \(\gamma \) is small, \(\tilde{a}_t \) is the main driver of \((c_t - c_t^*) \) independently of the volatility of \(\Delta q_t \)

- \(\text{corr}(\Delta c_t - \Delta c_t^*, \Delta q_t) > 0 \) under the peg and \(< 0 \) under the float, provided \(\rho \) sufficiently large and \(\gamma \) sufficiently small

- similar results apply to other macro variables, including inflation and output
Additional Evidence

‘Overidentification’

1. Forward premium puzzle
 - UIP and CIP both hold under peg (Frankel and Levich 1975)
 - Forward Premium puzzle under float (Colacito and Croce 2013)

2. Backus-Smith puzzle
 - $\text{corr}(\Delta q, \Delta c - \Delta c^*)$ switches sign: $+$ under peg, $-$ under float
 (Colacito and Croce 2013, Devereux and Hnatkovska 2014)

3. Balassa-Samuelson effect
 - holds no explanatory power under float (Engel 1999)
 - works well under peg (Berka, Devereux and Engel 2018)
QUANTITATIVE EVALUATION
Quantitative Framework

• Sticky wages and LCP sticky prices (on/off)
• Taylor rule with a weight on nominal exchange rate
 — ER regime change corresponds to a change in this weight
• Pricing-to-market and intermediate inputs
• Capital with adjustment costs
• Shocks:
 1. Productivity or monetary shocks
 2. Taste shock
 3. Financial shock
• Standard calibration
Results

Table: Macroeconomic volatility

<table>
<thead>
<tr>
<th></th>
<th>Δq_t</th>
<th>π_t</th>
<th>Δc_t</th>
<th>Δgdp_t</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>peg</td>
<td>float</td>
<td>ratio</td>
<td>peg</td>
</tr>
<tr>
<td>Models without financial shock ψ_t:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRBC</td>
<td>15.4</td>
<td>15.4</td>
<td>1.0</td>
<td>12.7</td>
</tr>
<tr>
<td>NKOE-1</td>
<td>4.2</td>
<td>12.8</td>
<td>3.0</td>
<td>3.1</td>
</tr>
<tr>
<td>NKOE-2</td>
<td>1.5</td>
<td>11.5</td>
<td>7.4</td>
<td>1.3</td>
</tr>
<tr>
<td>Models with exogenous financial shock ψ_t:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRBC</td>
<td>11.0</td>
<td>11.0</td>
<td>1.0</td>
<td>10.2</td>
</tr>
<tr>
<td>NKOE-1</td>
<td>2.2</td>
<td>11.9</td>
<td>5.3</td>
<td>1.4</td>
</tr>
<tr>
<td>NKOE-2</td>
<td>2.1</td>
<td>11.8</td>
<td>5.7</td>
<td>1.3</td>
</tr>
<tr>
<td>Models with endogenous financial shock ψ_t:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRBC</td>
<td>3.0</td>
<td>11.0</td>
<td>3.6</td>
<td>1.4</td>
</tr>
<tr>
<td>NKOE-1</td>
<td>1.7</td>
<td>11.9</td>
<td>6.9</td>
<td>0.4</td>
</tr>
<tr>
<td>NKOE-2</td>
<td>1.4</td>
<td>11.8</td>
<td>8.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Correlations

- $\rho_{\Delta q_t, \Delta gdp_t}$: 30
- $\rho_{\pi_t, \Delta gdp_t}$: 32
Results

Table: Macroeconomic volatility

<table>
<thead>
<tr>
<th></th>
<th>Δq_t</th>
<th>π_t</th>
<th>Δc_t</th>
<th>Δgdp_t</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>peg float ratio</td>
<td>peg float ratio</td>
<td>peg float ratio</td>
<td>peg float ratio</td>
</tr>
<tr>
<td>Models without financial shock ψ_t:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRBC</td>
<td>15.4 15.4 1.0</td>
<td>12.7 3.2 0.2</td>
<td>9.1 9.1 1.0</td>
<td>15.0 15.0 1.0</td>
</tr>
<tr>
<td>NKOE-1</td>
<td>4.2 12.8 3.0</td>
<td>3.1 1.8 0.6</td>
<td>7.1 6.8 1.0</td>
<td>17.7 11.7 0.7</td>
</tr>
<tr>
<td>NKOE-2</td>
<td>1.5 11.5 7.4</td>
<td>1.3 1.3 1.0</td>
<td>5.0 5.2 1.0</td>
<td>8.1 8.4 1.0</td>
</tr>
</tbody>
</table>

Models with exogenous financial shock:

<table>
<thead>
<tr>
<th></th>
<th>Δq_t</th>
<th>π_t</th>
<th>Δc_t</th>
<th>Δgdp_t</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>peg float ratio</td>
<td>peg float ratio</td>
<td>peg float ratio</td>
<td>peg float ratio</td>
</tr>
<tr>
<td>IRBC</td>
<td>11.0 11.0 1.0</td>
<td>10.2 0.9 0.1</td>
<td>1.8 1.8 1.0</td>
<td>2.5 2.5 1.0</td>
</tr>
<tr>
<td>NKOE-1</td>
<td>2.2 11.9 5.3</td>
<td>1.4 0.4 0.3</td>
<td>5.8 1.3 0.2</td>
<td>14.5 2.1 0.1</td>
</tr>
<tr>
<td>NKOE-2</td>
<td>2.1 11.8 5.7</td>
<td>1.3 0.3 0.2</td>
<td>5.8 1.1 0.2</td>
<td>8.6 1.8 0.2</td>
</tr>
</tbody>
</table>
Results

Table: Macroeconomic volatility

<table>
<thead>
<tr>
<th></th>
<th>Δq_t</th>
<th>π_t</th>
<th>Δc_t</th>
<th>Δgdp_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>peg</td>
<td>float ratio</td>
<td>peg</td>
<td>float ratio</td>
<td>peg</td>
</tr>
<tr>
<td>IRBC</td>
<td>15.4 15.4 1.0</td>
<td>12.7 3.2 0.2</td>
<td>9.1 9.1 1.0</td>
<td>15.0 15.0 1.0</td>
</tr>
<tr>
<td>NKOE-1</td>
<td>4.2 12.8 3.0</td>
<td>3.1 1.8 0.6</td>
<td>7.1 6.8 1.0</td>
<td>17.7 11.7 0.7</td>
</tr>
<tr>
<td>NKOE-2</td>
<td>1.5 11.5 7.4</td>
<td>1.3 1.3 1.0</td>
<td>5.0 5.2 1.0</td>
<td>8.1 8.4 1.0</td>
</tr>
</tbody>
</table>

Models **without** financial shock ψ_t:

- IRBC
- NKOE-1
- NKOE-2

Models **with exogenous** financial shock:

- IRBC
- NKOE-1
- NKOE-2

Models **with endogenous** financial shock:

- IRBC
- NKOE-1
- NKOE-2

correlations
Results

Table: Variance decomposition

<table>
<thead>
<tr>
<th></th>
<th>peg</th>
<th></th>
<th>float</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ψ</td>
<td>ξ</td>
<td>a/m</td>
<td>ψ</td>
</tr>
<tr>
<td>Real exchange rate:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRBC</td>
<td>1</td>
<td>23</td>
<td>76</td>
<td>92</td>
</tr>
<tr>
<td>NKOE-1</td>
<td>1</td>
<td>22</td>
<td>77</td>
<td>97</td>
</tr>
<tr>
<td>NKOE-2</td>
<td>1</td>
<td>4</td>
<td>95</td>
<td>97</td>
</tr>
</tbody>
</table>

Consumption:

IRBC | 0 | 1 | 99 | 15 | 1 | 84
NKOE-1| 0 | 1 | 99 | 10| 0 | 90
NKOE-2| 0 | 1 | 99 | 13| 0 | 87

31 / 32
Results

Table: Variance decomposition

<table>
<thead>
<tr>
<th></th>
<th>peg</th>
<th></th>
<th></th>
<th>float</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ψ</td>
<td>ξ</td>
<td>a/m</td>
<td>ψ</td>
<td>ξ</td>
<td>a/m</td>
</tr>
<tr>
<td>Real exchange rate:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRBC</td>
<td>1</td>
<td>23</td>
<td>76</td>
<td>92</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>NKOE-1</td>
<td>1</td>
<td>22</td>
<td>77</td>
<td>97</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>NKOE-2</td>
<td>1</td>
<td>4</td>
<td>95</td>
<td>97</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Consumption:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRBC</td>
<td>0</td>
<td>1</td>
<td>99</td>
<td>15</td>
<td>1</td>
<td>84</td>
</tr>
<tr>
<td>NKOE-1</td>
<td>0</td>
<td>1</td>
<td>99</td>
<td>10</td>
<td>0</td>
<td>90</td>
</tr>
<tr>
<td>NKOE-2</td>
<td>0</td>
<td>1</td>
<td>99</td>
<td>13</td>
<td>0</td>
<td>87</td>
</tr>
</tbody>
</table>
Conclusion

• Mussa facts are some of the most prominent pieces of evidence of monetary non-neutrality.

• We argue, however, that it is not directly suggestive of nominal rigidities.
 — A weak test of nominal rigidities (and monetary vs productivity shocks), as it rejects both types of ‘conventional’ models.

• Yet, it is highly suggestive of an alternative source of non-neutrality arising via the financial market.
 — A particular type of financial friction.
 — Namely, segmented financial market, whereby nominal exchange rate risk is held in a concentrated way.

• Important for reassessing the argument in favor of peg/float.
APPENDIX
<table>
<thead>
<tr>
<th>Country</th>
<th>Δe_t</th>
<th>Δq_t</th>
<th>$\pi_t - \pi_t^*$</th>
<th>$\Delta c_t - \Delta c_t^*$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>peg</td>
<td>float</td>
<td>ratio</td>
<td>peg</td>
</tr>
<tr>
<td>Canada</td>
<td>0.8</td>
<td>4.4</td>
<td>5.7*</td>
<td>1.5</td>
</tr>
<tr>
<td>France</td>
<td>3.4</td>
<td>11.8</td>
<td>3.5*</td>
<td>3.7</td>
</tr>
<tr>
<td>Germany</td>
<td>2.4</td>
<td>12.3</td>
<td>5.0*</td>
<td>2.7</td>
</tr>
<tr>
<td>Italy</td>
<td>0.5</td>
<td>10.4</td>
<td>18.8*</td>
<td>1.5</td>
</tr>
<tr>
<td>Japan</td>
<td>0.8</td>
<td>11.7</td>
<td>13.8*</td>
<td>2.7</td>
</tr>
<tr>
<td>Spain</td>
<td>4.4</td>
<td>10.8</td>
<td>2.5*</td>
<td>4.7</td>
</tr>
<tr>
<td>U.K.</td>
<td>4.1</td>
<td>11.5</td>
<td>2.8*</td>
<td>4.4</td>
</tr>
<tr>
<td>RoW</td>
<td>1.2</td>
<td>9.8</td>
<td>8.0*</td>
<td>1.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country</th>
<th>$\Delta gdp_t - \Delta gdp_t^*$</th>
<th>$\Delta y_t - \Delta y_t^*$</th>
<th>Δnx_t</th>
<th>$\sigma(\Delta c_t - \Delta c_t^*) - \Delta q_t$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>peg</td>
<td>float</td>
<td>ratio</td>
<td>peg</td>
</tr>
<tr>
<td>Canada</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>3.8</td>
</tr>
<tr>
<td>France</td>
<td>1.2</td>
<td>1.0</td>
<td>0.8</td>
<td>5.3</td>
</tr>
<tr>
<td>Germany</td>
<td>1.8</td>
<td>1.2</td>
<td>0.7*</td>
<td>6.7</td>
</tr>
<tr>
<td>Italy</td>
<td>1.5</td>
<td>1.3</td>
<td>0.8</td>
<td>8.1</td>
</tr>
<tr>
<td>Japan</td>
<td>1.5</td>
<td>1.3</td>
<td>0.8</td>
<td>5.5</td>
</tr>
<tr>
<td>Spain</td>
<td>1.6</td>
<td>1.2</td>
<td>0.7*</td>
<td>10.1</td>
</tr>
<tr>
<td>U.K.</td>
<td>1.4</td>
<td>1.4</td>
<td>0.9</td>
<td>3.9</td>
</tr>
<tr>
<td>RoW</td>
<td>1.1</td>
<td>1.0</td>
<td>0.8</td>
<td>3.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country</th>
<th>π_t</th>
<th>Δc_t</th>
<th>Δgdp_t</th>
<th>Δy_t</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>peg</td>
<td>float</td>
<td>ratio</td>
<td>peg</td>
</tr>
<tr>
<td>Canada</td>
<td>1.3</td>
<td>1.4</td>
<td>1.1</td>
<td>0.8</td>
</tr>
<tr>
<td>France</td>
<td>1.1</td>
<td>1.3</td>
<td>1.2*</td>
<td>0.9</td>
</tr>
<tr>
<td>Germany</td>
<td>1.2</td>
<td>1.1</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Italy</td>
<td>1.0</td>
<td>2.1</td>
<td>2.0*</td>
<td>0.7</td>
</tr>
<tr>
<td>Japan</td>
<td>2.6</td>
<td>2.9</td>
<td>1.1</td>
<td>1.0</td>
</tr>
<tr>
<td>Spain</td>
<td>2.5</td>
<td>2.5</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>U.K.</td>
<td>1.6</td>
<td>2.6</td>
<td>1.6*</td>
<td>1.2</td>
</tr>
<tr>
<td>U.S.</td>
<td>0.9</td>
<td>1.3</td>
<td>1.5*</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>$\Delta q_t, \Delta e_t$</td>
<td>$\Delta q_t, \Delta c_t - \Delta c_t^*$</td>
<td>$\Delta q_t, \Delta nx_t$</td>
<td>$\Delta gdp_t, \Delta gdp_t^*$</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------</td>
<td>--</td>
<td>---------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Canada</td>
<td>0.77 0.92</td>
<td>0.03 −0.07</td>
<td>0.01 0.05</td>
<td>0.31 0.47</td>
</tr>
<tr>
<td>France</td>
<td>0.96 0.99</td>
<td>0.05 −0.08</td>
<td>0.23 0.12</td>
<td>0.09 0.30</td>
</tr>
<tr>
<td>Germany</td>
<td>0.87 0.99</td>
<td>0.04 −0.19</td>
<td>−0.06 0.00</td>
<td>−0.01 0.28</td>
</tr>
<tr>
<td>Italy</td>
<td>0.54 0.97</td>
<td>0.07 −0.13</td>
<td>0.02 −0.01</td>
<td>0.04 0.17</td>
</tr>
<tr>
<td>Japan</td>
<td>0.76 0.98</td>
<td>0.21 −0.00</td>
<td>0.03 0.21</td>
<td>−0.08 0.24</td>
</tr>
<tr>
<td>Spain</td>
<td>0.83 0.96</td>
<td>−0.09 −0.18</td>
<td>−0.06 0.16</td>
<td>0.05 0.09</td>
</tr>
<tr>
<td>U.K.</td>
<td>0.94 0.96</td>
<td>0.09 −0.10</td>
<td>−0.39 −0.16</td>
<td>−0.11 0.30</td>
</tr>
<tr>
<td>RoW</td>
<td>0.80 0.98</td>
<td>0.05 −0.19</td>
<td>−0.20 0.21</td>
<td>−0.03 0.39</td>
</tr>
</tbody>
</table>
Exchange Rate Properties
Near-random-walkness

(a) Surprise component

(b) Predictive regressions
Calibration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>discount factor</td>
<td>0.99</td>
</tr>
<tr>
<td>σ</td>
<td>inverse of the IES</td>
<td>2</td>
</tr>
<tr>
<td>γ</td>
<td>openness of economy</td>
<td>0.035</td>
</tr>
<tr>
<td>φ</td>
<td>inverse of Frisch elasticity</td>
<td>1</td>
</tr>
<tr>
<td>ϕ</td>
<td>intermediate share in production</td>
<td>0.5</td>
</tr>
<tr>
<td>ϑ</td>
<td>capital share</td>
<td>0.3</td>
</tr>
<tr>
<td>δ</td>
<td>capital depreciation rate</td>
<td>0.02</td>
</tr>
<tr>
<td>θ</td>
<td>elasticity of substitution between H and F goods</td>
<td>1.5</td>
</tr>
<tr>
<td>ϵ</td>
<td>elasticity of substitution between different types of labor</td>
<td>4</td>
</tr>
<tr>
<td>λ_w</td>
<td>Calvo parameter for wages</td>
<td>0.85</td>
</tr>
<tr>
<td>λ_p</td>
<td>Calvo parameter for prices</td>
<td>0.75</td>
</tr>
<tr>
<td>ρ</td>
<td>autocorrelation of shocks</td>
<td>0.97</td>
</tr>
<tr>
<td>ρ_r</td>
<td>Taylor rule: persistence of interest rates</td>
<td>0.95</td>
</tr>
<tr>
<td>ϕ_π</td>
<td>Taylor rule: reaction to inflation</td>
<td>2.15</td>
</tr>
</tbody>
</table>
Simulations

<table>
<thead>
<tr>
<th></th>
<th>σ_n</th>
<th>σ_ξ</th>
<th>σ_a</th>
<th>σ_m</th>
<th>$\rho_{a,*}$</th>
<th>κ</th>
<th>ϕ_e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Models w/o financial shock:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRBC</td>
<td>0.00</td>
<td>13.8</td>
<td>8.1</td>
<td>–</td>
<td>0.28</td>
<td>11</td>
<td>13.0</td>
</tr>
<tr>
<td>NKOE-1</td>
<td>0.00</td>
<td>5.71</td>
<td>10.6</td>
<td>–</td>
<td>0.30</td>
<td>7</td>
<td>1.8</td>
</tr>
<tr>
<td>NKOE-2</td>
<td>0.00</td>
<td>4.38</td>
<td>–</td>
<td>0.77</td>
<td>0.30</td>
<td>22</td>
<td>5.3</td>
</tr>
<tr>
<td>Models w/ exogenous financial shock:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRBC</td>
<td>0.61</td>
<td>3.37</td>
<td>1.41</td>
<td>–</td>
<td>0.30</td>
<td>15</td>
<td>14.5</td>
</tr>
<tr>
<td>NKOE-1</td>
<td>0.59</td>
<td>2.80</td>
<td>1.01</td>
<td>–</td>
<td>0.35</td>
<td>7.5</td>
<td>3.7</td>
</tr>
<tr>
<td>NKOE-2</td>
<td>0.59</td>
<td>1.23</td>
<td>–</td>
<td>0.15</td>
<td>0.42</td>
<td>20</td>
<td>3.6</td>
</tr>
<tr>
<td>Models w/ endogenous financial shock:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRBC</td>
<td>0.61</td>
<td>3.37</td>
<td>1.41</td>
<td>–</td>
<td>0.30</td>
<td>15</td>
<td>0.25</td>
</tr>
<tr>
<td>NKOE-1</td>
<td>0.59</td>
<td>2.80</td>
<td>1.01</td>
<td>–</td>
<td>0.35</td>
<td>7.5</td>
<td>0.03</td>
</tr>
<tr>
<td>NKOE-2</td>
<td>0.59</td>
<td>1.23</td>
<td>–</td>
<td>0.15</td>
<td>0.42</td>
<td>20</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Note: in all calibrations, shocks are normalized to obtain $\text{std}(\Delta e_t) = 12\%$. Parameter ϕ_e in the Taylor rule is calibrated to generate 8 times fall in $\text{std}(\Delta e_t)$ between monetary regimes. When possible, relative volatilities of shocks are calibrated to match $\text{cor}(\Delta q_t, \Delta \tilde{c}_t) = -0.4$ under the float and $\text{cor}(\Delta q_t, \Delta n_x t) = -0.1$ under the peg. The cross-country correlation of productivity/monetary shocks matches $\text{cor}(\Delta gdp_t, \Delta gdp^*_t) = 0.3$ under the float. Capital adjustment parameter ensures that $\frac{\text{std}(\Delta i_t)}{\text{std}(\Delta gdp_t)} = 2.5$ under the float. The moments are calculated by simulating the model for $T = 100,000$ quarters.
Simulated Correlations

Panel B: correlations

<table>
<thead>
<tr>
<th></th>
<th>$\Delta q_t, \Delta e_t$</th>
<th>$\Delta q_t, \Delta c_t - \Delta c_t^*$</th>
<th>$\Delta q_t, \Delta n_x_t$</th>
<th>$\Delta gdp_t, \Delta gdp_t^*$</th>
<th>$\Delta c_t, \Delta c_t^*$</th>
<th>$\Delta c_t, \Delta gdp_t$</th>
<th>β_{UIP}</th>
</tr>
</thead>
<tbody>
<tr>
<td>peg float</td>
<td></td>
</tr>
<tr>
<td>IRBC</td>
<td>0.86 0.99</td>
<td>0.91 0.91</td>
<td>-0.10 -0.10</td>
<td>0.30 0.30</td>
<td>0.34 0.34</td>
<td>0.99 0.99</td>
<td>0.8 0.9</td>
</tr>
<tr>
<td>NKOE-1</td>
<td>0.67 0.99</td>
<td>0.28 0.70</td>
<td>-0.10 -0.49</td>
<td>0.38 0.31</td>
<td>0.65 0.41</td>
<td>0.91 0.97</td>
<td>0.3 1.0</td>
</tr>
<tr>
<td>NKOE-2</td>
<td>0.96 0.99</td>
<td>0.49 0.99</td>
<td>-0.10 0.05</td>
<td>0.95 0.30</td>
<td>0.97 0.33</td>
<td>1.00 1.00</td>
<td>1.0 1.0</td>
</tr>
</tbody>
</table>

Models w/o financial shock:
- IRBC
- NKOE-1
- NKOE-2

Models w/ exogenous financial shock:
- IRBC
- NKOE-1
- NKOE-2

Models w/ endogenous financial shock:
- IRBC
- NKOE-1
- NKOE-2

β_{UIP}