How Expensive is Commitment?

Oleg Itskhoki

itskhoki@fas.harvard.edu
www.people.fas.harvard.edu/~itskhoki

Preliminary and Incomplete

Macro Lunch
Harvard University

November 15, 2006
Introduction:
Contemporary Macro Models

- Benchmark Neoclassical Model: Representative Agent Stochastic Growth Model (RBC model)
 - Fails empirically on multiple dimensions, especially in the international context (BKK [1992])
Introduction:
Contemporary Macro Models

- Benchmark Neoclassical Model: Representative Agent Stochastic Growth Model (RBC model)
 - Fails empirically on multiple dimensions, especially in the international context (BKK [1992])

- To fix it we add frictions, or augment the benchmark model with constraints:
 - Incomplete markets
 - Transportation costs
 - Sticky prices
 - Limited Commitment
 - Informational frictions
 - etc.
Motivation: Limited Commitment

- Limited Commitment (also Time Inconsistency)
 - very popular friction
 - introduced by Kydland and Prescott [1977]
 - APS [1990] methodology of solving dynamic models with LC
Motivation:

Limited Commitment

- Limited Commitment (also Time Inconsistency)
 - very popular friction
 - introduced by Kydland and Prescott [1977]
 - APS [1990] methodology of solving dynamic models with LC

- Extensive Recent Macro Literature:
 - Endogenously Incomplete Markets:
 - reduces capital flows and the extent of equilibrium risk sharing
 - leads to positively correlated investment
 - Kehoe and Levine [1993], Kocherlakota [1996], Kehoe and Perri [2002]
 - Capital Outflows in Bad States: Atkeson [1991]
 - Fiscal Amplification: Aguiar, Amador and Gopinath [2006]
 - Non-zero Capital Taxes in the Long-Run: Benhabib and Rustichini [1997], Phelan and Stacchetti [2001]
This Paper...

- However often when LC models are simulated they do not provide interesting dynamics in the long-run: commitment problem is fully resolved in the long-run.
- Computational papers often need to assume impatience: see Sleet [2006]
• However often when LC models are simulated they do not provide interesting dynamics in the long-run: commitment problem is fully resolved in the long-run

• Computational papers often need to assume impatience: see Sleet [2006]

• I provide a theoretical result about these models: under what conditions LC friction goes away or remains in the long-run:
 – one-sided limited commitment
 – ability to accumulate (risk-free) assets
 – patience: $\beta(1 + r) \geq 1$

• The focus of the paper at the moment are SOE models
Main Idea and Results

- Asset accumulation serves the role of collateral for SOE
- This technology is feasible and does not require to waist resources
Main Idea and Results

- Asset accumulation serves the role of collateral for SOE
- This technology is feasible and does not require to waist resources

- It is optimal when patient: $\beta(1 + r) \geq 1$
- Moreover, it is nearly costless
- Leads to bounded or unbounded asset accumulation
Main Idea and Results

- Asset accumulation serves the role of collateral for SOE
- This technology is feasible and does not require to waist resources
 - It is optimal when patient: $\beta(1 + r) \geq 1$
 - Moreover, it is nearly costless
 - Leads to bounded or unbounded asset accumulation
- Not true when the economy is impatient: commitment problem is never resolved then
- Similar on the transition path for a growing economy
 \[\beta \frac{u_{c,t+j}}{u_{c,t}} < \beta \]
Intuition for the Result

- When $\beta(1 + r) = 1$ an economy with commitment is indifferent on the margin whether to accumulate assets or not.

- If the limited commitment constraint is more tight for low levels of assets, the countries would want to accumulate forever (unless the constraint would no longer ever be binding).

- It is also the intuition for why this accumulation is nearly costless.

- Why the economy would not do so when it is impatient even marginally?
 - infeasibility of the first best allocation
 - first order optimality
• Technically, the result is similar to that of Chamberlain and Wilson [1988→2000] and Aiyagari [1994] but is more general (a more general form of the constraint)
 — Martingale Convergence Theorem for the sequence of the scaled value functions (which in this case form a sub-martingale)
Related Paper

- Technically, the result is similar to that of Chamberlain and Wilson [1988–2000] and Aiyagari [1994] but is more general (a more general form of the constraint)
 - Martingale Convergence Theorem for the sequence of the scaled value functions (which in this case form a sub-martingale)

- Conceptually, the result is similar to back-loading argument in Acemoglu, Golosov and Tsyvinski [2006]:
 - The cost of back-loading is second-order while it provides first order gains from relaxing the IC constraints in all periods prior to the deferred payment
 - all are in deterministic set-ups
Implications I

What does this result tell us about the models?

- Many LC models may have interesting predictions but potentially only for off-the-equilibrium dynamics
- LC friction by itself may not be enough
- What is a reasonable additional ingredient?
- When is one-sided LC a reasonable assumption?
Implications II

What does this result tell us about the world?

- Reinforces the Bulow-Rogoff [1989] result: we should expect small countries not only not to borrow but also to save extensively abroad
Implications II

What does this result tell us about the world?

- Reinforces the Bulow-Rogoff [1989] result: we should expect small countries not only not to borrow but also to save extensively abroad

- Why this does not happen?
 - Accumulation technology is imperfect?
 - LC friction is not important?
 - Still on transition path? Development Traps?
 - Impatience?
Outline

1. Introduction

2. Theoretical Results
 - Warm-up
 - General Set-Up
 - Assumptions
 - Results

3. Applications
 - Endogenously Incomplete Markets
 - Optimal Capital Taxation
 - Atkeson Model
Warm-up: CW Result

Consider an endowment SOE characterized by the following Bellman Equation:

$$V(a, z) = \max_{c,a'} \left\{ u(c) + \beta \mathbb{E}\{ V(a', z') | z \} \right\}$$

subject to the standard resource constraint:

$$c + a' = (1 + r)a + y(z)$$

and the natural debt limit constraint:

$$a' \geq a$$

→ exogenously incomplete markets
Warm-up: CW Result

• Optimality condition:

\[V_a(a, z) \geq \beta (1 + r) \mathbb{E} \{ V_a(a', z') \mid z \} \]

with equality when \(a' > \underline{a} \)
Warm-up: CW Result

- Optimality condition:

\[V_a(a, z) \geq \beta(1 + r) \mathbb{E}\left\{ V(a', z') \right\} \]

with equality when \(a' > a \)

- Therefore, \(\left\{ [\beta(1 + r)]^t V(a_t, z_t) \right\}_{t=0}^\infty \) is a sub-martingale and by MCT converges (a.s.) since \(V_a(\cdot) \geq 0 \). For \(\beta(1 + r) \geq 1 \) this implies convergence of \(\left\{ V(a_t, z_t) \right\}_{t=0}^\infty \)
Warm-up: CW Result

- Optimality condition:

\[V_a(a, z) \geq \beta(1 + r) \mathbb{E}\{ V_a(a', z') | z \} \]

with equality when \(a' > a \)

- Therefore, \(\{ [\beta(1 + r)]^t V_a(a_t, z_t) \}_{t=0}^\infty \) is a sub-martingale and by MCT converges (a.s.) since \(V_a(\cdot) \geq 0 \). For \(\beta(1 + r) \geq 1 \) this implies convergence of \(\{ V_a(a_t, z_t) \}_{t=0}^\infty \)

- Under some regularity conditions, \(u_c(c_t) \propto V_a(a_t, z_t) \), which implies convergence of \(\{ u_c(c_t) \}_{t=0}^\infty \)
Warm-up: CW Result

- **Optimality condition:**
 \[V_a(a, z) \geq \beta(1 + r)\mathbb{E}\{V_a(a', z')|z\} \]
 with equality when \(a' > a \)

- Therefore, \(\{[\beta(1 + r)]^t V_a(a_t, z_t)\}_{t=0}^{\infty} \) is a sub-martingale and by MCT converges (a.s.) since \(V_a(\cdot) \geq 0 \). For \(\beta(1 + r) \geq 1 \) this implies convergence of \(\{V_a(a_t, z_t)\}_{t=0}^{\infty} \)

- Under some regularity conditions, \(u_c(c_t) \propto V_a(a_t, z_t) \), which implies convergence of \(\{u_c(c_t)\}_{t=0}^{\infty} \)

- Either \(c_t \to \bar{c} < \infty \) or \(c_t \to \infty \)
 - The first option is feasible only if \(y_t \to \bar{y} \), since \(c_t + a_{t+1} = (1 + r)a_t + y_t \)
 - If \(y_t \) is mean stationary but does not converge, \(a_t \to \infty \)
 - A problem for SOE models (Schmitt-Grohé and Uribe [2003])
General Set-Up

Bellman Equation:

$$V(a, \eta, z) = \max_{(\xi, a', \eta') \in \Omega} \left\{ u(\xi) + \beta \mathbb{E}\{V(a', \eta', z')|z}\right\}$$

subject to the technological constraint:

$$a' - (1 + r)a - F(\xi, \eta, \eta'; z) \leq 0 \quad \text{(TC)}$$

and the incentive compatibility constraint

$$\forall z' \in \mathbb{Z} \quad V(a', \eta', z') \geq U(a', \eta', z') \quad \text{(IC)}$$

- ξ is the control variable
- η is the endogenous state variable other than risk-free assets a
- z is the exogenous state variable
- $U(\cdot)$ is the value after deviation
- $\tilde{\gamma}(z') \equiv \frac{\pi(z')}{1+r} \cdot \gamma(z')$ is LM on (IC) and λ is LM on (TC)
Example

• Utility:

\[u(\xi) \equiv u(c, \ell) = \frac{1}{1-\sigma} c^{1-\sigma} - \frac{1}{1+\phi} \ell^{1+\phi} \]

• Technology:

\[F(\xi, \eta, \eta'; z) \equiv F(c, \ell, k, k'; z) = z \cdot f(k, \ell) + (1 - \delta)k - k' - c \]

• Value after Deviation:

\[U(k, z) = \max_{c, \ell, k' \geq 0} \left\{ u(c, \ell) + \beta \mathbb{E}\{U(k', z') \mid z}\right\} \]

subject to \(\tilde{F}(c, \ell, k, k'; z) \geq 0 \)
Assumptions

1. **Utility:** is increasing in ξ_1 and concave in ξ

2. **Technology:** $F(\cdot)$ is
 - (i) concave in (ξ, η, η')
 - (ii) increasing in η and z, decreasing in η'
 - (iii) $u_{\xi_j}(\cdot) \cdot F_{\xi_j}(\cdot) \leq 0$

3. **Deviation Value:** increasing and concave in (a, η, z)

4. **IC Constraint:** $V(a, \eta, z) - U(a, \eta, z) \geq 0$ is
 - (i) convex in a
 - (ii) binding for low enough a
 - (iii) slack for high enough a
 - (iv) monotone in a: $V_a(\cdot) > U_a(\cdot)$

5. **Stationarity:** $\{z_t\}$ is mean stationary and has a non-degenerate conditional distributions
Unconstrained Allocation

• Envelop Theorem for asset accumulation:

\[-(1 + r) u_{\xi_j}(\xi) / F_{\xi_j}(\xi, \eta, \eta'; z) = V^*_a(a, \eta, z)\]

\[(1 + r) u_c(c, \ell) = V^*_a(a, k, z)\]

• Optimality condition for asset accumulation:

\[V^*_a(a, \eta, z) = \beta(1 + r) \mathbb{E}\{V^*_a(a', \eta', z')|z\}\]

\[u_c(c, \ell) = \beta(1 + r) \mathbb{E}\{u_c(c', \ell')|z\}\]

• Optimality Condition for \(\eta\):

\[\beta \mathbb{E}_t \{\lambda_{t+1} F_{\eta, t+1}\} + \lambda_t F_{\eta', t} = 0\]

\[\beta \mathbb{E}_t \{u_{c, t+1} \cdot [z_{t+1} f_k, t+1 + (1 - \delta)]\} = u_{c, t}\]
Preliminary Results

Lemma 1: Sub-Martingale Property

— Optimal asset accumulation:

\[V_a(a, \eta, z) = \beta(1 + r) \mathbb{E}\{ V_a(a', \eta', z') | z \} + \]
\[+ \mathbb{E}\left\{ \gamma(z') \cdot \left[V_a(a', \eta', z') - U_a(a', \eta', z') \right] | z \right\} \geq 0 \]

\[> 0 \]

\[\rightarrow V_a(a, \eta, z) \geq \beta(1 + r) \mathbb{E}\{ V_a(a', \eta', z') | z \} \]
Preliminary Results

Lemma 1: Sub-Martingale Property

— Optimal asset accumulation:

\[V_a(a, \eta, z) = \beta(1 + r) \mathbb{E}\{ V_a(a', \eta', z') | z \} + \]
\[+ \mathbb{E} \left\{ \gamma(z') \cdot \left[V_a(a', \eta', z') - U_a(a', \eta', z') \right] | z \right\} \geq 0 \]
\[> 0 \]

\[\rightarrow V_a(a, \eta, z) \geq \beta(1 + r) \mathbb{E}\{ V_a(a', \eta', z') | z \} \]

Result 1: Martingale Convergence Theorem

\[\left\{ [\beta(1 + r)]^t V_a(a_t, \eta_t, z_t) \right\}_{t=0}^\infty \]

converges to a non-negative constant along every equilibrium path.
The Main Theorem

\[V_{a,t} = \beta(1 + r)^{T} \mathbb{E}_t V_{a,t+T} + \sum_{j=1}^{T} \beta(1 + r)^{j-1} \mathbb{E}_t \{ \gamma_{t+j} \cdot [V_{a,t+j} - U_{a,t+j}] \} \]
The Main Theorem

\[V_{a,t} = [\beta(1 + r)]^\tau \mathbb{E}_t V_{a,t+\tau} + \sum_{j=1}^\tau [\beta(1 + r)]^{j-1} \mathbb{E}_t \{ \gamma_{t+j} \cdot [V_{a,t+j} - U_{a,t+j}] \} \]

Theorem

(a) \(\beta(1 + r) \geq 1 \): the commitment problem is fully resolved and the unconstrained allocation is achieved in the long-run
- (IC) is not binding, or \(\gamma_t \to 0 \), as \(t \to \infty \)
- \([V(a_t, \eta_t, z_t) - V^*(a_t, \eta_t, z_t)] \to 0 \), as \(t \to \infty \)
- \(\eta_t \to \eta_t^* \), as \(t \to \infty \)

(b) \(\beta(1 + r) < 1 \): the commitment problem is never fully resolved and the first best cannot be achieved
- (IC) binds, or \(\gamma_t + \tau > 0 \), with positive probability
- \(V_t < V_t^* \)
- \(\eta_t + \tau \neq \eta_t^* + \tau \) when \(\gamma_t + \tau > 0 \), as long as \(V_{\eta_t, t+1} \neq U_{\eta_t, t+1} \)
The Main Theorem

\[V_{a,t} = [\beta(1 + r)]^T E_t V_{a,t+\tau} + \sum_{j=1}^{\tau} [\beta(1 + r)]^{j-1} E_t \{ \gamma_{t+j} \cdot [V_{a,t+j} - U_{a,t+j}] \} \]

Theorem

(a) \(\beta(1 + r) \geq 1 \): the commitment problem is fully resolved and the unconstrained allocation is achieved in the long-run
 - (IC) is not binding, or \(\gamma_t \to 0 \), as \(t \to \infty \)
 - \([V(a_t, \eta_t, z_t) - V^*(a_t, \eta_t, z_t)] \to 0 \), as \(t \to \infty \)
 - \(\eta_t \to \eta^*_t \), as \(t \to \infty \)

(b) \(\beta(1 + r) < 1 \): the commitment problem is never fully resolved and the first best cannot be achieved
 - (IC) binds, or \(\gamma_{t+\tau} > 0 \), with positive probability
 - \(V_t < V^*_t \)
 - \(\eta_{t+\tau} \neq \eta^*_{t+\tau} \) when \(\gamma_{t+\tau} > 0 \), as long as \(V_{\eta,t+1} \neq U_{\eta,t+1} \).
Proposition

Consider the case $\beta (1 + r) = 1$. Let $F_{\xi_1} \equiv \text{const.}$ Then:

(i) ξ_1 either is eventually a constant or converges to infinity (a.s.)

(ii) In the later case, a necessarily converges to infinity as well

(iii) In the former case, a remains at the lower bound of the region for which (IC) is not binding and perfect smoothing is feasible
Additional Results

Proposition
Consider the case $\beta(1 + r) = 1$. Let $F_{\xi_1} \equiv \text{const.}$ Then:

(i) ξ_1 either is eventually a constant or converges to infinity (a.s.)
(ii) In the later case, η necessarily converges to infinity as well
(iii) In the former case, η remains at the lower bound of the region for which (IC) is not binding and perfect smoothing is feasible

Proposition
Consider the case $\beta(1 + r) \in (1 - \varepsilon, 1)$. For small enough ε, the first best allocation for η is achieved in some states of the world but never in all states of the world.

Remark: This has yet to be proven!
Welfare Costs

Proposition

Consider the case $\beta(1 + r) \geq 1$.

(a) If $u_{\xi_1} \equiv \text{const}$ (i.e., risk-neutrality), the welfare cost is exactly zero. That is, limited commitment does not reduce welfare.
Welfare Costs

Proposition

Consider the case $\beta(1 + r) \geq 1$.

(a) If $u_{\xi_1} \equiv \text{const}$ (i.e., risk-neutrality), the welfare cost is exactly zero. That is, limited commitment does not reduce welfare.

(b) If $u_{\xi_1} \xi_1 < 0$ (i.e., risk-aversion), then the welfare costs are positive but second order. That is, it is feasible not to distort the expected present value of the stream of ξ_1, while its allocation across time is distorted.
Welfare Costs

Proposition
Consider the case $\beta(1 + r) \geq 1$.

(a) If $u_{\xi_1} \equiv \text{const}$ (i.e., risk-neutrality), the welfare cost is exactly zero. That is, limited commitment does not reduce welfare.

(b) If $u_{\xi_1}\xi_1 < 0$ (i.e., risk-aversion), then the welfare costs are positive but second order. That is, it is feasible not to distort the expected present value of the stream of ξ_1, while its allocation across time is distorted.

Proposition
For the case $\beta(1 + r) < 1$, the welfare cost increases as β falls for a given r. The welfare cost is continuous at $\beta(1 + r) = 1$. That is, there is a discontinuous change in allocation at $\beta(1 + r) = 1$ but the change in welfare cost is continuous.
• Generalize the set-up to a closed economy: make \(r \) endogenous

• As long as \(\beta(1 + r_t) \) converges to a number greater than 1, my results still hold

• The general equilibrium effect of incentive constraints is likely to be increased savings and reduced interest rate (like in Aiyagari [1994])
Applications

Application I: Optimal Capital Taxation without Commitment

Application II: Endogenously Incomplete Markets Model, or Risk-Sharing without Commitment

Application II: Endogenously Incomplete Markets

- Models of Endogenously Incomplete Markets:
 - Kocherlakota [1996]
 - Kehoe and Perri [2002]

 are models with two-sided lack of commitment

- Models of one-sided lack of commitment are commonly used for SOE’s
 - Is this a reasonable assumption?
 - Can this setting arise naturally?

- Lack of commitment reduces the extend of risk-sharing and capital flows
Application II:
Endogenously Incomplete Markets

Utility in Autarky: \[U(z) = u(y(z)) + \beta \mathbb{E}\{U(z')|z}\]

Constrained Optimal Value:
\[V(a, z) = \max_{a', c} \left\{ u(c) + \beta \mathbb{E}\{V(a'(z'), z')|z\} \right\} \]
subject to
\[\forall z' \in \mathbb{Z} \quad a'(z') = (1 + r)(a - c) + y(z) + d(z), \]
\[\mathbb{E}\{d(z')|z\} = 0, \]
\[\forall z' \in \mathbb{Z} \quad V(a'(z'), z') \geq U(z') \]
Application II: Endogenously Incomplete Markets

Proposition

(a) First Best is characterized by perfect consumption smoothing
(b) For low a, (IC) cannot be satisfied
(c) For high a, (IC) is slack and consumption is smooth
(d) For intermediate a, (IC) limits the extent of risk sharing
(e) For $\beta (1 + r) \geq 1$ the economy accumulates assets till it reaches perfect consumption smoothing
(f) For $\beta (1 + r) < 1$, the economy remains in the region of a for which (IC) has positive conditional probability of being binding and, thus, perfect consumption smoothing is not achieved
Application II:
Endogenously Incomplete Markets

Figure: Value Functions: $\beta(1 + r) = 1$ (left) and $\beta(1 + r) < 1$ (right)
Application II:
Endogenously Incomplete Markets

Figure: Equilibrium Dynamics: $\beta(1 + r) = 1$
Application II: Endogenously Incomplete Markets

Figure: Equilibrium Dynamics: $\beta(1 + r) < 1$
Application I:
Optimal Capital Taxation

- Ramsey Taxation with Commitment
 - Zero Capital Tax in the Long-Run (Chamley-Judd Result)

- Zero taxes in the Long-Run with the absence of commitment
 - Benhabib and Rustichini [1997]
 - Phelan and Stacchetti [2001]

- Zero Taxation Result would be restored if one allows for risk-free asset accumulation
 - Domínguez [2006]
 - Reis [2006]

- Optimal Capital Taxation in a SOE fits my set-up
 - e.g., Aguiar, Amador and Gopinath [2006]
Application I: Optimal Capital Taxation

- Ramsey Taxation with Commitment
 - Zero Capital Tax in the Long-Run (Chamley-Judd Result)

- Non-zero taxes in the Long-Run with the absence of commitment
 - Benhabib and Rustichini [1997]
 - Phelan and Stacchetti [2001]

- Zero Taxation Result would be restored if one allows for risk-free asset accumulation
 - Domínguez [2006]
 - Reis [2006]

- Optimal Capital Taxation in a SOE fits my set-up
 - e.g., Aguiar, Amador and Gopinath [2006]
Application I: Optimal Capital Taxation

- Ramsey Taxation with Commitment
 - Zero Capital Tax in the Long-Run (Chamley-Judd Result)

- Non-zero taxes in the Long-Run with the absence of commitment
 - Benhabib and Rustichini [1997]
 - Phelan and Stacchetti [2001]

- Zero Taxation Result would be restored if one allows for risk-free asset accumulation
 - Domínguez [2006]
 - Reis [2006]
Application I: Optimal Capital Taxation

- Ramsey Taxation with Commitment
 - Zero Capital Tax in the Long-Run (Chamley-Judd Result)

- Non-zero taxes in the Long-Run with the absence of commitment
 - Benhabib and Rustichini [1997]
 - Phelan and Stacchetti [2001]

- Zero Taxation Result would be restored if one allows for risk-free asset accumulation
 - Domínguez [2006]
 - Reis [2006]

- Optimal Capital Taxation in a SOE fits my set-up
 - e.g., Aguiar, Amador and Gopinath [2006]
Application III:
Atkeson’s [1991] Model

International Lending with Moral Hazard and Risk of Repudiation:

- Stochastic Production Economy with Moral Hazard:
 \[Y_t \in \{ Y_1, \ldots, Y_N \} \equiv Y \]
 \[g(Y; I) \equiv \Pr\{ Y_{t+1} = Y \in Y | I_t = I \} \]

- Competitive international state contingent lending:
 \[b_t = \delta \sum_{Y_{t+1} \in Y} d_{t+1}(Y_{t+1})g(Y_{t+1}; I_t) \]

- State variable: \(Q_t \) – wealth after repayment on the contract
 \[c_t + I_t - b_t \leq Q_t \equiv Y_t - d_t(Y_t) \]

- Incentive Compatible Repayment: \(V(Q_{t+1}) \geq U(Y_{t+1}) \)
Application III:
Atkeson’s [1991] Model

Autarky:
\[b_{t+j} \equiv d_{t+j+1}(\cdot) \equiv 0, \quad \forall j \geq 0 \]

\[\Rightarrow \quad U(Q) = \max_{I \in [0, Q]} \left\{ (1 - \delta)u(Q - I) + \delta \sum_{Y \in \mathbf{Y}} U(Y)g(Y; I) \right\} \]

Complete Markets benchmark:
\[W(Q) = \max_{I \in [0, Q+b], b, d(\cdot)} \left\{ (1 - \delta)u(Q - I + b) + \right. \]
\[\left. + \delta \sum_{Y \in \mathbf{Y}} W[Y - d(Y)]g(Y; I) \right\} \]

subject to
\[b = \delta \sum_{Y \in \mathbf{Y}} d(Y)g(Y; I) \]
Application III:
Atkeson’s [1991] Model

Atkeson Equilibrium:

\[V(Q) = \max_{l,b,d(\cdot)} \left\{ (1 - \delta)u[Q + b - l] + \delta \sum_{Y \in Y} V[Y - d(Y)]g[Y; l(d(\cdot))] \right\}, \]
subject to zero profit condition:

\[b = \delta \sum_{Y \in Y} d(Y)g(Y; l) \]

incentive compatibility of investment:

\[l = \arg \max_{l} \left\{ (1 - \delta)u(Q + b - l) + \delta \sum_{Y \in Y} V[Y - d(Y)]g(Y; l) \right\} \]
and incentive compatibility of repayment:

\[V[Y - d(Y)] \geq U(Y) \quad \forall Y \in Y \]
Capital Outflows

Proposition

If investment choice is internal (not a corner solution) then for low enough Q there would be capital outflows

\[b(Q') < d(Y'|Q) \quad \text{for} \quad Q' = Y' - d(Y'|Q) \]

for the lowest output realization when the no repudiation constraint becomes binding.
Capital Outflows

Proposition

If investment choice is internal (not a corner solution) then for low enough Q there would be capital outflows

$$b(Q') < d(Y' | Q) \quad \text{for} \quad Q' = Y' - d(Y' | Q)$$

for the lowest output realization when the no repudiation constraint becomes binding.

- **Remark**: However, investment choice is likely to be at the corner for Q very low (especially if $\min\{Y\} \approx 0$) and hence the proposition looses a lot in terms of generality.
- Tsyrennikov [2006]
Application III:
Atkeson’s [1991] Model

Figure: Equilibrium Dynamics for $\beta(1 + r) = 1$