MODELS OF SET THEORY

1 Models

1.1 Syntax

Familiarity with notions and results pertaining to formal languages and formal theories is assumed. The theory of most concern will be ZFC, the language of most concern will be the language LST of ZFC (which has just the one non-logical symbol, the two-place relationsymbol \in).

Coding: In order to develop mathematical logic, like other branches of mathematics, within set theory, its objects, formulas and so forth, must be identified with some set-theoretic objects. The most obvious way to do this is to identify each symbol with some natural number, say $\sim=1, \wedge=2, v=3$, and so on, since natural numbers have already been identified with set-theoretic objects, and identify a string of symbols each of which has been identified with some set-theoretic object with the sequence of those set-theoretic objects. Also, in basic set theory it is shown how any pair (α, β) of natural numbers (or ordinals) can be coded by a single natural number (or ordinal) $\gamma=[\alpha, \beta]$, and similarly for sequences, so in fact each formula Φ of LST can be coded by some natural number \# Φ. (This is just the so-called Gödel numbering of formulas used in intermediate level mathematical logic for the proof of the incompleteness theorem.) For a various extensions of LST having constants for various sets a , one can still identify a formula with a set theoretic object, say by letting the constant for $\mathrm{a}=$ $(0, a)$ and otherwise proceeding as before, though for this extension of LST there will be no coding by natural numbers (at least not if it has constants 'a' for uncountably many sets s).

Complexity: The bounded quantifiers $(\forall \mathrm{x} \in \mathrm{y}) \Phi(\mathrm{x})$ and $(\exists \mathrm{x} \in \mathrm{y}) \Phi(\mathrm{x})$ are abbreviations for $\forall \mathrm{x}(\mathrm{x} \in \mathrm{y} \rightarrow \Phi(\mathrm{x}))$ and $\exists \mathrm{x}(\mathrm{x} \in \mathrm{y} \wedge \Phi(\mathrm{x}))$ respectively. (Then $\forall \mathrm{x} \in \in \mathrm{z}$ and $\exists \mathrm{x} \in \in \mathrm{z}$ can be introduced as further abbreviations for $\forall y \in z \forall x \in y$ and $\exists y \in z \exists x \in y$ respectively.) A Δ_{0} formula is one built up from atomic formuals $u \in v$ and $u=v$ by sentential connectives (\sim, \wedge, v) and bounded or limited quantifiers. They are also called Σ_{0} or Π_{0} formulas. A $\Sigma_{\mathrm{n}+1}$ formula is one of the form $\exists u_{1} \exists u_{2} \ldots \exists u_{p} \Phi$ where Φ is a Π_{n} formula, and a Π_{n+1} formula is one of the form $\forall \mathrm{u}_{1} \forall \mathrm{u}_{2} \ldots \forall \mathrm{u}_{\mathrm{p}} \Phi$ where Φ is a Σ_{n} formula. (It is allowed to have $\mathrm{p}=0$, and Σ_{n} and Π_{n} formulas count as $\Sigma_{\mathrm{n}+1}$ and $\Pi_{\mathrm{n}+1}$ formulas.)

Lemma:

(a) Every formula is logically equivalent to a Σ_{n} formula for some n .

Every formula is logically equivalent to a Π_{n} formula for some n.
(b) A conjunction or disjunction of Σ_{n} formulas is equivalent to a Σ_{n} formula.

A conjunction or disjunction of Π_{n} formulas is equivalent to a Π_{n} formula.
(c) The negation of a Σ_{n} formula is equivalent to a Π_{n} formula.

The negation of a Π_{n} formula is equivalent to a Σ_{n} formula.

Proof: Use the logical equivalences:

| $(\exists \mathrm{x} \Phi(\mathrm{x}) \wedge \exists \mathrm{y} \Psi(\mathrm{y}))$ | \leftrightarrow | $\exists \mathrm{x} \exists \mathrm{y}(\Phi(\mathrm{x}) \wedge \Psi(\mathrm{y}))$ |
| ---: | :--- | ---: | :--- |
| $(\exists \mathrm{x} \Phi(\mathrm{x}) \vee \exists \mathrm{x} \Psi(\mathrm{x}))$ | \leftrightarrow | $\exists \mathrm{x}(\Phi(\mathrm{x}) \vee \Psi(\mathrm{x}))$ |
| $(\forall \mathrm{x} \Phi(\mathrm{x}) \wedge \forall \mathrm{x} \Psi(\mathrm{x})) \leftrightarrow$ | $\forall \mathrm{x}(\Phi(\mathrm{x}) \wedge \Psi(\mathrm{x}))$ | |
| $(\forall \mathrm{x} \Phi(\mathrm{x}) \vee \forall \mathrm{y} \Psi(\mathrm{y}))$ | \leftrightarrow | $\forall \mathrm{x} \forall \mathrm{y}(\Phi(\mathrm{x}) \vee \Psi(\mathrm{y}))$ |
| $\sim \exists \mathrm{x} \Phi(\mathrm{x})$ | \leftrightarrow | $\forall \mathrm{x} \sim \Phi(\mathrm{x})$ |
| $\sim \forall \mathrm{x} \Phi(\mathrm{x})$ | \leftrightarrow | $\exists \mathrm{x} \sim \Phi(\mathrm{x})$ |

A formula reducible to a Σ_{n} formula by such equivalences will be called Σ_{n} in an extended sense.
Examples: Important notions expressible by $\Delta_{0}=\Sigma_{0}=\Pi_{0}$ formulas:

$\forall \mathrm{z} \in \mathrm{x}(\mathrm{z} \in \mathrm{y})$	$x \subseteq y$
$\forall \mathrm{w} \in \mathrm{x} \exists \mathrm{z} \in \mathrm{w}(\mathrm{w} \in \mathrm{z}) \wedge \forall \mathrm{w} \in \in \mathrm{x}(\mathrm{w} \in \mathrm{y})$	$\mathrm{y}=\mathrm{Ux}$
$\forall \mathrm{w} \in \mathrm{z}(\mathrm{w} \in \mathrm{x} \wedge \mathrm{w} \in \mathrm{y}) \wedge \forall \mathrm{w} \in \mathrm{x}(\mathrm{w} \in \mathrm{y} \rightarrow \mathrm{w} \in \mathrm{z})$	$\mathrm{y}=\mathrm{x} \cap \mathrm{y}$
$\mathrm{x} \in \mathrm{z} \wedge \mathrm{y} \in_{\mathrm{z} \wedge} \forall \mathrm{w} \in \mathrm{z}(\mathrm{w}=\mathrm{x} \vee \mathrm{w}=\mathrm{y})$	$\mathrm{z}=\{\mathrm{x}, \mathrm{y}\}$
$\exists \mathrm{z}_{0} \in \mathrm{z} \exists \mathrm{z}_{1} \in \mathrm{z}\left(\mathrm{z}=\left\{\mathrm{z}_{0}, \mathrm{z}_{1}\right\} \wedge \mathrm{z}_{0}=\{\mathrm{x}, \mathrm{x}\} \wedge \mathrm{z}_{1}=\{\mathrm{x}, \mathrm{y}\}\right)$	$\mathrm{z}=(\mathrm{x}, \mathrm{y})$
$\begin{aligned} & \forall \mathrm{w} \in \mathrm{z} \mathrm{\exists} \exists \mathrm{x}^{\prime} \in \mathrm{x} \exists \mathrm{y}^{\prime} \in \mathrm{y}\left(\mathrm{w}=\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)\right) \wedge \\ & \forall \mathrm{x}^{\prime} \in \mathrm{x} \forall \mathrm{y}^{\prime} \in \mathrm{y} \exists \mathrm{w} \in \mathrm{z}\left(\mathrm{w}=\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)\right) \end{aligned}$	$\mathrm{z}=\mathrm{x} \otimes \mathrm{y}$
$\forall w \in z \exists x \in \in w \exists y \in \in w(w=(x, y)) \wedge$ $\forall \mathrm{w}_{0} \in \mathrm{z} \forall \mathrm{w}_{1} \in \mathrm{z} \forall \mathrm{x} \in \in \mathrm{w}_{0} \forall \mathrm{y}_{0} \in \in \mathrm{w}_{0} \forall \mathrm{y}_{1} \in \in \mathrm{w}_{1}\left(\mathrm{w}_{0}=\left(\mathrm{x}, \mathrm{y}_{0}\right) \wedge \mathrm{w}_{1}=\left(\mathrm{x}, \mathrm{y}_{1}\right) \rightarrow \mathrm{y}_{0}=\mathrm{y}_{1}\right)$	z is a function
$(\mathrm{z}$ is a function) $\wedge \exists \mathrm{w} \in \mathrm{z}(\mathrm{w}=(\mathrm{x}, \mathrm{y})$)	$\mathrm{z}(\mathrm{x})=\mathrm{y}$
$\forall \mathrm{u} \in \in \in \mathrm{z} \forall \mathrm{v} \in \in \in \mathrm{z}(\mathrm{z}(\mathrm{u})=\mathrm{v} \rightarrow \mathrm{u} \in \mathrm{x})$	domz $\subseteq x$
$\forall \mathrm{u} \in \in \in \mathrm{z} \forall \mathrm{v} \in \in \in \mathrm{z}(\mathrm{z}(\mathrm{u})=\mathrm{v} \rightarrow \mathrm{v} \in \mathrm{y})$	ranz $\subseteq y$
$\forall \mathrm{u} \in \mathrm{x} \exists \mathrm{v} \in \in \in \mathrm{z}(\mathrm{z}(\mathrm{u})=\mathrm{v})$	$\mathrm{x} \subseteq$ domz
$\forall \mathrm{v} \in \mathrm{y} \exists \mathrm{u} \in \in \in \in \mathrm{z}(\mathrm{z}(\mathrm{u})=\mathrm{v})$	y ¢ranz
$\forall y \in \in x(y \in x)$	x is transitive
(x is transitive) $\wedge \forall y \in x \forall z \in x(y \in z \vee y=z \vee z \in y)$	x is an ordinal
(x is an ordinal $) \wedge \exists y \in x \forall z \in x(z \in y \vee z=y)$	x is a successor
(x is an ordinal $) \wedge \sim(\mathrm{x}$ is a successor $) \wedge \exists \mathrm{y} \in \mathrm{x}(\mathrm{y}$ is a successor)	$\mathrm{x}=\omega$
$\exists \mathrm{z} \in \mathrm{x}(\mathrm{z} \subseteq \mathrm{y})$	$\mathrm{x} \subseteq \wp(\mathrm{y})$

Important notions expressible by Π_{1} formulas:

$(\mathrm{x}$ is an ordinal $) \wedge \forall \mathrm{f} \forall \mathrm{y} \in \mathrm{x}((\mathrm{f}$ is a function $) \wedge \operatorname{domf} \subseteq \mathrm{y} \wedge \mathrm{z} \subseteq$ ranf $) \rightarrow \mathrm{x} \neq \mathrm{z})$	x is a cardinal
$(\mathrm{x}$ is a cardinal $) \wedge \forall \mathrm{z} \forall \mathrm{f} \forall \mathrm{y} \in \mathrm{x}((\mathrm{f}$ is a function $) \wedge$ domf $\subseteq \mathrm{y} \wedge \mathrm{z} \subseteq$ ranf $) \rightarrow \mathrm{x} \neq \cup \mathrm{z})$	x is regular
$\forall \mathrm{z}(\mathrm{z} \subseteq \mathrm{y} \rightarrow \mathrm{z} \in \mathrm{x})$	$\wp(\mathrm{y}) \subseteq \mathrm{x}$

1.2 Semantics

Familiarity with notions pertaining to models of formal languages and formal theories is assumed. The models of most concern will be of ZFC or some large part thereof. Note that the existence of a model of the whole of ZFC implies the consistency of ZFC and so cannot be proved in ZFC by the incompleteness theorems. The models of most concern will be standard: The universe of the model will be some transitive set of sets A, the interpretation of the relation-symbol \in will be the elementhood relation on A (in other words, $\left.\in_{A}=\{(a, b) \mid a \in b \in A\}\right)$. For a standard model A, the usual definition of truth in A of a closed formula $\Phi\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right)$ of the language $\operatorname{LST}(\mathrm{A})$ with a constants for each $\mathrm{a} \in \mathrm{A}$ is by recursion as follows:

$\mathrm{Al}=\mathrm{a} \in \mathrm{b}$	iff	$\mathrm{a} \in \mathrm{b}$
$\mathrm{Al}=\mathrm{a}=\mathrm{b}$	iff	$\mathrm{a}=\mathrm{b}$
$\mathrm{Al}=\sim \Phi$	iff	not $\mathrm{Al}=\Phi$
$\mathrm{Al}=\Phi \wedge \Psi$	iff	$\mathrm{Al}=\Phi$ and $\mathrm{Al}=\Psi$
$\mathrm{Al}=\Phi \vee \Psi$	iff	$\mathrm{Al}=\Phi$ or $\mathrm{Al}=\Psi$
$\mathrm{Al}=\forall \mathrm{x} \Phi\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}, \mathrm{x}\right)$	iff	$\mathrm{Al}=\Phi\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}, \mathrm{b}\right)$ for all b in A
$\mathrm{Al}=\exists \mathrm{x} \Phi\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}, \mathrm{x}\right)$	iff	$\mathrm{Al}=\Phi\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}, \mathrm{b}\right)$ for some b in A

Of the various further notions that can be defined in terms of truth the most important is the following: $\mathrm{a} \in \mathrm{A}$ is parametrically definable in A from the parameters $\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{k}}$ if there is a formula $\Phi\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{k}}, \mathrm{v}\right)$ of LST such that $\mathrm{Al}=\Phi\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{m}}, \mathrm{a}\right)$ but not $\mathrm{Al}=\Phi\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{m}}, \mathrm{b}\right)$ for any $\mathrm{b} \neq \mathrm{a}$. Most important is the cases where $\mathrm{k}=0$, that of (outright, plain, simple) definability.

The notion of (outright, plain, simple) truth, that is, of truth-in-V where V is the universe of all sets, is impossible to define in ZFC. (Here what is meant by truth being definable in a theory is the existence of a formula in the language of the theory for which the basic properties of truth, namely the induction clauses above, can be proved in the theory.) Why this is impossible is most easily understood by considering the infamous König paradox: Since there are only countably many definitions, only countably many sets are definable, and since there are uncountably many ordinals, there must be some that are undefinable, and among these there must be a least one. But that one is after all definable by the following definition: x is the least ordinal that is not definable.

What can be done is to define in ZFC is the following: For each n , one can define truth $_{n}$, or truth for formulas ${ }_{n}$, that is, for Σ_{n} formulas. But it turns out that truth ${ }_{n}$ is itself expressible by a formula ${ }_{n}$ but not by a formula ${ }_{m}$ for any $\mathrm{m}<\mathrm{n}$: To define truth for more and more complicated formulas it takes more and more complicated formulas.

Lemma: Let $\Phi\left(u_{1}, \ldots, u_{m}\right)$ be a formula, and let A, B be transitive sets with $A \subseteq B$, and let $\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{m}} \in \mathrm{A}$. Then:
(a) If Φ is Δ_{0}, then $\mathrm{Al}=\Phi\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{m}}\right)$ if and only if $\mathrm{B} \mid=\Phi\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{m}}\right)$
(b) If Φ is Σ_{1}, then if $\mathrm{Al}=\Phi\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{m}}\right)$ then $\mathrm{B} \mid=\Phi\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{m}}\right)$
(c) If Φ is Π_{1}, then if $\mathrm{B} \mid=\Phi\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{m}}\right)$ then $\mathrm{A} \mid=\Phi\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{m}}\right)$

Proof: \quad For (a) proceed by induction on the length of Φ, the only difficult case being the induction step for quantifiers. The cases of \forall and \exists being similar, only the latter will be treated here. So suppose $\Phi\left(u_{1}, \ldots, u_{m}\right)=\exists v \in u_{i} \Psi\left(u_{1}, \ldots, u_{m}, v\right)$, in other words $=$ $\exists \mathrm{v}\left(\mathrm{v} \in \mathrm{u}_{\mathrm{i}} \wedge \Psi\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{m}}, \mathrm{v}\right)\right)$; and suppose as induction hypothesis that claim (a) holds for Ψ. Then $A I=\Phi\left(a_{1}, \ldots, a_{m}\right)$ iff there exists $b \in A$ such that $b \in a_{i}$ and $A l=\Psi\left(a_{1}, \ldots, a_{m}, b\right)$. But since A is transitive, any $\mathrm{b} \in \mathrm{a}_{\mathrm{i}}$ will have $\mathrm{b} \in \mathrm{A}$, so $\mathrm{A} \mid=\Phi\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{m}}\right)$ iff there exists $\mathrm{b} \in \mathrm{a}_{\mathrm{i}}$ such $A \mid=\Psi\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{m}}, \mathrm{b}\right)$. Likewise $\mathrm{B} \mid=\Phi\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{m}}\right)$ iff there exists $\mathrm{b} \in \mathrm{a}_{\mathrm{i}}$ such $\mathrm{B} \mid=\Psi\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{m}}, \mathrm{b}\right)$. Then claim (a) for Φ follows immediately by the induction hypothesis that $A I=\Psi\left(a_{1}, \ldots, a_{m}, b\right)$ iff $\mathrm{B} \mid=\Psi\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{m}}, \mathrm{b}\right)$. Parts (b) and (c) being similar, and only the former will be treated here. So let $\Phi=\exists v_{1} \ldots \exists v_{n} \Psi$ where Ψ is Δ_{0}. If $A l=\Phi\left(a_{1}, \ldots, a_{m}\right)$, then $A l=\Psi\left(a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n}\right)$ for some $b_{1}, \ldots, b_{n} \in A \subseteq B . B y(a), B l=\Psi\left(a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n}\right)$ and hence $B l=\Phi\left(a_{1}, \ldots, a_{m}\right)$.

The definition of truth ${ }_{0}$ is then this: $\|_{0} \Phi\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{m}}\right)$ iff Φ is a Σ_{0} formula and $A I=\Phi\left(a_{1}, \ldots, a_{m}\right)$ for some transitive A with $a_{1}, \ldots, a_{m} \in A$. The Lemma (a) is needed to prove the basic properties of truth $_{0}$, notably that if Φ is true ${ }_{0}$ (Φ is true in some transitive A) then $\sim \Phi$ is not true ${ }_{0}\left(\sim \Phi\right.$ is not true in any transitive A). The definition of truth ${ }_{1}$ is then this: ${ }^{=}=1 \Phi\left(a_{1}, \ldots, a_{m}\right)$ iff Φ is of form $\exists v_{1} \ldots \exists v_{n} \Psi$ where Ψ is a Σ_{0} formula and there exist b_{1}, \ldots, b_{n} such that $I_{0} \Psi\left(a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n}\right)$. The definitions of truth ${ }_{n}$ for $n \geq 2$ are analogous. Φ is absolute $_{\mathrm{n}}$ for a transitive set A if Φ is a Σ_{n} formula and for any $\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{m}} \in \mathrm{A}$ one has $\mathrm{Al}=\Phi\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{m}}\right)$ iff $\mathrm{I}={ }_{\mathrm{n}} \Phi\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{m}}\right)$. The Lemma (a) says any $\Sigma_{0} \Phi$ is absolute ${ }_{0}$ for any transitive A. Where no confusion can result, subscripts will be omitted.

1.3 Criteria

When is an axiom of ZFC is true in a transitive set A?
Proposition: Let $\Phi\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{m}}\right)$ be a formula, A transitive, and $\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{m}} \in \mathrm{A}$:
(a) If Φ is Δ_{0}, then $A l=\Phi\left(a_{1}, \ldots, a_{m}\right)$ if and only if $l=\Phi\left(a_{1}, \ldots, a_{m}\right)$
(b) If Φ is Σ_{1}, then if $A=\Phi\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{m}}\right)$ then $\mathrm{I}=\Phi\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{m}}\right)$
(c) If Φ is Π_{1}, then if $I=\Phi\left(a_{1}, \ldots, a_{m}\right)$ then $A \mid=\Phi\left(a_{1}, \ldots, a_{m}\right)$

Proof: Almost immediate from Lemma of $\S 2.2$ and definitions of truth.
The axioms of extensionality and foundation are essentially Π_{1} formulas:
$\forall x \forall y(\forall z \in x(z \in y) \wedge \forall z \in y(z \in x) \rightarrow x=y) \quad \forall x(\exists y \in x(y=y) \rightarrow \exists y \in x \sim \exists z \in x(z \in y))$
Hence they come out true or hold in any transitive set by Proposition (c).
The axiom of pairing is essentially a Π_{2} formula:
$\forall x \forall y \exists z(z=\{x, y\})$
where $z=\{x, y\}$ occurs in the Examples in $\S 2.1$. Hence $A l=$ pairing iff for all $a, b \in A$ there exists $c \in A$ such that $A l=c=\{a, b\}$. By Proposition (a), $A l=$ pairing iff for all $a, b \in A$ there exists $c \in A$ such that $c=\{a, b\}$; in other words, iff whenever $a, b \in A$, then $\{a, b\} \in A$; in yet other words, iff A is closed under the pairing operation $\{$,$\} .$

Similarly for union, infinity, and choice:
$\forall \mathrm{x} \exists \mathrm{y}(\mathrm{y}=\cup \mathrm{x}) \quad \exists \mathrm{x}(\mathrm{x}=\omega) \quad \forall \mathrm{x}(\mathrm{x}$ is a partition $\rightarrow \exists \mathrm{y}(\mathrm{y}$ is a selector for x$))$
(though the conditions x is a partition and y is a selector for x were not included in the Examples in §2.1). One has $\mathrm{Al}=$ union iff A is closed under $\cup, \mathrm{Al}=$ infinity iff $\omega \in \mathrm{A}$, and $A \mid=$ choice iff for every partition $a \in A$ there is a selector $b \in A$.

The axiom of power is essentially a Π_{3} formula:
$\forall y \exists x(\forall z \in x(z \subseteq y) \wedge \forall z(z \subseteq y \rightarrow z \in x))$
$\mathrm{Al}=$ power iff for every $\mathrm{b} \in \mathrm{A}$ there is an $\mathrm{a} \in \mathrm{A}$ such that every c that is an element of a is a subset of b and every $c \in A$ that is a subset of b is an element of a. In other words, setting $\wp \mathrm{A}(\mathrm{b})=\wp(\mathrm{b}) \cap \mathrm{A}=\{\mathrm{c} \in \mathrm{Alc} \subseteq \mathrm{b}\}$, one has $\mathrm{Al}=$ power iff A is closed under $\wp \mathrm{A}$. This is a necessary and sufficient condition. A more than sufficient condition is that A be closed under \wp.

As for separation, $\mathrm{Al}=$ separation iff for every formula $\Phi\left(\mathrm{u}, \mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{m}}\right)$ and every $\mathrm{a} \in \mathrm{A}$ and $\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{m}} \in \mathrm{A}$ one has $\left\{\mathrm{b} \in \mathrm{al} \mid \mathrm{Al}=\Phi\left(\mathrm{b}, \mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{m}}\right)\right\} \in \mathrm{A} . \mathrm{Al}=\Phi\left(\left(\mathrm{b}, \mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{m}}\right)\right.$ is often written $\Phi^{\mathrm{A}}\left(\mathrm{b}, \mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{m}}\right)$, and the parameters $\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{m}}$ are often not explicitly written. In this somewhat abbreviated notation, $\mathrm{Al}=$ separation iff for every Φ and $\mathrm{a} \in \mathrm{A},\left\{\mathrm{b} \in \mathrm{al} \Phi^{\mathrm{A}}(\mathrm{b})\right\} \in \mathrm{A}$. This is a necessary and sufficient condition. A more than sufficient condition is that A if $a \in A$ and $a^{\prime} \subseteq a$, then $a^{\prime} \in A$.

As for replacement, $\mathrm{Al}=$ replacement iff for every formula $\Psi\left(\mathrm{u}, \mathrm{v}, \mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{m}}\right)$ and $\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{m}} \in \mathrm{A}$, if for every $\mathrm{a} \in A$ there exists a unique $\mathrm{b}=\psi^{\mathrm{A}}(\mathrm{a}) \in \mathrm{A}$ with $\mathrm{A} l=\Psi\left(\mathrm{a}, \mathrm{b}, \mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{m}}\right)$, then for every $\mathrm{c} \in \mathrm{A}$, one has $\left\{\psi^{\mathrm{A}}(\mathrm{a}) \mid \mathrm{a} \in \mathrm{c}\right\} \in \mathrm{A}$. This is a necessary and sufficient condition. A more than sufficient condition is that whenever $c \in A,\|c\|=\|d\|$, and $d \subseteq A$, then $d \in A$.

AXIOM	NECESSARY \& SUFFICIENT [MORE THAN SUFFICIENT]			
EXTENSIONALITY	automatic			
FOUNDATION	automatic			
PAIRING	A closed under $\{$, \}			
UNION	A closed under \cup			
INFINITY	$\omega \in \mathrm{A}$			
CHOICE	for every partition $\mathrm{a} \in \mathrm{A}$ there is a selector $b \in A$			
POWER	A closed under $\wp \mathrm{A}$ [A closed under \wp]			
SEPARATION	for every $\mathrm{a} \in \mathrm{A},\left\{\mathrm{b} \in \mathrm{al} \Phi^{\mathrm{A}}(\mathrm{b})\right\} \in \mathrm{A}$ $\left[a^{\prime} \in A\right.$ if $\left.a^{\prime} \subseteq a \in A\right]$			
REPLACEMENT	for every $c \in A,\left\{\psi^{\mathrm{A}}(\mathrm{a}) \mid \mathrm{a} \in \mathrm{c}\right\} \in \mathrm{A}$ $[\mathrm{d} \in \mathrm{A}$ if $\mathrm{d} \subseteq \mathrm{A},\\|\mathrm{ld}\\|=\\| \mathrm{cl}$ for some $\mathrm{c} \in \mathrm{A}$]			

1.4 Reflection

By transfinite recursion define:
$\mathrm{V}(0)=\varnothing \quad \mathrm{V}(\beta+1)=\wp(\mathrm{V}(\beta)) \quad \mathrm{V}(\alpha)=\cup\{\mathrm{V}(\beta) \mid \beta<\alpha\}$ at limits

Lemma A:

(i) if $\alpha^{\prime}<\alpha$, then $V\left(\alpha^{\prime}\right) \subseteq V(\alpha)$
(ii) $\mathrm{V}(\alpha)$ is transitive
(iii) for every x there is an α with $\mathrm{x} \in \mathrm{V}(\alpha)$:
the least β such that $x \in V(\beta+1)$ is called the $\operatorname{rank} \rho(x)$ of x
(iv) $V(\alpha)=\{x \mid \rho(x)<\alpha\}$
(v) $\rho(x)=\sup \{\rho(y) \mid y \in x\}+1$
(vi) if $y \in x$ then $\rho(y)<\rho(x)$
(vii) $\rho(\alpha)=\alpha$

Proof: Let (o) be the proposition $\mathrm{V}(\alpha)=\cup\{\mathrm{V}(\beta+1) \mid \beta<\alpha\}$. Note that if (o) holds for all $\alpha \leq \gamma$, then (i) holds for all $\alpha<\gamma$, since then if $\alpha^{\prime}<\alpha$ one has $\cup\{\mathrm{V}(\beta+1) \mid \beta<\alpha '\} \subseteq \cup\{\mathrm{V}(\beta+1) \mid \beta<\alpha\}$. Note that if (o) and (i) hold for all $\alpha<\gamma$, then (ii) holds for all $\alpha<\gamma$, since then if $\mathrm{y} \in \mathrm{x} \in \mathrm{V}(\alpha)$, one has $x \in V(\beta+1)=\wp(V(\beta))$ for some $\beta<\alpha$ by (o), whence for that $\beta<\alpha$ one has $y \in x \subseteq V(\beta) \subseteq V(\alpha)$ by (i). To prove (i),(ii) it thus suffices to show that if (o),(i),(ii) hold for all $\alpha<\gamma$, then (o) holds for γ. There are two cases, γ and limit and γ a successor, and both are left as exercises, as are the proofs of (iii), which uses foundation, and (vii), which uses induction. (iv) is immediate from (o) and the definition of rank. Taking (v) and (vi) in reverse order, for (vi), note that if $y \in x \in V(\alpha+1)=\wp(\mathrm{V}(\alpha))$, then $\mathrm{y} \in \mathrm{x} \subseteq \mathrm{V}(\alpha)=\cup\{\mathrm{V}(\beta+1) \mid \beta<\alpha\}$ by (o), and so $y \in V(\beta+1)$ for some $\beta<\alpha$. For (v) let $\sigma=\sup \{\rho(y)+1 l y \in x\}$. The inequality $\sigma \leq \rho(x)$ is immediate from (vi). For the opposite inequality, for any $y \in x$, one has $y \in V(\rho(y)+1) \subseteq V(\sigma)$ by (i) and the definition of rank, so $\mathrm{x} \subseteq \mathrm{V}(\sigma)$ and $\mathrm{x} \in \wp(\mathrm{V}(\sigma))=\mathrm{V}(\sigma+1)$ so that $\rho(\mathrm{x}) \leq \sigma$.

	Lemma B:	Lemma C: if α be a limit ordinal:
(a)	$\rho(\{\mathrm{a}, \mathrm{b}\}) \leq \max (\rho(\mathrm{a}), \rho(\mathrm{b}))+1$	$\mathrm{~V}(\alpha)$ is closed under $\{\}$,
(b)	$\rho(\cup \mathrm{a}) \leq \rho(\mathrm{a})$	$\mathrm{V}(\alpha)$ is closed under \cup
(c)	$\rho(\omega) \leq \omega+1$	if $\alpha>\omega$, then $\omega \in \mathrm{V}(\alpha)$
(d)	if b is a selector for the partition a, then $\rho(\mathrm{b}) \leq \rho(\mathrm{a})$	for any partition $\mathrm{a} \in \mathrm{V}(\alpha)$ there exists a selector $\mathrm{b} \in \mathrm{V}(\alpha)$
(e)	$\rho(\wp(\mathrm{a})) \leq \rho(\mathrm{a})+1$	$\mathrm{~V}(\alpha)$ is closed under \wp
(f)	if $\mathrm{b} \subseteq$ a then $\rho(\mathrm{b}) \leq \rho(\mathrm{a})$	if a $\in \mathrm{V}(\alpha)$ and a' \subseteq a then $\mathrm{a}^{\prime} \in \mathrm{V}(\alpha)$

Proof: For B, (a) and (b) follow almost immediately from Lemma A(v); (c) from Lemma A(vii); (d) from Lemma $A(v)$ again and the fact that if b is a selector for the partition a, then $b \subseteq \cup a$; (e),(f) from Lemma $A(v)$ again. The clauses of C follow from the corresponding clauses of B (using Lemma A(iv)).

Theorem: Let α be a limit ordinal $>\omega$. Then $\mathrm{V}(\alpha)$ is a model of all the axioms of ZFC other than replacement.
Proof: Immediate using the criteria of $\S 2.3$ and Lemma C.
Reflection Principle: For any n the following is provable in ZFC: For every β there exists a limit ordinal $\alpha>\beta$ such that all formulas ${ }_{n}$ are absolute ${ }_{n}$ for $\mathrm{V}(\alpha)$.

Proof: The following intuitive argument becomes formalizable in ZFC if subscripts n are added: For any existential formula $\Phi\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{m}}\right)=\exists \mathrm{v} \Psi\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{m}}, \mathrm{v}\right)$, let $\mathrm{f}_{\Phi}\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{m}}\right)=$ the least α such that (i) $\rho\left(a_{1}\right), \ldots, \rho\left(a_{m}\right)<\alpha$ and (ii) if there exists any b at all such that $\Psi\left(a_{1}, \ldots, a_{m}, b\right)$ is true, then there exists such $a b$ with $\rho(b)<\alpha$. Next, define $F(\beta)=$ $\sup \left\{\mathrm{f}_{\Phi}\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{m}}\right) \mathrm{la}_{1}, \ldots, \mathrm{a}_{\mathrm{m}} \in \mathrm{V}(\beta), \Phi\right.$ an existential formula $\}$. Note that if $\gamma<\beta$, then (since $V(\gamma) \subseteq V(\beta))$ one has $F(\gamma) \leq F(\beta)$. Also, define $G^{0}(\beta)=\beta, G^{n+1}(\beta)=F\left(G^{n}(\beta)+1\right)$, $G^{\omega}(\beta)=\sup \left\{G^{n}(\beta) \mid n \in \omega\right\}$. Note that $G^{\omega}(\beta)$ is a limit ordinal $\alpha>\beta$, and that if $\gamma<\alpha$, then $F(\gamma) \leq \alpha$ (since then $\gamma<G^{n}(\beta)$ for some n, and then $\left.F(\gamma) \leq F\left(G^{n}(\beta)\right)=G^{n+1}(\beta)<\alpha\right)$. Now it can be proved by induction on the length of the formula that any formula Φ is absolute for $\mathrm{V}(\alpha)$. The only difficult case is the induction step for quantifiers, and the cases of \forall and \exists being similar, only the latter will be treated here. So suppose $\Phi\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{m}}\right)=\exists \mathrm{v} \Psi\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{m}}, \mathrm{v}\right)$ and suppose as induction hypothesis that Ψ is absolute for $\mathrm{V}(\alpha)$. Let $\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{m}} \in \mathrm{V}(\alpha)$. It suffices to show that if there exists any b at all such that $\Psi\left(a_{1}, \ldots, a_{m}, b\right)$ is true, then there exists such a $b \in V(\alpha)$. But this is so since then $a_{1}, \ldots, a_{m} \in V(\gamma)=\{x \mid \rho(x)<\gamma\}$ for some $\gamma<\alpha$, and if there exists any such b there exists one with $\mathrm{b} \in\{\mathrm{x} \mid \rho(\mathrm{x})<\mathrm{F}(\gamma)\}=\mathrm{V}(\mathrm{F}(\gamma)) \subseteq \mathrm{V}(\alpha)$.

Corollary: (It is provable in ZFC that:) For any finitely many replacement axioms, there exists a model of all the axioms of ZFC other than replacement and of those finitely many replacement axioms.

Proof: Immediate from the Theorem and the reflection principle applied to an n large enough that all the replacement axioms in question are (logically equivalent to) formulasn.

1.4* Transitivization

Proposition: For every x there exists a (necessarily unique) x^{\dagger} such that (i) t is transitive, (ii) $x \in t$, and (iii) if u is transitive and $x \in u$, then $u \subseteq t$.

Proof: Using foundation, it suffices to show that if y^{\dagger} with properties (i)-(iii) exists for every $y \in x$, then letting $x^{\dagger}=\cup\left\{y^{\dagger} \mid y \in x\right\} \cup\{x\}$ it has properties (i)-(iii). For (i), if $v \in u \in x^{\dagger}$, then either $\mathrm{u}=\mathrm{x}$ in which case $\mathrm{v} \in \mathrm{x}$ and $\mathrm{v} \in \mathrm{v}^{\dagger} \subseteq \cup\left\{\mathrm{y}^{\dagger} \mid \mathrm{l} \in \mathrm{x}\right\} \subseteq \mathrm{x}^{\dagger}$, or else $\mathrm{u} \in \mathrm{w}^{\dagger}$ for some $\mathrm{w} \in \mathrm{x}$ in which case by (i) for w^{\dagger} one has $v \in w^{\dagger} \subseteq \cup\left\{y^{\dagger} \mid y \in x\right\} \subseteq x^{\dagger}$. (ii) is immediate. For (iii) let u be transitive with $x \in u$ and let $v \in x^{\dagger}$ to show $v \in u$. Well either $v=x \in u$ or else $v \in w^{\dagger}$ for some $\mathrm{w} \in \mathrm{x}$. In the latter case, note that since $\mathrm{w} \in \mathrm{x} \in \mathrm{u}$ by transitivity $\mathrm{w} \in \mathrm{u}$, and by (iii) for w^{\dagger} one has $v \in w^{\dagger} \subseteq u$.

Corollary: $x^{\dagger}=\cup\left\{y^{\dagger} \mid y \in x\right\} \cup\{x\}$
The hereditary cardinality of x is $\sigma(x)=\left\|x^{\dagger}\right\|$. For κ and infinite cardinal, $H(\kappa)=$ $\{x \mid \sigma(x)<\kappa\} . H\left(\aleph_{0}\right)$ and $H\left(\aleph_{1}\right)$ are also called HF (hereditarily finite sets) and HC (hereditarily countable sets).

	Lemma A:	Lemma B:	Lemma C: let κ be an infinite cardinal:		
(a)	$\begin{aligned} & (\{\mathrm{a}, \mathrm{~b}\})^{\dagger} \subseteq \\ & \{\{\mathrm{a}, \mathrm{~b}\}\} \cup \mathrm{a}^{\dagger} \cup \mathrm{b}^{\dagger} \end{aligned}$	$\begin{aligned} & \sigma(\{\mathrm{a}, \mathrm{~b}\}) \leq \\ & \max (\sigma(\mathrm{a}), \sigma(\mathrm{b}))+1 \end{aligned}$	$\mathrm{H}(\kappa)$ is closed under $\{$,		
(b)	$(\cup a){ }^{\dagger} \subseteq\{\cup a\} \cup a^{\dagger}$	$\sigma(\cup \mathrm{a}) \leq \sigma(\mathrm{a})+1$	$\mathrm{H}(\kappa)$ is closed under \cup		
(c)	$\alpha \dagger \subseteq \alpha+1$	$\sigma(\omega) \leq \omega$	if κ uncountable: $\omega \in \mathrm{H}(\kappa)$		
(d)		if b selector partition a, then $\sigma(b) \leq \sigma(a)+2$	for any partition $\mathrm{a} \in \mathrm{H}(\kappa)$, exists selector $b \in H(\kappa)$		
(e)	$\begin{aligned} & (\wp(a))^{\dagger} \subseteq \\ & a^{\dagger} \cup \wp(a) \cup\{\wp(a)\} \end{aligned}$	$\sigma(\wp(\mathrm{a})) \leq 2^{\sigma(a)+\sigma(a)+1}$	if κ strong limit: $\mathrm{H}(\kappa)$ is closed under \wp		
(f)	if $b \subseteq a$ then $\mathrm{b}^{\dagger} \subseteq\{b\} \cup \mathrm{a}^{\dagger}$	if $b \subseteq a$ then $\sigma(\mathrm{b}) \leq \sigma(\mathrm{a})+1$	if $\mathrm{a}^{\prime} \subseteq a \in \mathrm{a}(\kappa)$, then $\mathrm{a}^{\prime} \in \mathrm{H}(\kappa)$		
(g)		$\sigma(\mathrm{a})=(\Sigma\{\sigma(\mathrm{b}) \mid \mathrm{lb} \in \mathrm{a}\})+1$	if κ regular: if $\mathrm{d} \subseteq \mathrm{H}(\kappa),\\|\mathrm{ll\mid l}=\\| \mathrm{cll}$, $\mathrm{c} \in \mathrm{H}(\kappa)$, then $\mathrm{d} \in \mathrm{H}(\kappa)$		

Proof: For A, in each case, it is easily shown that the set on the right hand side is transitive. For B, (a),(b),(c),(e),(f) follow from the corresponding clauses of Lemma A; (d) follows from (b),(f) and the fact that if b is a selector for the partition a , then $\mathrm{b} \subseteq \cup \mathrm{a} ;(\mathrm{g})$ follows from the Corollary. For C, each clause follows from the corresponding clause of Lemma B.

Theorem:

If κ is:	then $\mathrm{H}(\kappa)$ is a model of all of ZFC except (perhaps):
\aleph_{0}	infinity
uncountable	power, replacement
uncountable, strong limit	replacement
uncountable, regular	power
inaccessible	[no exceptions]

Proof: Immediate from Lemma C and the criteria of §2.3.
Corollary: The existence of an inaccessible cardinal cannot be proved in ZFC (if ZFC is consistent).

2 Choice

2.1 Consistency

The method of "inner models", and a particular inner model, the "constructible universe" were introduced by Kurt Gödel to prove the consistency of CH relative to $\mathrm{ZFC}=\mathrm{ZF}+\mathrm{AC}$ and of AC relative to ZF . (Here consistency of a hypothesis Φ relative to a theory Γ means: if Γ is consistent, then $\Gamma+\Phi$ is consistent.) A simpler inner model, the "hereditarily ordinal definable universe" suffices for the latter proof, which will be outlined here.

The results in intermediate level mathematical logic are not depend on AC , and the results in a basic course in set theory that are dependant on AC are identified as so dependant and come late in the course, and no such results have been used here. The only use here of $A C$ has been in showing that $A C$ is true in a model $\mathrm{V}(\alpha)$ or $\mathrm{H}(\kappa)$: After proving without AC that if a partition is an element of such a model, then any selector for it is an element of that model, the assumption that every parition has a selector is used to conclude that every partition in the model has a selector in the model. No use of $A C$ will be made in the present chapter.

The intuitive notion of ordinal definable (OD) is: (i) a is OD if there exist a formula $\Phi(\mathrm{x}, \mathrm{y})$ of LST and an ordinal β such that $\Phi(\mathrm{a}, \beta)$ is true and $\Phi(\mathrm{b}, \beta)$ is not true for any $\mathrm{b} \neq \mathrm{a}$. The official definition of ordinal definable (OD) is: (ii) a is OD if there exist a formula $\Phi(\mathrm{x}, \mathrm{y})$ of LST, an ordinal β, and an ordinal $\alpha>\beta$ such that $\Phi(\mathrm{a}, \beta)$ is true in $\mathrm{V}(\alpha)$ and $\Phi(\mathrm{b}, \beta)$ is not true in $\mathrm{V}(\alpha)$ for any $\mathrm{b} \neq \mathrm{a}$. In that case a is said to be OD by Φ from β at α, and to be OD through δ where δ is the code $[[\alpha, \beta], \# \Phi]$. Notion (i) is not definable in ZF, since truth is not; but notion (ii) is definable in ZF , since truth-in-a-model is. However, intuitively the two definitions are equivalent: If (i) holds, then (ii) holds for any $\alpha>\beta$ such that Φ is absolute for $\mathrm{V}(\alpha)$, and such exist by the Reflection Principle. If (ii) holds, then a is OD in the sense of notion (i) from the code δ by the formula expressing that x is OD in the sense of notion (ii) through y.

Metalemma. For every n the following is a theorem of ZF : If $\mathrm{a}_{1}, \ldots, a_{n}$ are OD and b is definable $_{n}$ from parameters a_{1}, \ldots, a_{n}, the b is OD.
Proof: Let b be definable from a_{1}, \ldots, a_{n} by Ψ, and let a_{1}, \ldots, a_{n} be OD through $\gamma_{1}, \ldots, \gamma_{n}$ respectively. Let Φ express that there exist $\mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{n}}$ and $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}}$ such that $\Psi\left(\mathrm{x}, \mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{n}}\right)$ and y is the code $\left[w_{1}, \ldots, w_{n}\right]$ and z_{1} is OD through w_{1} and \ldots and z_{n} is OD through w_{n}. Let β be the code $\left[\gamma_{1}, \ldots, \gamma_{n}\right]$ and let $\alpha>\beta$ be such that Φ is absolute for $V(\alpha)$. Then a is OD by Φ from β at α.

Also define: a is hereditarily ordinal definable (HOD) if b is OD for every $\mathrm{b} \in \mathrm{a}^{\dagger}$. For any formula Φ, let $\Phi \mathrm{HOD}$ be the result of replacing each quantifier $\forall \mathrm{x}$ or $\exists \mathrm{x}$ in Φ by $\forall x(\operatorname{HOD}(x) \rightarrow \ldots)$ and $\exists x(H O D(x) \wedge \ldots)$.

	Lemma A	Lemma B	Lemma C:
the following are provable in ZF for all formulas Φ, Ψ, Θ :			
(a)	if $\mathrm{OD}(\mathrm{a})$ and $\mathrm{OD}(\mathrm{b})$ then $\mathrm{OD}(\{\mathrm{a}, \mathrm{b}\}$	if $\mathrm{HOD}(\mathrm{a})$ and $\mathrm{HOD}(\mathrm{b})$ then $\operatorname{HOD}(\{a, b\})$	(pairing axiom) ${ }^{\mathrm{HOD}}$
(b)	if OD(a) then $\mathrm{OD}(\cup \mathrm{a})$	if $\operatorname{HOD}(\mathrm{a})$ then $\operatorname{HOD}(\cup \mathrm{a})$	(union axiom) ${ }^{\mathrm{HOD}}$
(c)	$\mathrm{OD}(\omega)$	$\operatorname{HOD}(\omega)$	(infinity axiom) ${ }^{\text {HOD }}$
(d)	if $\mathrm{OD}(\mathrm{a})$ then $\mathrm{OD}(\{\mathrm{~b} \in \wp(\mathrm{a}) \mid \Theta(\mathrm{b})\})$	if $\operatorname{HOD}(a)$ then $\operatorname{HOD}(\{b \in \wp(a) \mid \Theta(b)\})$	(power axiom) ${ }^{\text {HOD }}$
(e)	$\begin{aligned} & \text { if } \mathrm{OD}(\mathrm{a}) \text { then } \\ & \mathrm{OD}(\{\mathrm{~b} \in \mathrm{a} \mid \Psi(\mathrm{b})\}) \end{aligned}$	$\begin{aligned} & \text { if } \operatorname{HOD}(\mathrm{a}) \text { then } \\ & \operatorname{HOD}\left(\mathrm{a}^{\prime}=\{\mathrm{b} \in \mathrm{al} \Psi(\mathrm{~b})\}\right) \end{aligned}$	(Φ-separation axiom $\Phi)^{\text {HOD }}$
(f)	$\begin{aligned} & \text { if } \mathrm{OD}(\mathrm{c}) \text { then } \\ & \operatorname{OD}\left(\left\{\psi^{\Theta}(\mathrm{a}) \mathrm{la} \in \mathrm{c}\right\}\right) \end{aligned}$	$\begin{aligned} & \text { if } \operatorname{HOD}(\mathrm{c}) \text { then } \\ & \operatorname{HOD}\left(\left\{\psi^{\Theta}(\mathrm{a}) \mid \mathrm{a} \in \mathrm{c}\right\}\right) \end{aligned}$	(Φ-replacement axiom $\Phi)^{\text {HOD }}$

Proof: $\quad \mathrm{A}$ is immediate from the Metalemma. $\mathrm{B}(\mathrm{a})$ follows from $\mathrm{B}(\mathrm{b})$ and the observation that $(\{a, b\})^{\dagger}=\{\{a, b\}\} \cup a^{\dagger} \cup b^{\dagger}$; and similarly for the other clauses of B . Though the HOD sets do not form a set, still the criteria of $\S 2.3$ apply, and yield C : for $C(d)$ take $\Theta(x)$ in $\mathrm{B}(\mathrm{d})$ to be $\mathrm{HOD}(\mathrm{x})$; for $\mathrm{C}(\mathrm{e})$ and $\mathrm{C}(\mathrm{f})$, given Φ take Ψ in $\mathrm{B}(\mathrm{e})$ and $\mathrm{B}(\mathrm{f})$ to be Φ HOD.

Lemma D: The following is provable in ZF (without AC): ACHOD
Proof: If $\mathrm{OD}(\mathrm{a})$ let δ_{a} be the least ordinal δ such that a is OD through δ. Define $\mathrm{a}<_{\mathrm{OD}} b$ to mean $\mathrm{OD}(\mathrm{a})$ and $\mathrm{OD}(\mathrm{b})$ and $\delta_{\mathrm{a}}<\delta_{\mathrm{b}}$. Let a be a partition and for $\mathrm{c}, \mathrm{d} \in \cup \mathrm{a}$ write $\mathrm{c} \equiv \mathrm{ad}$ to mean that c, d are elements of the same element of a . If $\operatorname{HOD}(\mathrm{a})$, then $\mathrm{OD}(\mathrm{c})$ for every $\mathrm{c} \in \cup \mathrm{a}$, and then $b=\left\{c \in \cup a l \delta_{c}<\delta_{d}\right.$ for any $\left.d \equiv c, d \neq c\right\}$ is a selector for a, while also $\operatorname{HOD}(b)$.

Metatheorem: If AC is consistent relative to ZF.

2.2 Independence

The method of "forcing" was introduced by Paul to prove the independence of CH relative to $\mathrm{ZFC}=\mathrm{ZF}+\mathrm{AC}$ and of AC relative to ZF . (Here independence of a hypothesis Φ relative to a theory Γ means: if Γ is consistent, then $\Gamma+\sim \Phi$ is consistent.) The latter proof also used the method of "permutation models", essentially due to Frankel, who introduced it for the simpler proof of the independence of AC relative to ZFU , a modification of ZF allowing individuals (in German, Urelemente). This last proof will be outlined here.

ZFU is like ZF with the following changes: There is an extra one-place relationsymbol, either $U(x)$ expressing that x is an individual or $V(x)$ expressing that x is a set (either one of these can be taken as primitive, and the other defined as its negation). There are two extra axioms, one asserting that only sets and not individuals have elements (if $x \in y$ then $\mathrm{V}(\mathrm{y}))$, the other asserting that there exists a set of all individuals. The extensionality axiom is formulated as $\forall x \forall y(V(x) \wedge V(y) \wedge \forall z(z \in x \leftrightarrow z \in y) \rightarrow x=y)$. The axiom of infinity may be replaced by an axiom asserting that the set of all individuals is infinite.

In place of the $\mathrm{V}(\alpha)$ hierarchy one defines:
$\mathrm{U}(0)=\{\mathrm{ilU}(\mathrm{i})\} \quad \mathrm{U}(\beta+1)=\wp(\mathrm{U}(\beta)) \quad \mathrm{U}(\alpha)=\cup\{\mathrm{U}(\beta) \mid \beta<\alpha\}$ at limits

A permuation of a set is a bijection from the set to itself. Given a permutation π of the set $\mathrm{U}(0)$ of individuals there is a unique extension of π to a permutation also denoted π of the universe of all individuals and sets, satisfying $\left(^{*}\right) \pi(x)=\{\pi(y) \mid y \in x\}$. (It is easily proved by transfinite induction that for each α there is a unique extension of π to a permutation π_{α} of $\mathrm{U}(\alpha)$ satisfying $(*)$.) Individual or set a is fixed by permutation π if $\pi(\mathrm{a})=\mathrm{a}$. Set A is stabilized by $\mathrm{I} \subseteq \mathrm{U}(0)$ if every permutation that fixes the elements of I also fixes A . A is finitely stabilized (FS) is some finite $I \subseteq U(0)$ stabilizes A. A is hereditarily finitely stablized (HFS) if every $\mathrm{B} \in \mathrm{A}^{\dagger}$ is finitely stabilized.

Metalemma X: For every Φ the following is a theorem of ZF:
$\forall \mathrm{a}_{1} \ldots \forall \mathrm{a}_{\mathrm{n}}\left(\Phi\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right) \leftrightarrow \Phi\left(\pi\left(\mathrm{a}_{1}\right), \ldots, \pi\left(\mathrm{a}_{\mathrm{n}}\right)\right)\right)$.
Metalemma Y: For every n the following is a theorem of ZF: If a_{1}, \ldots, a_{n} are FS and b is definable ${ }_{n}$ from parameters a_{1}, \ldots, a_{n}, the b is FS.
Proof: For X, proceed by induction on the length of $\Phi,\left({ }^{*}\right)$ being the case of the simplest formula $x \in y$. For Y, let b be definable from a_{1}, \ldots, a_{n} by Ψ, and let a_{1}, \ldots, a_{n} be stablized by $\mathrm{I}_{1}, \ldots, \mathrm{I}_{\mathrm{n}}$ respectively. Let $\Phi\left(\mathrm{z}, \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right)$ express that there exists x such that $\Psi\left(\mathrm{x}, \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right)$ and $\mathrm{z} \in \mathrm{x}$, so that $\mathrm{b}=\left\{\mathrm{cl} \Phi\left(\mathrm{c}, \mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right)\right.$ is true $\}$. Let $\mathrm{J}=\mathrm{I}_{1} \cup \ldots \cup \mathrm{I}_{\mathrm{n}}$, so that any π that fixes J fixes a_{1}, \ldots, a_{n}. For such π by $(*)$ one has $\pi(b)=\left\{\pi(c) \mid \Phi\left(c, a_{1}, \ldots, a_{n}\right)\right.$ is true $\}$, by X one has $\Phi\left(\mathrm{c}, \mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right)$ is true iff $\Phi\left(\pi(\mathrm{c}), \mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right)$ is true. It follows $\pi(\mathrm{b})=\left\{\pi(\mathrm{c}) \mid \Phi\left(\pi(\mathrm{c}), \mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right)\right\}=\mathrm{b}$.

	Lemma A	Lemma B	Lemma C:
the following are provable in ZF for all formulas Φ, Ψ, Θ :			
(a)	$\begin{aligned} & \text { if FS(a) and FS(b) } \\ & \text { then FS(\{a,b\} } \end{aligned}$	$\begin{aligned} & \text { if HFS(a) and HFS(b) } \\ & \text { then HFS(\{a,b\}) } \\ & \hline \end{aligned}$	$\left(\right.$ pairing axiom) ${ }^{\text {HFS }}$
(b)	if FS(a) then $\mathrm{FS}(\cup \mathrm{a})$	if $\operatorname{HFS}(\mathrm{a})$ then $\operatorname{HFS}(\cup \mathrm{a})$	(union axiom) ${ }^{\text {HFS }}$
(c)	FS(ω)	HFS (ω)	$\left(\right.$ infinity axiom) ${ }^{\text {HFS }}$
(d)	$\begin{aligned} & \text { if FS(a) then } \\ & \operatorname{FS}(\{b \in \wp(a) \mid \Theta(b)\}) \end{aligned}$	$\begin{aligned} & \text { if } \operatorname{HFS}(a) \text { then } \\ & \operatorname{HFS}(\{b \in \wp(a) \mid \Theta(b)\}) \end{aligned}$	$\left(\right.$ power axiom) ${ }^{\text {HFS }}$
(e)	if $\mathrm{FS}(\mathrm{a})$ and $\mathrm{FS}(\mathrm{b})$ for every $b \in a$ then $\mathrm{FS}(\{\mathrm{b} \in \mathrm{al} \Psi(\mathrm{b})\})$	$\begin{aligned} & \text { if } \operatorname{HFS}(a) \text { then } \\ & \operatorname{HFS}\left(a^{\prime}=\{b \in \mathrm{al} \Psi(\mathrm{~b})\}\right) \end{aligned}$	(Φ-separation axiom $\Phi)^{\mathrm{HFS}}$
(f)	if $\mathrm{FS}(\mathrm{c})$ and $\mathrm{FS}(\mathrm{a})$ and FS $(\psi(\mathrm{a}))$ for every $\mathrm{a} \in \mathrm{c}$, then $\operatorname{FS}(\{\psi(\mathrm{a}) \mathrm{a} \in \mathrm{c}\})$	$\begin{aligned} & \text { if HFS(c) and HFS }(\psi(\mathrm{a})) \\ & \text { for every } \in \mathrm{c}, \text { then } \\ & \text { HFS }(\{\psi(\mathrm{a}) \mathrm{a} \in \mathrm{c}\}) \end{aligned}$	(Φ-replacement axiom $\Phi)^{\mathrm{HFS}}$

Proof: Like the corresponding three lemmas in §3.1.

Lemma D: The following is provable in ZF (without AC): ($\sim \mathrm{AC})^{\mathrm{HFS}}$ Proof: One needs to use an alternate criterion for AC, using its equivalent, the wellordering principle WO. Using this it suffices to show that if R is a well-ordering of $\mathrm{U}(0)$, then $\sim \mathrm{FS}(\mathrm{R})$, using the hypothesis that $\mathrm{U}(0)$ is infinite. Indeed, suppose $\mathrm{I} \subseteq \mathrm{U}(0)$ is finite, and let $\mathrm{i}, \mathrm{j} \in \mathrm{U}(0)-\mathrm{I}$ with iRj and let $\pi(\mathrm{i})=\mathrm{j}, \pi(\mathrm{j})=\mathrm{i}, \pi(\mathrm{k})=\mathrm{k}$ for all $\mathrm{k} \in \mathrm{U}(0)-\{\mathrm{i}, \mathrm{j}\}$. Apply metalemma X to the formula expressing that $(x, y) \in z$, to conclude $j \pi(R) i$, whence $\sim i \pi(R) j$ and $\pi(R) \neq R$ and I does not stabilize R .

Metatheorem: If AC is independent relative to ZFU.

Problems

A. Let X be a nonempty set, A a nonempty set of subsets of X . Then A is called a field of sets if we have: (i) $(X-a) \in A$ whenever $a \in A$; and (ii) $(a \cup b) \in A$ whenever $a, b \in A$. Let B be a nonempty set of subsets of X. Then there exists a field A with $B \subseteq A$ and with $A \subseteq A^{\prime}$ for any other field A^{\prime} with $\mathrm{B} \subseteq \mathrm{A}^{\prime}$. This A is called the field generated by B .

Show that the existence of the field generated by a nonempty set of subsets of a given set can be proved without using the power axiom (but using replacement).
B. Show that the existence of the field generated by a nonempty set of subsets of a given set can be proved without using the replacement (but not powerset).
C. Show that the following notion is expressible by a Δ_{0} formula:
u is a [total] order on x
D. Show that the following notion is expressible by a Δ_{0} formula:
$\mathrm{v}=\in_{\mathrm{y}}$ [where \in_{y} is by definition $\{(\mathrm{p}, \mathrm{q}) \mathrm{lp}, \mathrm{q} \in \mathrm{y}$ and $\mathrm{p} \in \mathrm{q}\}$]
E. Show that the following notion is expressible by a Σ_{1} formula:
[u is an order on x and v is an order on y and] u is isomorphic to v
F. Show that the following notion is expressible by a Π_{1} formula:
w is a well-order on x
G. Show that the notion of the preceding problem [or more precisely, a condition provably an equivalent to it] is also expressible by a Σ_{1} formula.
H. Show that $\mathrm{V}(\omega)=\mathrm{H}\left(\aleph_{0}\right)$.
I. Show that $\mathrm{H}\left(\aleph_{1}\right) \subseteq \mathrm{V}\left(\omega_{1}\right)$.
J. Show that $\mathrm{V}\left(\omega_{1}\right) \neq \mathrm{H}\left(\aleph_{1}\right)$

THE AXIOM OF DETERMINACY AN ALTERNATIVE TO THE AXIOM OF CHOICE 3 Rudiments of Descriptive Set Theory
 3.1 ZF + DC

We work throughout in Zermelo-Frankel (ZF) set theory with the Axiom of Dependent Choice (DC). Recall that this axiom implies the Axiom of Countable Choice (CC), which in turn implies that a union of countably many countable sets is countable, which in turn implies that the supremum of a countable set of countable ordinals is countable. When the full Axiom of Choice (AC) is used as an hypothesis, it will be noted explicitly.

3.2 Baire Space \& Cantor Space

In real analysis one usually begins with the real numbers or an interval in the real numbers, but for many purposes it is almost equivalent, and much more convenient, to work with one or the other of two auxiliary spaces. Most results transfer almost automatically back and forth among these spaces, though details will not be gone into here.

The Baire space \boldsymbol{W} consists of all infinite sequences of natural numbers, or in settheoretic terms, all functions from ω to ω. If x is such a function, we call the value $x(n)$ the $n t h$ term of the sequence, and $x \mid n$, the restriction of x to $n=\{0,1,2, \ldots, n-1\}$ the initial segment of length n of the sequence. Working with the Baire space is strictly equivalent to working with the irrational numbers (to which infinite sequences of positive integers correspond by continued fraction representation, but there will be no need here to go into that). The Cantor space C consists of all infinite sequences of zeros and ones, or in set-theoretic terms, all functions from ω to 2 . For any subset a of ω, the characteristic function of a is the function χ_{a} from ω to 2 with $\chi_{a}(n)=1$ if $n \in a$, and $=0$ if $n \notin a$. It is a point in the Cantor space. The following definitions are made for \boldsymbol{W}, the definitions for its subspace \boldsymbol{C} would be exactly parallel.

A basic set is a subset of \boldsymbol{W} of the form $U_{s}=\{x: x \mid n=s\}$ where s is a finite sequence and n is its length. Note that the intersection of two basic sets U_{s} and U_{t} is either equal to one of them (if one of s and t is an initial segment of the other) or empty (otherwise). An open set is a union of basic sets. Note that the complement of any basic set is an open set. (Why? Because the complement of U_{s} is the union of all the U_{t} for t a finite sequence of length n other than s.) Note also that the intersection of any two open sets is open and the union of any number of open sets is open. (Why? For the intersection claim, by the distributive law an intersection of two unions of (many) basic sets is the union of (many) intersections of two basic sets. The union claim should be obvious.) Intuitively, if an infinite sequence x is going to get into an open set U, it will effectively have got in by some finite initial segment: There will be an n such that not only x but every sequence that agrees with x on its first n terms is in U. (Why? Because x belongs to one of the basic U_{s} of which U is the union.)

A closed set is the complement of an open set (and vice versa). Note that any basic set is "clopen", meaning both closed and open. To any closed set C there is associated a "tree" of
finite sequences $T(C)=\{y \mid n: y \in C$ and $n \in \omega\}$. Note that for any t in $T(C)$, if n is the length of t and $m>n$, then there is an extension s of t having length m that is also in $T(C)$. (Why? Well, $t=y \mid n$ for some y in C, and we can take $s=y \mid m$.) Every element y of C determines a "branch" through $T(C)$, consisting of $y|0, y| 1, y|2, y| 3$, and so on. Conversely, any branch through $T(C)$ determines an element of y. (Why? Let y be the infinite sequence that is the union of the finite sequences in the branch. If it were in the complement of C rather than in C, since that complement is open there would be some finite n such that every element of $U_{y \mid n}$ is in the complement of C rather than C. But in that case $y l n$ wouldn't be in the tree $T(C)$ determined by C.) The interior C° of a closed set C is the open set that is the union of all the U_{S} that are subsets of C (if there are any: the interior may be empty). The boundary of C is just the difference $C-C^{\circ}$.

An $\mathbf{G}_{\boldsymbol{\delta}}$ set is an intersection of countably many open sets. Trivially every open set is a G_{δ}, but so is every closed set. (Why? Because the argument given just above in effect shows that a closed set C is the intersection of the sets $C_{n}=\bigcup\left\{U_{s}: s \in T(C)\right.$ and n is the length of s \}.) An $\mathbf{F}_{\boldsymbol{\sigma}}$ set is a union of countably many closed sets. The complement of a G_{δ} is an F_{σ}. (Why? Because the complement of an open set is a closed set, and the complement of an intersection of given sets is the union of their complements.) The reader can guess what is meant by an $\mathrm{F}_{\sigma \delta}$ or $\mathrm{G}_{\delta \sigma}$ set.

3.3 The Cantor-Bendixson Theorem

Let C be a closed set. A point y in C is said to be isolated in C if there is some basic U_{S} such that $C \cap U_{s}=\{y\}$. Such a U_{s} isolates y in C. Clearly C can have only countably many isolated points, if any (since there are only countably many U_{S} available to isolate them). It may have none, as is the case for the clopen sets U_{s}. A set is called perfect if it is closed and without isolated points. The result of removing the isolated points from a closed set C is called the set-derivative of C and denoted ∂C. It is still a closed set. (Why? Because its complement is the union of complement of C with all those U_{S} that isolate points of C.)

In terms of the associated tree $T(C)$, the isolation of y means that there is some n such that $s=y \mid n$ has, for any $m>n$, only one extension of length m in $T(C)$: "there is no branching above s." A little thought shows that $T(\partial \mathrm{C})=\{s \in T(C)$: there is branching above s in $T(C)\}$, which we may call $\partial(\mathrm{T}(C)$), by "abuse of language" using the same symbol ∂ for the derivative operation on sets and the operation on trees, which in words we may call "pruning".

We define for every ordinal α the α th iterate of ∂ applied to C, by transfinite recursion as follows:

For $\alpha=0, \quad \partial^{\alpha} C=C$
For $\alpha=\beta+1, \quad \partial^{\alpha} C=\partial\left(\partial^{\beta} C\right)$
For α a limit, $\quad \partial^{\alpha} C=\bigcap_{\beta<\alpha} \partial^{\beta} C$
By transfinite induction, each $\partial^{\alpha} C$ is closed and each $C-\partial^{\alpha} C$ for countable α is countable. For every finite sequence s, if there is any countable ordinal β such that $\partial^{\beta} C$ is disjoint from
U_{S}, let β_{s} be the least such β; if there is no such β for s, let β_{s} be 0 . Let α be the supremum of the β_{s}, which is still countable since the β_{s} are and there are only countably many of them. Then for any s, since $\alpha>\beta_{s}$, if $\partial^{\alpha} C$ is not disjoint from U_{s}, then $\partial^{\prime} C$ cannot be disjoint from U_{S} for any $\alpha^{\prime}>\alpha$. In other words, we reach a fixed point with $C^{*}=\partial^{\alpha} C$, which we call the kernel of C. We already know C^{*} is closed and $C-C^{*}$ is countable. In fact, C is either empty or perfect: Otherwise, the process of discarding isolated points would not have been finished at stage α. We have proved one of the very oldest results in set theory, going back to Cantor's original work on trigonometric series:

Cantor-Bendixson Theorem: Every closed set is either countable or the union of a countable and a perfect set.

Note that though countable ordinals were used in the proof, they are not mentioned in the result.

Proposition. Any perfect set has the cardinality $2^{\kappa_{0}}$ of continuum.
Proof. Let D be perfect. Then in the tree $T(D)$ there is "branching above every point". For any s in $T(D)$ take the least m at which there are distinct extensions of s in $T(D)$ of length m, and let s^{*} and $s \dagger$ be the extensions of this kind having the least and next-to-least last terms. Recursively define a mapping of the finite zero-one sequences into $T(D)$ by mapping the empty sequence to the empty sequence, and if t has been mapped to s, and t^{*} and $t \dagger$ are the results of adding a 0 and a 1 , respectively, at the end of t, map them to s^{*} and $s \dagger$, respectively. Every infinite zero-one sequence determines a path through $T(D)$ - for example, a sequence that begins $0,1,1,0, \ldots$ determines a path that begins $\emptyset, \emptyset^{*}, \emptyset^{*} \dagger, \emptyset^{*} \dagger \dagger, \emptyset^{*} \dagger^{*}-$ and thus determines an element of D. Moreover, distinct infinite zero-one sequences determining distinct elements of D. So there are as many elements of D as there are infinite zero-one sequences.

We say a set has perfectly many elements if it has a perfect subset. By the proposition just proved, "perfectly many" implies "continuum many". We now have some information concerning the continuum hypothesis (CH):

Corollary to Cantor-Bendixson: CH holds for closed sets: Any closed set has either countably many or (perfectly many and hence) continuum many points.

3.4 A Counterexample

It easily follows that CH holds for F_{σ} sets, including open sets. We cannot hope, however, to prove CH by showing that every subset of the Baire space has either countably or perfectly many elements.

Counterexample: Assuming AC, there is a set with continuum many but not perfectly many elements.

By $\mathrm{AC}, 2^{\aleph_{0}}$ is one of the alephs, and we can well-order any set of that size in the order type of that aleph, so that each element has fewer than continuum many predecessors in the well-order. There are at most continuum many open sets (each by the union of some subset of the set of all basic sets, which is countable); hence there are at most continuum many closed
sets and a fortiori at most continuum many perfect sets. Well-order them in such a way that each has fewer than continuum many elements.

We proceed by transfinite recursion on ordinals $\alpha<2^{\aleph_{0}}$ to classify progressively more and more elements of W positively or negatively, as follows. At stage 0 , all elements are unclassified. Going from β to $\beta+1$, fewer than continuum many elements will have been classified so far. Consider the β th perfect set P in our well-ordering. Since it has continuum many elements, it has two that have not been classified. Classify one positively, the other negatively. At limits, we merely count as positively or negatively classified any element that has been so classified at an earlier stage.

In the end, the set Q of elements classified positively will have continuum many elements, since we added a new one at each stage, but will have no perfect subset, since we spoiled each perfect subset in turn by classifying one of its elements negatively.

3.5 Borel Sets

A sigma-field of subsets of a given set I is a family of subsets of I closed under taking complements and countable intersections and unions. For any nonempty I and any subset X of the power set of I, there is a least sigma-field of subsets of I containing X.

Why? Well, there is at least one sigma-field containing X, namely the full power set of I. The intersection of all sigma-fields containing X is easily verified to be a sigma-field containing X, and then will necessarily be the smallest one. This is a "top down" proof.

There is also a "bottom up" proof. For any subset Y of the power set of I let Y^{*} be the union of Y with the set of complements and countable intersections and countable unions of elements of Y. Define

For $\alpha=0, \quad X_{\alpha}=X$
For $\alpha=\beta+1, \quad X_{\alpha}=X_{\beta}$ *
For α a limit, $\quad X_{\alpha}==\bigcup_{\beta<\alpha} X_{\beta}$
Then it is easily shown that for $\Omega=$ the smallest uncountable ordinal we have $X_{\Omega}=X_{\Omega}{ }^{*}$ and it is the smallest sigma-field containing X.

For $\mathrm{I}=$ Baire space W and $X=$ the set of all open and closed subsets of X, X_{1} consists of the F_{σ} and G_{δ} sets, X_{2} consists of the $\mathrm{G}_{\delta \sigma}$ and $\mathrm{F}_{\sigma \delta}$, and so on, and the smallest sigma-field is called the Borel sets.

CH is known to hold for Borel sets, and even for the larger class of sets called analytic sets, which are the images of Borel sets under continuous functions, a topic that will not be gone into here.

4 Infinite Games of Perfect Information

4.1 The Axiom of Determinacy (AD)

Let X be any set with at least two elements. (We will mainly be interested in the case where X is countable, and especially the case where $X=\omega$.) Let A be a subset of the set of infinite sequences of elements of X. We imagine an infinite game for two players as follows.

Player I picks an element x_{0} of X.

Player II responds by picking an element x_{1} of X.
Player I responds by picking an element x_{2} of X.
Player II responds by picking an element x_{3} of X.

Thus an infinite sequence $x=\left(x_{0}, x_{1}, x_{2}, x_{3}, \ldots\right)$ is generated. In the end - imagine each round of play happening twice as fast as the one before, so there is an end - Player I wins if x is in A, and Player II wins if x is not in A (is in the complement of A).

A strategy for Player I tells that player what to pick as x_{0}, what to pick as x_{2} as a function of the opponent's previous move x_{1}, what to pick as x_{4} as a function of the opponent's previous moves x_{1} and x_{3}, and so on. The notion of strategy for Player II is defined similarly. Formally, a strategy for Player I would be a function from finite sequences of elements of X (with sequences of length n representing the first n moves of a hypothetical opponent) to elements of X (representing Player I's next move). A strategy for Player II would be almost the same, a function from nonempty finite sequences of elements of X to elements of X. (Because Player I goes first and Player II second, a strategy for the former must specify what to do when the opponent has not yet made any moves, while a strategy for the latter need not.)

A winning strategy for a given player is a strategy such that, if that player follows it, that player will always win, no matter how the opponent plays. It cannot be the case that both players have winning strategies. (Else what would happen when each player followed that player's supposed winning strategy?) The game is said to be determined and the set A determinate if there exists a winning strategy for one of the players. The Axiom of Determinacy (AD) asserts the determinateness of all games, or determinacy of all sets, in the case where X is countable. But let us first see what can be proved about the existence of winning strategies without assuming the axiom.

4.2 The Gale-Stewart Theorem

Let us stick to the case $X=\omega$, though the proof to follow does generalize.
Gale-Stewart Theorem: Suppose A is an open or closed subset of W. Then the game is determinate.

Proof: Since the situation is almost completely symmetrical, we just treat the open case. Suppose A is open and I does not have a winning strategy, to show that II does have a winning strategy. Call a finite sequence s of odd length a position. It represents a possible situation early in the game, where II is to move next. If I has a winning strategy for the continuation of the game from position s, then call s a losing position for II.

Claim: If s is not a losing position for II, then there is an i such at, if II plays i next, then no matter what j I plays next after that, the resulting position, which we write $s^{\wedge} i^{\wedge} j$, meaning " s followed by i followed by j ", will still not be a losing position for II.

Proof of Claim: Suppose that whatever i II plays, there is a j_{i} such that if I plays, then I has a winning strategy S_{i} for continuing the game from $s^{\wedge} i^{\wedge} j_{i}$. Then, contrary to the
assumption that s is not a losing position, I already has a winning strategy S for continuing the game from s : Whatever i II plays, play j_{i} in response, and thereafter follow S_{i}.

Proof of Theorem modulo Claim: Let II follow the following strategy T: At any given s where I does not have a winning strategy for continuing the game, play an i such that whatever j I plays, I will still not have a winning strategy for continuing the game from $s^{\wedge} i^{\wedge} j$. Suppose that II plays according to this strategy, and the result is some x in W. It only remains to prove:

Claim: x is not in A.
Proof of Claim: If x is in A then there is some n, which may be taken to be even, such that setting $s=x \mid n$, we have that U_{S} is a subset of A. But this means that I has a trivial strategy for winning the game continuing from s : Whatever I does, I has in effect already won. But II's strategy insures that there is no finite stage s along the way to x at which I has a winning strategy for continuing. This contradiction completes the proof.

4.3 Ultrafilters \& Games

Suppose there is a nonprincipal ultrafilter F on ω. Consider the following game: I and II alternately pick finitely many natural numbers not already picked. In the end, I wins if the set of all numbers eventually picked by I is in F. (This game could be reduced to the form of a game where players alternately pick single natural numbers using a coding of finite sets by single numbers.)

Proposition. Neither player has a winning strategy for the ultrafilter game.
Proof. Suppose I has a winning strategy S (the proof being essentially the same if we suppose II has the winning strategy). When I plays a_{0} as opening move according to S, II pretends that she is playing I and her opponent is playing II, and that she picked a_{0} and he then picked the empty set of numbers. II then plays what would be the response by S if that had happened, call it b_{0}. The players then continue this way, with I playing the real game
$a_{0}, b_{0}, a_{1}, b_{1}, \ldots$
and II playing the virtual game
$a_{0}, \emptyset, b_{0}, a_{1}, b_{1}, \ldots$
both using S. In the end, since S is a winning strategy, I wins the real game, and the set A that is the union of all the a_{n} is in F. But II wins the virtual game, and the union of a_{0} with the set B that is the union of all the b_{n} is also in F. But then the intersection of these two sets must be in F. But that intersection is just the finite set a_{0}, and no finite set belongs to a nonprincipal ultrafilter.

So we get an undetermined game if there exists an nonprincipal ultrafilter. But remember that the proof of the existence of such an ultrafilter used AC (in the guise of Zorn's Lemma).

4.4 Martin \& Friedman

Various game-theorists slowly and painfully extended the Gale-Stewart from open and closed first to F_{σ} and G_{δ}, then to $\mathrm{G}_{\delta \sigma}$ and $\mathrm{F}_{\sigma \delta}$, then to $\mathrm{F}_{\sigma \delta \sigma}$ and $\mathrm{G}_{\delta \sigma \delta}$, after which there was no further progress. D. A. Martin then proved that assuming large cardinals - much larger ones than inaccessibles - one could prove determinacy for all analytic sets, a class that, as
already mentioned, properly includes the class of Borel sets. Later he proved, just in $\mathrm{ZF}+\mathrm{DC}$, determinacy for all Borel sets.

The method of proof involves trading an F_{σ} game on the set \boldsymbol{W} of infinite sequences from the set of natural numbers, a set of cardinal $\beth_{0}=\aleph_{0}$, by an open and therefore determinate game on infinite sequences from a set of size \beth_{1}. Similarly a $G_{\delta \sigma}$ can be traded for an open and therefore determinate game on infinite sequences from a set of size \beth_{2}. To get Borel determinacy one eventually has to consider sets of size up to 2Ω. The proof of the existence of sets this large definitely requires the use of Replacement, whereas most of "down-to-earth" mathematics can be done just in Zermelo set theory, without Replacement.

Even before Martin found this result, Harvey Friedman had proved that one could not prove analytic determinacy without using large cardinals, nor prove Borel determinacy without using Replacement.

4.5 AD \& CH

There are various well known ways to code finite sequences of natural numbers by natural numbers. Given a subset A of the set C of all infinite 0,1 -sequences, consider the following game:

I picks a natural number, and if it is not a code for a finite 0,1 -sequence s_{0} at once forfeits
II in response picks a natural number i_{0}
and if it is ≥ 2 at once forfeits
I picks a natural number, and if it is not a code for a finite 0,1 -sequence s_{1} at once forfeits
II in response picks a natural number i_{1} and if it is ≥ 2 at once forfeits

If neither player forfeits, in the end I wins iff the infinite 0,1 -sequence

$$
s_{0} \wedge i_{0}^{\wedge} s_{1} \wedge i_{1} \wedge \ldots
$$

is in A. Of course, AD implies that either I or II has a winning strategy for this game.
Proposition: If I has a winning strategy, the set A has a perfect subset.
Proof: The point is that if S is a winning strategy for I, we have a tree of possible positions arrived at in playing the game with I following strategy S, and it is the kind of tree associated with a perfect set P : A tree such that "there is branching above any point", because every time it is II's turn, II can choose either a 0 or a 1 . Since every one of the (continuum many) branches through the tree represents a play of the game in which I follows strategy S, and since S is a winning strategy for I, each branch of the tree, which is to say, each element of the perfect set P, is in A, and A has "perfectly many" elements.

Proposition: If II has a winning strategy, the set A is countable.
Proof: Let S be a winning strategy for II and x and element of A. It is not possible to break the whole of x up into segments
$x=s_{0}{ }^{\wedge} i_{0} \wedge s_{1}{ }^{\wedge} i_{1} \wedge \ldots$
in such a way that we would have the following (*)
i_{0} would be II's response by S to I's playing s_{0}
i_{1} would be II's response by S to I's playing s_{0}, s_{1}
(Why not? Well, then x would represent a play of the game in which II follows strategy S, and since S is supposed to be a winning strategy for II, the result of such play would never be an element of A.) It follows that there is some k so that we have a representation

$$
x=s_{0} \wedge i_{0} \wedge^{\wedge} s_{1} \wedge i_{1} \wedge \ldots{ }^{\wedge} s_{k} \wedge i_{k} \wedge y
$$

where y is the rest of x, and (*) holds out to k, but thereafter for any n, II's response by strategy S to I's playing $s_{0}, s_{1}, \ldots, s_{k},\left(y_{0}, y_{1}, \ldots, y_{n-1}\right)$ would not be y_{n}, but rather the opposite, $1-y_{n}$. But this means that the whole of x can be generated recursively using the strategy S and the finite data consisting of the sequence σ of plays $s_{0}, i_{0}, s_{1}, i_{1}, \ldots, s_{k}, i_{k}$. Since each element x of A is thus generated from a finite data σ, and there are only countably many possibilities for σ, there can be only countably many elements of A.

Putting the two propositions together we have:
Theorem of Morton Davis: AD implies every uncountable set has a perfect subset.
4.6 AD, AC, CH, GCH, GAD

Since we saw in $\S 3.4$ that AC implies the opposite, it follows (apart from details about switching back and forth between Baire and Cantor space) that AC and AD are inconsistent with each other. We already knew this from §4.3, but now we have another proof. We could give yet another proof involving the a construction resembling that of $\S 3.4$, given a wellordering. (Well-order the strategies, and so on, and gradually classify elements of the space, at each stage classifying some new element positively, but frustrating some strategy.) Looking at such a proof we would see that AD implies there is no well-ordering of any set of size continuum, and even that no set of size continuum has any uncountable well-ordered subset. Adapting the material in $\S 4.3$, we could also give an ultrafilter proof of the existence of a set of size continuum with no perfect subset.

The theorem of Morton Davis can also be quoted as saying that AD implies CH. Note, however, that we must here understand CH to be the proposition that there is no cardinal number λ with $\aleph_{0}<\lambda<2^{\aleph_{0}}$ and not as the proposition that $2^{\aleph_{0}}=\aleph_{1}$. But if we ask, not what alephs can be mapped one-to-one into the Baire space, or the real numbers, or whatever, but rather what alephs one of these spaces can be mapped onto, the answer is that the least aleph that it cannot be mapped onto, its so-called Hartog's number, is very large, and in fact a fixed point of the alephs. So looked at one way the continuum seems small, but looked at another way it seems large, in the world of AD.

Though AD implies CH, it does not imply its generalization GCH. Without AD, GCH must be formulated as saying that for no cardinal κ is there any cardinal λ such that $\kappa<\lambda<$ 2^{κ}. And it was shown by Sierpinski that GCH implies AC. Hartog's theorem, that for every κ there is an κ that κ cannot be mapped onto, is the first step in Sierpinski's proof.

AD pertains to games involving infinite sequences of natural numbers, or elements of some other countable set. A stronger assertion, the generalized axiom of determinacy (GAD) would be that there exists a winning strategy for one or another player in games involving infinite sequences from any nonempty set. But GAD is inconsistent, since it not only includes AD as a special case, but also implies AC as another special case:

Just imagine, given a set X, a game in which player I picks a nonempty subset A of X and then player II picks an element a of X, and II wins if $a \in A$. Clearly I cannot have a winning strategy, since whatever set I plays, II can pick an element of it. However, a strategy for II would be a function telling II in advance what element to pick as a function of what set I picks. And that is just what a choice function for nonempty subsets of X amounts to, se we have AC.

5 Category (\& Measure)
 5.1 Baire Category

The theory of Baire category (something much older than and entirely unrelated to the category theory of Mac Lane) is a basic tool in parts of real analysis. Let us go back to the Baire space, though most of what we will have to say will apply mutatis mutandis to Cantor space. A subset A is called (globally) dense (in W) if for every basic U_{s}, the intersection $A \cap$ U_{s} is nonempty. The set A is called (locally) dense in U_{s} if for every basic $U_{t} \subseteq U_{s}$, the intersection $A \cap U_{t}$ is nonempty. By contrast, the set A is called nowhere dense or rare if it is not dense in any U_{s} : in other words, for any U_{s} there is a $U_{t} \subseteq U_{s}$ such that $A \cap U_{t}=\emptyset$. Note that any subset of a rare set is rare.

Example: For any k the set $\operatorname{Lack}(k)$ of infinite sequences in which k does not appear as a term, is rare. (Why ? Because for any s, taking $t=s^{\wedge} k$ we get a $U_{t} \subseteq U_{s}$ disjoint from $\operatorname{Lack}(k)$.

Example: For any closed set C, the boundary $C-C^{\circ}$ is rare. (Why? For any U_{S}, it cannot be contained in the boundary, else it would be contained in C and in the interior C°. Since both the complement and the interior of C are open, any point in U_{S} that lies in either the complement or the interior will lie in some $U_{t} \subseteq U_{s}$ that is wholly contained in either the complement or the interior, and hence disjoint from the boundary.)

A set is first category or meager if it is a union of countably many rare sets. Note that any subset of a meager set is meager, and any union of countably many meager sets is meager. An example of meager set would be the set of all x such that the not every natural number appears as a term of x. (This is just the union of the various Lack (k).)

A set is second category or nonmeager if it is not meager, and is residual or comeager if its complement is meager, and residual in U_{S} or comeager in U_{s} if its relative complement in U_{s} is meager.

5.2 The Baire Category Theorem \& Baire Property

Intuitively, being meager is to be thought of as a way of being "small". This way of thinking is justified by the next theorem, a famous result often used in existence proofs in mathematical analysis.

Baire Category Theorem: The whole space \boldsymbol{W} is nonmeager.
Proof. Let M be a meager set, the union of rare sets $R_{0}, R_{1}, R_{2}, \ldots$, to show that there is an element of W not belonging to any R_{i} and therefore not belonging to M. Since R_{0} is rare, starting from $W=U_{\text {empty_sequence }}$ there is a t such that U_{t} is disjoint from R_{0}. Pick such a t (for definiteness, the first in some fixed well-ordering of the finite sequences) and call it s_{0}. Then since R_{1} is rare, starting from U_{s} for $s=s_{0}$, there is a t extending s_{0} such that U_{t} is disjoint from R_{1}. Pick such a t and write it as $t=s_{0}{ }^{\wedge} s_{1}$. Continue in this way, next picking s_{2} so that U_{t} for $t=s_{0} \wedge s_{1} \wedge s_{2}$ will avoid R_{2}, and so on. Stringing together all the s_{i} gives an infinite sequence $x=s_{0}{ }^{\wedge} s_{1}{ }^{\wedge} s_{2}{ }^{\wedge} \ldots$ avoiding all the R_{k} and hence avoiding M, as required.

A set A has the Baire property or is almost open, if there is an open set O such that the symmetric difference $A \Delta O=(A-O) \cup(O-A)$ is meager. Intuitively, being almost open is to be thought of as a way of being "regular" or well-behaved. The following characterization may clarify the notion.

Proposition:

(a) The complement of an almost open set is almost open.
(b) The union of countably many almost open sets is almost open.
(c) The intersection of countably many almost open sets is almost open.
(d) Every Borel set is almost open.

Proof: For (a), if O is open and $M=A \Delta O$ is meager, let C be the complement of O and $N=C-C^{\circ}$ the boundary, which is rare. Then $M^{\prime}=M \cup N$ is meager, and (complement $\left.A\right) \Delta C^{\circ}$ $\subseteq M^{\prime}$.

For (b), if for each A_{i} we have open O_{i} and meager M_{i} with $A_{i} \Delta O_{i} \subseteq M_{i}$, then the union O of the O_{i} is open, the union M of the M_{i} is meager, and for the union A of the A_{i} we have $A \Delta O \subseteq M$.
(c) follows from (a) and (b) and the DeMorgan laws.
(d) follows from (a)-(c) and the definition of Borel sets.

It is known that analytic sets are also almost open.
Proposition: A set A is almost open if for every basic U_{s} there is a basic $U_{t} \subseteq U_{s}$ such that A either is meager in U_{t} or is comeager in U_{t}.

Proof. Here " A is meager in U_{t} " just means " $U_{t} \cap A$ is meager".
First suppose the condition of the theorem is met. Let U^{+}be the open set that is the union of the U_{t} in which A is comeager, and U^{-}the open set that is the union of the U_{t} in
which A is meager, and let U be the union of U^{+}and U^{-}. By the condition, for every basic U_{s} there is a basic $U_{t} \subseteq U_{s}$ such that $U_{t} \subseteq U$, hence the complement N of U is rare. Let M be the union of N with the meager sets $U_{t}-A$ for $U_{t} \subseteq U^{+}$and the meager sets $U_{t} \cap A$ for $U_{t} \subseteq U^{-}$. It can be checked that $A \Delta U^{+} \subseteq M$.

Conversely, suppose A is almost open, with open O and meager M such that $A \Delta O=M$. Let C be the complement of O and $N=C-C^{\circ}$ the boundary of C, which we proved earlier to be a rare set, making $M^{\prime}=M \cup N$ meager. As we saw in that proof, any U_{s} either has a $U_{t} \subseteq$ U_{S} contained in O or has a $U_{t} \subseteq U_{s}$ contained in C° and hence disjoint from O. In the former case, $U_{t}-A$ is a subset of the meager set M^{\prime}, and A is comeager in U_{t}, while in the latter case A $\cap U_{t}$ is a subset of the meager set M^{\prime}, and A is meager in U_{t}. So the condition of the proposition is met.

5.3 The Banach-Mazur Game

Given a subset A of the Cantor space \boldsymbol{C}, consider the following game $G(A)$: I and II alternately pick finite 0,1 -sequences:

I	s_{0}		s_{1}		s_{2}		\ldots
II		t_{0}		t_{1}		t_{2}	

These are strung together to get a point x in A

$$
x=s_{0} \wedge t_{0} \wedge^{\wedge} s_{1} \wedge t_{1} \wedge \ldots
$$

and I wins if $x \in A$. For any finite sequence r there is a related game $G_{r}(A)$, where we start with r as given and end with $x=r^{\wedge} s_{0}{ }^{\wedge} t_{0} \wedge s_{1} \wedge t_{1} \wedge \ldots$, an element of U_{r}.

Proposition: If II has a winning strategy in $G(A)$, then A is meager.
Proof. Let S be a winning strategy for II. The idea is to use S to develop a certain tree of possible plays ($s_{0}, t_{0}, s_{1}, t_{1}, \ldots$) of the game. The sequences of x that result from branches through the tree will, since S is a winning strategy for II, all belong to the complement of A. We need to arrange the tree so that all but a meager set of elements of \boldsymbol{C} correspond to branches through it - to be done by arranging the tree so that all but a rare set of elements of \boldsymbol{C} correspond to branches up through the nth level of the tree for each n. The rather messy details will be given in class, time permitting (and perhaps included in a future edition of these notes).

Analogously, if II has a winning strategy in $G_{r}(A)$, then A is meager in U_{r}. If I has a winning strategy for $G(A)$ then there is an s (namely, the sequence the strategy would tell I to play on the first move), such that I would have a winning strategy if playing the role of II in the game G_{S} (complement of A) - for that is what the rest of the game $G(A)$ after I's first move looks like. But that means that the complement of A is meager in G_{S}, and A is comeager in U_{S}. Similarly, I's having a winning strategy in $G_{r}(A)$ implies A being comeager in $U_{r^{\wedge} s}$ for some s, which is to say, in some $U_{t} \subseteq U_{S}$. Comparing with the second proposition of the previous section we see that we have the following:

Proposition: If all the games $G_{r}(A)$ are determinate, then A is almost open.

Theorem: AD implies that all sets are almost open.

5.4 Projective \& Hyperprojective Determinacy

There is neither space nor time to develop the basics of measure theory here, but it may just be said that there is a close analogy between Lebesgue measure and Baire category, explored in some depth in the little book Measure \& Category by John Oxtoby (Springer, 1971). It includes, in particular, in chapter 6, details about the Banach-Mazur game (in a slightly different context from the one considered here). Analogous to the theorem of the last section we have the following:

Theorem: AD implies that all sets are Lebesgue measurable.
Applying this to the real line, or plane, or 3 -space, it follows that there can be no pathologies of the kind exemplified by the Banach-Tarski paradox. Of course, asking us to give up AC may seem a high price to get this pleasant result. But a compromise is possible.

Work of Martin and a "cabal" of colleagues in SoCal has shown that large cardinals imply the determinacy of a very extensive class of point-sets called the hyperprojective sets. Like the Borel and analytic sets, these contain all open sets and are closed under countable intersection and union; like the Borel and unlike the analytic sets, they are closed under complementation; like the analytic and unlike the Borel sets, they are closed under taking images by continuous functions.

This result of hyperprojective determinacy (HPD) in turn gives us the almost openness and measurability of all hyperprojective sets. One also gets a kind of choice-like result. Let R be a subset of $\boldsymbol{W} \otimes \boldsymbol{W}$ (we could substitute another space of interest for \boldsymbol{W} here). A function f from \boldsymbol{W} to \boldsymbol{W} is said to uniformize R if
(i) $\operatorname{dom} f=\operatorname{dom} R$
(ii) for all x in the domain, $(x, f(x))$ is in R

Then another implication of HPD is that every hyperprojective relation can be uniformized by a hyperprojective function. More could be said about the significance of this result, but our survey must stop somewhere.

