
MODELS OF  SET   THEORY 
1 Models 
 1.1 Syntax 
 Familiarity with notions and results pertaining to formal languages and formal theories 
is assumed.  The theory of most concern will be ZFC, the language of most concern will be 
the language LST of ZFC (which has just the one non-logical symbol, the two-place relation-
symbol ∈).   
 Coding:  In order to develop mathematical logic, like other branches of mathematics, 
within set theory, its objects, formulas and so forth, must be identified with some set-theoretic 
objects.  The most obvious way to do this is to identify each symbol with some natural 
number, say ~ = 1, ∧ = 2, ∨ = 3, and so on, since natural numbers have already been identified 
with set-theoretic objects, and identify a string of symbols each of which has been identified 
with some set-theoretic object with the sequence of those set-theoretic objects.  Also, in basic 
set theory it is shown how any pair (α,β) of natural numbers (or ordinals) can be coded by a 
single natural number (or ordinal) γ = [α,β], and similarly for sequences, so in fact each 
formula Φ of LST can be coded by some natural number #Φ.  (This is just the so-called Gödel 
numbering of formulas used in intermediate level mathematical logic for the proof of the 
incompleteness theorem.)  For a various extensions of LST having constants for various sets 
a, one can still identify a formula with a set theoretic object, say by letting the constant for a = 
(0,a) and otherwise proceeding as before, though for this extension of LST there will be no 
coding by natural numbers (at least not if it has constants ‘a’ for uncountably many sets s). 
 Complexity:  The bounded quantifiers (∀x∈y)Φ(x) and (∃x∈y)Φ(x) are abbreviations 
for ∀x(x∈y→Φ(x)) and ∃x(x∈y∧Φ(x)) respectively.  (Then ∀x∈∈z and ∃x∈∈z can be 
introduced as further abbreviations for ∀y∈z∀x∈y and ∃y∈z∃x∈y respectively.)  A Δ0 
formula is one built up from atomic formuals u∈v and u=v by sentential connectives (~,∧,∨) 
and bounded or limited quantifiers. They are also called Σ0 or Π0 formulas.  A Σn+1 formula is 
one of the form ∃u1∃u2…∃upΦ where Φ is a Πn formula, and a Πn+1 formula is one of the 
form ∀u1∀u2…∀upΦ where Φ is a Σn formula.  (It is allowed to have p=0, and Σn and Πn 
formulas count as Σn+1 and Πn+1 formulas.) 
 Lemma: 
(a) Every formula is logically equivalent to a Σn formula for some n.  
 Every formula is logically equivalent to a Πn formula for some n. 
(b) A conjunction or disjunction of Σn formulas is equivalent to a Σn formula.   
 A conjunction or disjunction of Πn formulas is equivalent to a Πn formula. 
(c) The negation of a Σn formula is equivalent to a Πn formula. 
 The negation of a Πn formula is equivalent to a Σn formula. 
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Proof:   Use the logical equivalences: 
 (∃xΦ(x)∧∃yΨ(y)) ↔ ∃x∃y(Φ(x)∧Ψ(y)) 
 (∃xΦ(x)∨∃xΨ(x)) ↔ ∃x(Φ(x)∨Ψ(x)) 
 (∀xΦ(x)∧∀xΨ(x)) ↔ ∀x(Φ(x)∧Ψ(x)) 
 (∀xΦ(x)∨∀yΨ(y)) ↔ ∀x∀y(Φ(x)∨Ψ(y)) 
 ~∃xΦ(x)  ↔ ∀x~Φ(x) 
 ~∀xΦ(x)  ↔ ∃x~Φ(x) 
A formula reducible to a Σn formula by such equivalences will be called Σn in an extended 
sense. 
Examples: Ιmportant notions expressible by Δ0=Σ0=Π0 formulas: 
∀z∈x(z∈y) x⊆y 

∀w∈x∃z∈w(w∈z)∧∀w∈∈x(w∈y) y=∪x 

∀w∈z(w∈x∧w∈y)∧∀w∈x(w∈y→w∈z) y=x∩y 

x∈z∧y∈z∧∀w∈z(w=x∨w=y) z={x,y} 

∃z0∈z∃z1∈z(z={z0,z1}∧z0={x,x}∧z1={x,y}) z=(x,y) 

∀w∈z∃x'∈x∃y'∈y(w=(x',y'))∧ 
∀x'∈x∀y'∈y∃w∈z(w=(x',y')) 

z=x⊗y 

∀w∈z∃x∈∈w∃y∈∈w(w=(x,y))∧ 
∀w0∈z∀w1∈z∀x∈∈w0∀y0∈∈w0∀y1∈∈w1(w0=(x,y0)∧w1=(x,y1)→y0=y1) 

z is a function 

(z is a function)∧∃w∈z(w=(x,y)) z(x)=y 

∀u∈∈∈z∀v∈∈∈z(z(u)=v→u∈x) domz⊆x 

∀u∈∈∈z∀v∈∈∈z(z(u)=v→v∈y) ranz⊆y 

∀u∈x∃v∈∈∈z(z(u)=v) x⊆domz 

∀v∈y∃u∈∈∈z(z(u)=v) y⊆ranz 

∀y∈∈x(y∈x) x is transitive 

(x is transitive)∧∀y∈x∀z∈x(y∈z∨y=z∨z∈y) x is an ordinal 

(x is an ordinal)∧∃y∈x∀z∈x(z∈y∨z=y) x is a successor 

(x is an ordinal)∧~(x is a successor)∧∃y∈x(y is a successor) x=ω 

∃z∈x(z⊆y) x⊆℘(y) 

Ιmportant notions expressible by Π1 formulas: 
(x is an ordinal)∧∀f∀y∈x((f is a function)∧domf⊆y∧z⊆ranf)→x≠z) x is a cardinal 

(x is a cardinal)∧∀z∀f∀y∈x((f is a function)∧domf⊆y∧z⊆ranf)→x≠∪z) x is regular 

∀z(z⊆y→z∈x) ℘(y)⊆x 
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 1.2 Semantics 
 Familiarity with notions pertaining to models of formal languages and formal theories 
is assumed.  The models of most concern will be of ZFC or some large part thereof.  Note that 
the existence of a model of the whole of ZFC implies the consistency of ZFC and so cannot be 
proved in ZFC by the incompleteness theorems.  The models of most concern will be 
standard:  The universe of the model will be some transitive set of sets A, the interpretation 
of the relation-symbol ∈ will be the elementhood relation on A (in other words, 
∈Α={(a,b)|a∈b∈A}).  For a standard model A, the usual definition of truth in A of a closed 
formula Φ(a1,…,an) of the language LST(A) with a constants for each a∈A is by recursion as 
follows: 
 A|=a∈b   iff a∈b 
 A|=a=b   iff a=b 
 A|=~Φ   iff not A|=Φ 
 A|=Φ∧Ψ   iff A|=Φ and A|=Ψ 
 A|=Φ∨Ψ   iff A|=Φ or A|=Ψ 
 A|=∀xΦ(a1,…,an,x) iff A|=Φ(a1,…,an,b) for all b in A 
 A|=∃xΦ(a1,…,an,x) iff A|=Φ(a1,…,an,b) for some b in A 
Of the various further notions that can be defined in terms of truth the most important is the 
following:  a∈A is parametrically definable in A from the parameters p1,…,pk if there is a 
formula Φ(u1,…,uk,v) of LST such that A|=Φ(p1,…,pm,a) but not A|=Φ(p1,…,pm,b) for any 
b≠a.  Most important is the cases where k=0, that of (outright, plain, simple) definability. 
 The notion of (outright, plain, simple) truth, that is, of truth-in-V where V is the 
universe of all sets, is impossible to define in ZFC.  (Here what is meant by truth being 
definable in a theory is the existence of a formula in the language of the theory for which the 
basic properties of truth, namely the induction clauses above, can be proved in the theory.)  
Why this is impossible is most easily understood by considering the infamous König paradox:  
Since there are only countably many definitions, only countably many sets are definable, and 
since there are uncountably many ordinals, there must be some that are undefinable, and 
among these there must be a least one.  But that one is after all definable by the following 
definition: x is the least ordinal that is not definable.   
  What can be done is to define in ZFC is the following:  For each n, one can define 
truthn, or truth for formulasn, that is, for Σn formulas. But it turns out that truthn is itself 
expressible by a formulan but not by a formulam for any m<n:  To define truth for more and 
more complicated formulas it takes more and more complicated formulas. 
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 Lemma: Let Φ(u1,…,um) be a formula, and let A,B be transitive sets with A⊆B, 
and let a1,…,am∈A.  Then: 
(a) If Φ is Δ0,  then A|=Φ(a1,…,am) if and only if B |=Φ(a1,…,am)  
(b) If Φ is Σ1,  then if A|=Φ(a1,…,am) then B |=Φ(a1,…,am) 
(c) If Φ is Π1,  then if B|=Φ(a1,…,am) then A |=Φ(a1,…,am) 
Proof: For (a) proceed by induction on the length of Φ, the only difficult case being the 
induction step for quantifiers.  The cases of ∀ and ∃ being similar, only the latter will be 
treated here.  So suppose Φ(u1,…,um) = ∃v∈uiΨ(u1,…,um,v), in other words = 
∃v(v∈ui∧Ψ(u1,…,um,v)); and suppose as induction hypothesis that claim (a) holds for Ψ.  
Then A|=Φ(a1,…,am) iff there exists b∈A such that b∈ai and A|=Ψ(a1,…,am,b).  But since A 
is transitive, any b∈ai will have b∈A, so A|=Φ(a1,…,am) iff there exists b∈ai such 
A|=Ψ(a1,…,am,b).  Likewise B|=Φ(a1,…,am) iff there exists b∈ai such B|=Ψ(a1,…,am,b).  
Then claim (a) for Φ follows immediately by the induction hypothesis that A|=Ψ(a1,…,am,b) 
iff B|=Ψ(a1,…,am,b).  Parts (b) and (c) being similar, and only the former will be treated here.  
So let Φ=∃v1…∃vnΨ where Ψ is Δ0.  If A|=Φ(a1,…,am), then A|=Ψ(a1,…,am,b1,…,bn) for 
some b1,…,bn∈A⊆B.  By (a), B|=Ψ(a1,…,am,b1,…,bn) and hence B|=Φ(a1,…,am).   
 The definition of truth0 is then this:  |=0Φ(a1,…,am) iff Φ is a Σ0 formula and 
A|=Φ(a1,…,am) for some transitive A with a1,…,am∈Α.  The Lemma (a) is needed to prove 
the basic properties of truth0, notably that if Φ is true0 (Φ is true in some transitive A) then ~Φ 
is not true0 (~Φ is not true in any transitive A). The definition of truth1 is then this:  
|=1Φ(a1,…,am) iff Φ is of form ∃v1…∃vnΨ where Ψ is a Σ0 formula and there exist b1,…,bn 
such that |=0Ψ(a1,…,am,b1,…,bn).   The definitions of truthn for n≥2 are analogous.  Φ is 
absoluten for a transitive set A if Φ is a Σn formula and for any a1,…,am∈Α one has 
A|=Φ(a1,…,am) iff |=nΦ(a1,…,am).  The Lemma (a) says any Σ0 Φ is absolute0 for any 
transitive A.  Where no confusion can result, subscripts will be omitted. 
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 1.3 Criteria 
 When is an axiom of ZFC is true in a transitive set A? 
 Proposition: Let Φ(u1,…,um) be a formula,  A transitive, and a1,…,am∈A: 
(a) If Φ is Δ0,  then A|=Φ(a1,…,am) if and only if |=Φ(a1,…,am)  
(b) If Φ is Σ1,  then if A|=Φ(a1,…,am) then |=Φ(a1,…,am) 
(c) If Φ is Π1,  then if |=Φ(a1,…,am) then A|=Φ(a1,…,am) 
Proof: Almost immediate from Lemma of §2.2 and definitions of truth. 
 The axioms of extensionality and foundation are essentially Π1 formulas: 
  ∀x∀y(∀z∈x(z∈y)∧∀z∈y(z∈x)→x=y) ∀x(∃y∈x(y=y)→∃y∈x~∃z∈x(z∈y)) 
Hence they come out true or hold in any transitive set by Proposition (c). 
 The axiom of pairing is essentially a Π2 formula: 
 ∀x∀y∃z(z={x,y}) 
where z={x,y} occurs in the Examples in §2.1.  Hence A|=pairing iff for all a,b∈A there 
exists c∈A such that A|=c={a,b}.  By Proposition (a), A|=pairing iff for all a,b∈A there exists 
c∈A such that c={a,b}; in other words, iff whenever a,b∈A, then {a,b}∈A; in yet other 
words, iff A is closed under the pairing operation {,}. 
   Similarly for union, infinity, and choice: 
∀x∃y(y=∪x) ∃x(x=ω) ∀x(x is a partition → ∃y (y is a selector for x)) 
(though the conditions x is a partition and y is a selector for x were not included in the 
Examples in §2.1).  One has A|=union iff A is closed under ∪, A|=infinity iff ω∈A, and 
A|=choice iff for every partition a∈A there is a selector b∈A. 
 The axiom of power is essentially a Π3 formula: 
 ∀y∃x(∀z∈x(z⊆y)∧∀z(z⊆y→z∈x)) 
A|=power iff for every b∈A there is an a∈A such that every c that is an element of a is a 
subset of b and every c∈A that is a subset of b is an element of a.  In other words, setting 
℘A(b) = ℘(b)∩A = {c∈A|c⊆b}, one has A|=power iff A is closed under ℘A.  This is a 
necessary and sufficient condition. A more than sufficient condition is that A be closed 
under ℘.   
 As for separation, A|=separation iff for every formula Φ(u,w1,…,wm) and every a∈A 
and p1,…,pm∈A one has {b∈a|A|=Φ(b,p1,…,pm)} ∈ A.  A|=Φ((b,p1,…,pm) is often written 
ΦA(b,p1,…,pm), and the parameters p1,…,pm are often not explicitly written.  In this 
somewhat abbreviated notation, A|=separation iff for every Φ and a∈A, {b∈a|ΦA(b)}∈A.  
This is a necessary and sufficient condition.  A more than sufficient condition is that A if a∈A 
and a'⊆a, then a'∈A.  
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 As for replacement, A|=replacement iff for every formula Ψ(u,v,w1,…,wm) and 
p1,…,pm∈A, if for every a∈A there exists a unique b=ψA(a)∈A with A|=Ψ(a,b,p1,…,pm), 
then for every c∈A, one has {ψA(a)|a∈c}∈A. This is a necessary and sufficient condition.  A 
more than sufficient condition is that whenever c∈A, ||c|| = ||d||, and d⊆A, then d∈A. 
 
AXIOM NECESSARY & SUFFICIENT 

[MORE THAN SUFFICIENT] 
EXTENSIONALITY automatic 
FOUNDATION automatic 
PAIRING A closed under {,} 
UNION A closed under ∪ 
INFINITY ω∈Α 
CHOICE for every partition a∈A  

there is a selector b∈A 
POWER A closed under ℘A 

[A closed under ℘] 
SEPARATION for every a∈A, {b∈a|ΦA(b)}∈A 

[a'∈A if a'⊆a∈A] 
REPLACEMENT for every c∈A, {ψA(a)|a∈c}∈A 

[d∈A if d⊆A, ||d||=||c||  for some 
c∈A] 

 
 1.4 Reflection 
 By transfinite recursion define: 
 V(0)=∅ V(β+1)=℘(V(β))  V(α)=∪{V(β)|β<α} at limits 
 Lemma A: 
(i) if α'<α, then V(α')⊆V(α) 
(ii) V(α) is transitive 
(iii) for every x there is an α with x∈V(α): 
 the least β such that x∈V(β+1) is called the rank ρ(x) of x 
(iv) V(α)={x|ρ(x)<α} 
(v) ρ(x)=sup{ρ(y)|y∈x}+1 
(vi) if y∈x then ρ(y)<ρ(x) 
(vii) ρ(α)=α 
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Proof: Let (o) be the proposition V(α) = ∪{V(β+1)|β<α}.  Note that if (o) holds for all 
α≤γ, then (i) holds for all α<γ, since then if α'<α one has ∪{V(β+1)|β<α'}⊆∪{V(β+1)|β<α}.  
Note that if (o) and (i) hold for all α<γ, then (ii) holds for all α<γ, since then if y∈x∈V(α), 
one has x∈V(β+1)=℘(V(β)) for some β<α by (o), whence for that β<α one has 
y∈x⊆V(β)⊆V(α) by (i).  To prove (i),(ii) it thus suffices to show that if (o),(i),(ii) hold for all 
α<γ, then (o) holds for γ.  There are two cases, γ and limit and γ a successor, and both are left 
as exercises, as are the proofs of (iii), which uses foundation, and (vii), which uses induction.  
(iv) is immediate from (o) and the definition of rank. Taking (v) and (vi) in reverse order, for 
(vi), note that if y∈x∈V(α+1) = ℘(V(α)), then y∈x⊆V(α) = ∪{V(β+1)|β<α} by (o), and so 
y∈V(β+1) for some β<α.  For (v) let σ = sup{ρ(y)+1|y∈x}.  The inequality σ≤ρ(x) is 
immediate from (vi). For the opposite inequality, for any y∈x, one has y∈V(ρ(y)+1)⊆V(σ) 
by (i) and the definition of rank, so x⊆V(σ) and x∈℘(V(σ))=V(σ+1) so that ρ(x)≤σ.  
 Lemma B: Lemma C:  

if α be a limit ordinal: 
(a) ρ({a,b})≤max(ρ(a),ρ(b))+1 V(α) is closed under {,} 
(b) ρ(∪a)≤ρ(a) V(α) is closed under ∪ 
(c) ρ(ω)≤ω+1 if α>ω, then ω∈V(α) 
(d) if b is a selector for the partition a, 

then ρ(b)≤ρ(a) 
for any partition a∈V(α)  
there exists a selector b∈V(α) 

(e) ρ(℘(a))≤ρ(a)+1 V(α) is closed under ℘ 
(f) if b⊆a then ρ(b)≤ρ(a) if a∈V(α) and a'⊆a then a'∈V(α) 
Proof: For B, (a) and (b) follow almost immediately from Lemma A(v); (c) from 
Lemma A(vii); (d) from Lemma A(v) again and the fact that if b is a selector for the partition 
a, then b⊆∪a; (e),(f) from Lemma A(v) again.  The clauses of C follow from the 
corresponding clauses of B (using Lemma A(iv)). 
 Theorem: Let α be a limit ordinal >ω.  Then V(α) is a model of all the axioms of 
ZFC other than replacement. 
Proof: Immediate using the criteria of §2.3 and Lemma C. 
 Reflection Principle:  For any n the following is provable in ZFC:  For every β there 
exists a limit ordinal α>β such that all formulasn are absoluten for V(α). 
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Proof: The following intuitive argument becomes formalizable in ZFC if subscripts n 
are added:  For any existential formula Φ(u1,…,um) = ∃vΨ(u1,…,um,v), let fΦ(a1,…,am) = the 
least α such that (i) ρ(a1),…,ρ(am)<α and (ii) if there exists any b at all such that 
Ψ(a1,…,am,b) is true, then there exists such a b with ρ(b)<α.  Next, define F(β) = 
sup{fΦ(a1,…,am)|a1,…,am∈V(β), Φ an existential formula}. Note that if γ<β, then (since 
V(γ)⊆V(β)) one has F(γ)≤F(β).  Also, define G0(β)=β, Gn+1(β)=F(Gn(β)+1), 
Gω(β)=sup{Gn(β)|n∈ω}.  Note that Gω(β) is a limit ordinal α>β, and that if γ<α, then 
F(γ)≤α (since then γ<Gn(β) for some n, and then F(γ)≤F(Gn(β))=Gn+1(β)<α). Now it can be 
proved by induction on the length of the formula that any  formula Φ is absolute for V(α).  
The only difficult case is the induction step for quantifiers, and the cases of ∀ and ∃ being 
similar, only the latter will be treated here.  So suppose Φ(u1,…,um) = ∃vΨ(u1,…,um,v) and 
suppose as induction hypothesis that Ψ is absolute for V(α).  Let a1,…,am∈V(α). It suffices 
to show that if there exists any b at all such that Ψ(a1,…,am,b) is true, then there exists such a 
b∈V(α).  But this is so since then a1,…,am∈V(γ)={x|ρ(x)<γ} for some γ<α, and if there exists 
any such b there exists one with b∈{x|ρ(x)<F(γ)}=V(F(γ))⊆V(α). 
 Corollary:  (It is provable in ZFC that:) For any finitely many replacement axioms, 
there exists a model of all the axioms of ZFC other than replacement and of those finitely 
many replacement axioms. 
 Proof: Immediate from the Theorem and the reflection principle applied to an n 
large enough that all the replacement axioms in question are (logically equivalent to) 
formulasn. 
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 1.4* Transitivization 
 Proposition: For every x there exists a (necessarily unique) x† such that  
(i) t is transitive, (ii) x∈t, and (iii) if u is transitive and x∈u, then u⊆t. 
Proof: Using foundation, it suffices to show that if y† with properties (i)-(iii) exists for 
every y∈x, then letting x† = ∪{y†|y∈x}∪{x} it has properties (i)-(iii).  For (i), if v∈u∈x†, 
then either u=x in which case v∈x and v∈v† ⊆ ∪{y†|y∈x} ⊆ x†, or else u∈w† for some w∈x 
in which case by (i) for w† one has v∈w† ⊆ ∪{y†|y∈x} ⊆ x†.  (ii) is immediate.  For (iii) let u 
be transitive with x∈u and let v∈x† to show v∈u.  Well either v=x∈u or else v∈w† for some 
w∈x.  In the latter case, note that since w∈x∈u by transitivity w∈u, and by (iii) for w† one 
has v∈w†⊆u.   
 Corollary: x† = ∪{y†|y∈x}∪{x} 
 The hereditary cardinality of x is σ(x) = ||x†||.  For κ and infinite cardinal, H(κ) = 
{x|σ(x)<κ}.  H(ℵ0) and H(ℵ1) are also called HF (hereditarily finite sets) and HC 
(hereditarily countable sets). 
 
 Lemma A: Lemma B: Lemma C:  

let κ be an infinite 
cardinal: 

(a) ({a,b})†⊆ 
{{a,b}}∪a†∪b† 

σ({a,b})≤ 
max(σ(a),σ(b))+1 

H(κ) is closed under {,} 

(b) (∪a)†⊆{∪a}∪a† σ(∪a)≤σ(a)+1 H(κ) is closed under ∪ 
(c) α†⊆α+1 σ(ω)≤ω if κ uncountable: 

ω∈H(κ) 
(d)  if b selector partition a,  

then σ(b)≤σ(a)+2 
for any partition 
a∈H(κ), exists selector 
b∈H(κ) 

(e) (℘(a))†⊆ 
a†∪℘(a)∪{℘(a)} 

σ(℘(a))≤2σ(a)+σ(a)+1 if κ strong limit: 
 H(κ) is closed under ℘ 

(f) if b⊆a then 
b†⊆{b}∪a† 

if b⊆a then 
σ(b)≤σ(a)+1 

if a'⊆a∈H(κ),  
then a'∈H(κ) 

(g)  σ(a)=(Σ{σ(b)|b∈a})+1 if κ regular: 
if d⊆H(κ), ||d||=||c||, 
c∈H(κ), then d∈H(κ) 

Proof: For A, in each case, it is easily shown that the set on the right hand side is 
transitive. For B, (a),(b),(c),(e),(f) follow from the corresponding clauses of Lemma A; (d) 
follows from (b),(f) and the fact that if b is a selector for the partition a, then b⊆∪a; (g) 
follows from the Corollary. For C, each clause follows from the corresponding clause of 
Lemma B. 
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 Theorem: 
If κ is: then H(κ) is a model of all of ZFC except 

(perhaps): 
ℵ0 infinity 
uncountable power, replacement 
uncountable,  
strong limit 

replacement 

uncountable, regular power 
inaccessible [no exceptions] 
Proof: Immediate from Lemma C and the criteria of §2.3. 
 Corollary: The existence of an inaccessible cardinal cannot be proved in ZFC (if ZFC 
is consistent).  
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2 Choice 
 2.1 Consistency 
 The method of “inner models”, and a particular inner model, the “constructible 
universe” were introduced by Kurt Gödel to prove the consistency of CH relative to 
ZFC=ZF+AC and of AC relative to ZF.  (Here consistency of a hypothesis Φ relative to a 
theory Γ means:  if Γ is consistent, then Γ+Φ is consistent.)  A simpler inner model, the 
“hereditarily ordinal definable universe” suffices for the latter proof, which will be outlined 
here. 
 The results in intermediate level mathematical logic are not depend on AC, and the 
results in a basic course in set theory that are dependant on AC are identified as so dependant 
and come late in the course, and no such results have been used here.  The only use here of 
AC has been in showing that AC is true in a model V(α) or H(κ):  After proving without AC 
that if a partition is an element of such a model, then any selector for it is an element of that 
model, the assumption that every parition has a selector is used to conclude that every 
partition in the model has a selector in the model.  No use of AC will be made in the present 
chapter. 
 The intuitive notion of ordinal definable (OD) is:  (i) a is OD if there exist a formula 
Φ(x,y) of LST and an ordinal β such that Φ(a,β) is true and Φ(b,β) is not true for any b≠a.  
The official definition of ordinal definable (OD) is:  (ii) a is OD if there exist a formula 
Φ(x,y) of LST, an ordinal β, and an ordinal α>β such that Φ(a,β) is true in V(α) and Φ(b,β) is 
not true in V(α) for any b≠a.  In that case a is said to be OD by Φ from β at α, and to be OD 
through δ where δ is the code [[α,β],#Φ].  Notion (i) is not definable in ZF, since truth is not; 
but notion (ii) is definable in ZF, since truth-in-a-model is.  However, intuitively the two 
definitions are equivalent:  If (i) holds, then (ii) holds for any α>β such that Φ is absolute for 
V(α), and such exist by the Reflection Principle.  If (ii) holds, then a is OD in the sense of 
notion (i) from the code δ by the formula expressing that x is OD in the sense of notion (ii) 
through y.   
 Metalemma.  For every n the following is a theorem of ZF:  If a1,…,an are OD and b is 
definablen from parameters a1,…,an, the b is OD. 
Proof: Let b be definable from a1,…,an by Ψ, and let a1,…,an be OD through γ1,…,γn 
respectively.  Let Φ express that there exist z1,…,zn and w1,…,wn such that Ψ(x,z1,…,zn) and 
y is the code [w1,…,wn] and z1 is OD through w1 and … and zn is OD through wn.  Let β be 
the code [γ1,…,γn] and let α>β be such that Φ is absolute for V(α).  Then a is OD by Φ from 
β at α. 
 Also define: a is hereditarily ordinal definable (HOD) if b is OD for every b∈a†.  For 
any formula Φ, let ΦHOD be the result of replacing each quantifier ∀x or ∃x in Φ by 
∀x(HOD(x)→…) and ∃x(HOD(x)∧…). 
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 Lemma A Lemma B Lemma C:  
the following are provable in ZF for all formulas Φ,Ψ,Θ: 
(a) if OD(a) and OD(b)  

then OD({a,b} 
if HOD(a) and HOD(b) 
then HOD({a,b}) 

(pairing axiom)HOD 

(b) if OD(a) then OD(∪a) if HOD(a) then HOD(∪a) (union axiom)HOD 
(c) OD(ω) HOD(ω) (infinity axiom)HOD 
(d) if OD(a) then 

OD({b∈℘(a)| Θ(b)}) 
if HOD(a) then 
HOD({b∈℘(a)| Θ(b)}) 

(power axiom)HOD 

(e) if OD(a) then 
OD({b∈a|Ψ(b)}) 

if HOD(a) then 
HOD(a'={b∈a|Ψ(b)}) 

(Φ-separation  
axiomΦ)HOD 

(f) if OD(c) then 
OD({ψΘ(a)|a∈c}) 

if HOD(c) then 
HOD({ψΘ(a)|a∈c}) 

(Φ-replacement 
axiomΦ)HOD 

Proof: A is immediate from the Metalemma.  B(a) follows from B(b) and the 
observation that ({a,b})†={{a,b}}∪a†∪b†; and similarly for the other clauses of B.  Though 
the HOD sets do not form a set, still the criteria of §2.3 apply, and yield C: for C(d) take Θ(x) 
in B(d)to be HOD(x); for C(e) and C(f), given Φ take Ψ in B(e) and B(f) to be ΦHOD. 
 Lemma D: The following is provable in ZF (without AC):  ACHOD 
Proof: If OD(a) let δa be the least ordinal δ such that a is OD through δ.  Define a<ODb 
to mean OD(a) and OD(b) and δa<δb.  Let a be a partition and for c,d∈∪a write c≡ad to mean 
that c,d are elements of the same element of a.  If HOD(a), then OD(c) for every c∈∪a, and 
then b={c∈∪a|δc<δd for any d≡c, d≠c} is a selector for a, while also HOD(b).   
 Metatheorem: If AC is consistent relative to ZF. 
  
   
 2.2 Independence 
 The method of “forcing” was introduced by Paul to prove the independence of CH 
relative to ZFC=ZF+AC and of AC relative to ZF.  (Here independence of a hypothesis Φ 
relative to a theory Γ means:  if Γ is consistent, then Γ+~Φ is consistent.)  The latter proof 
also used the method of “permutation models”, essentially due to Frankel, who introduced it 
for the simpler proof of the independence of AC relative to ZFU, a modification of ZF 
allowing individuals (in German, Urelemente).  This last proof will be outlined here. 
 ZFU is like ZF with the following changes:  There is an extra one-place relation-
symbol, either U(x) expressing that x is an individual or V(x) expressing that x is a set (either 
one of these can be taken as primitive, and the other defined as its negation).  There are two 
extra axioms, one asserting that only sets and not individuals have elements (if x∈y then 
V(y)), the other asserting that there exists a set of all individuals.  The extensionality axiom is 
formulated as ∀x∀y(V(x)∧V(y)∧∀z(z∈x↔z∈y)→x=y).  The axiom of infinity may be 
replaced by an axiom asserting that the set of all individuals is infinite.   
 In place of the V(α) hierarchy one defines: 
U(0)={i|U(i)} U(β+1)=℘(U(β))  U(α)=∪{U(β)|β<α} at limits 
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A permuation of a set is a bijection from the set to itself.  Given a permutation π of the set 
U(0) of individuals there is a unique extension of π to a permutation also denoted π of the 
universe of all individuals and sets, satisfying (*)  π(x)={π(y)|y∈x}.  (It is easily proved by 
transfinite induction that for each α there is a unique extension of π to a permutation πα of 
U(α) satisfying (*).)  Individual or set a is fixed by permutation π if π(a)=a.  Set A is 
stabilized by I⊆U(0) if every permutation that fixes the elements of I also fixes A.  A is 
finitely stabilized (FS) is some finite I⊆U(0) stabilizes A.  A is hereditarily finitely 
stablized (HFS) if every B∈A† is finitely stabilized. 
 Metalemma X:  For every Φ the following is a theorem of ZF:  
∀a1…∀an(Φ(a1,…,an)↔Φ(π(a1),…,π(an))). 
 Metalemma Y: For every n the following is a theorem of ZF:  If a1,…,an are FS and 
b is definablen from parameters a1,…,an, the b is FS. 
Proof: For X, proceed by induction on the length of Φ, (*) being the case of the simplest 
formula x∈y.  For Y, let b be definable from a1,…,an by Ψ, and let a1,…,an be stablized by 
I1,…,In respectively.  Let Φ(z,y1,…,yn) express that there exists x such that Ψ(x,y1,…,yn) and 
z∈x, so that b={c|Φ(c,a1,…,an) is true}.  Let J=I1∪…∪In, so that any π that fixes J fixes 
a1,…,an.  For such π by (*) one has π(b)={π(c)|Φ(c,a1,…,an) is true}, by X one has 
Φ(c,a1,…,an) is true iff Φ(π(c),a1,…,an) is true.  It follows π(b)={π(c)|Φ(π(c),a1,…,an)}=b.  
 Lemma A Lemma B Lemma C:  
the following are provable in ZF for all formulas Φ,Ψ,Θ: 
(a) if FS(a) and FS(b)  

then FS({a,b} 
if HFS(a) and HFS(b) 
then HFS({a,b}) 

(pairing axiom)HFS 

(b) if FS(a) then FS(∪a) if HFS(a) then HFS(∪a) (union axiom)HFS 
(c) FS(ω) HFS(ω) (infinity axiom)HFS 
(d) if FS(a) then 

FS({b∈℘(a)| Θ(b)}) 
if HFS(a) then 
HFS({b∈℘(a)| Θ(b)}) 

(power axiom)HFS 

(e) if FS(a) and FS(b) for 
every b∈a  then 
FS({b∈a|Ψ(b)}) 

if HFS(a) then 
HFS(a'={b∈a|Ψ(b)}) 

(Φ-separation  
axiomΦ)HFS 

(f) if FS(c) and FS(a) and 
FS(ψ(a)) for every a∈c, 
then FS({ψ(a)|a∈c}) 

if HFS(c) and HFS(ψ(a)) 
for every a∈c, then 
HFS({ψ(a)|a∈c}) 

(Φ-replacement 
axiomΦ)HFS 

 Proof: Like the corresponding three lemmas in §3.1.  
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 Lemma D: The following is provable in ZF (without AC):  (~AC)HFS 
Proof: One needs to use an alternate criterion for AC, using its equivalent, the well-
ordering principle WO.  Using this it suffices to show that if R is a well-ordering of U(0), then 
~FS(R), using the hypothesis that U(0) is infinite.  Indeed, suppose I⊆U(0) is finite, and let 
i,j∈U(0)-I with iRj and let π(i)=j, π(j)=i, π(k)=k for all k∈U(0)-{i,j}.  Apply metalemma X to 
the formula expressing that (x,y)∈z, to conclude jπ(R)i, whence ~iπ(R)j and π(R)≠R and I 
does not stabilize R. 
   Metatheorem: If AC is independent relative to ZFU. 
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 Problems 
 
A.   Let X be a nonempty set, A a nonempty set of subsets of X.  Then A is called a field of 
sets if we have: (i) (X-a)∈A whenever a∈A; and (ii) (a∪b)∈A whenever a,b∈A.  Let B be a 
nonempty set of subsets of X.  Then there exists a field A with B⊆A and with A⊆A' for any 
other field A' with B⊆A'. This A is called the field generated by B.   
 Show that the existence of the field generated by a nonempty set of subsets of a given 
set can be proved without using the power axiom (but using replacement). 
 
B. Show that the existence of the field generated by a nonempty set of subsets of a given 
set can be proved without using the replacement (but not powerset).  
 
C. Show that the following notion is expressible by a Δ0 formula: 
 u is a [total] order on x 
 
D. Show that the following notion is expressible by a Δ0 formula: 
 v=∈y [where ∈y is by definition {(p,q)|p,q∈y and p∈q}] 
 
E. Show that the following notion is expressible by a Σ1 formula: 
 [u is an order on x and v is an order on y and] u is isomorphic to v 
 
F. Show that the following notion is expressible by a Π1 formula: 
 w is a well-order on x 
 
G. Show that the notion of the preceding problem [or more precisely, a condition provably 
an equivalent to it] is also expressible by a Σ1 formula. 
 
H. Show that V(ω)=H(ℵ0). 
 
I. Show that H(ℵ1)⊆V(ω1). 
 
J. Show that V(ω1)≠H(ℵ1) 
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THE AXIOM OF DETERMINACY 
AN ALTERNATIVE TO THE AXIOM OF CHOICE 

3 Rudiments of Descriptive Set Theory 
 3.1 ZF + DC 
 We work throughout in Zermelo-Frankel (ZF) set theory with the Axiom of Dependent 
Choice (DC). Recall that this axiom implies the Axiom of Countable Choice (CC), which in 
turn implies that a union of countably many countable sets is countable, which in turn implies 
that the supremum of a countable set of countable ordinals is countable. When the full Axiom 
of Choice (AC) is used as an hypothesis, it will be noted explicitly.  
 3.2 Baire Space & Cantor Space 
 In real analysis one usually begins with the real numbers or an interval in the real 
numbers, but for many purposes it is almost equivalent, and much more convenient, to work 
with one or the other of two auxiliary spaces. Most results transfer almost automatically back 
and forth among these spaces, though details will not be gone into here. 
 The Baire space W consists of all infinite sequences of natural numbers, or in set-
theoretic terms, all functions from ω to ω. If x is such a function, we call the value x(n) the nth 
term of the sequence, and x|n, the restriction of x to n = {0, 1, 2, … , n-1} the initial segment 
of length n of the sequence. Working with the Baire space is strictly equivalent to working 
with the irrational numbers (to which infinite sequences of positive integers correspond by 
continued fraction representation, but there will be no need here to go into that). The Cantor 
space C consists of all infinite sequences of zeros and ones, or in set-theoretic terms, all 
functions from ω to 2. For any subset a of ω, the characteristic function of a is the function 
χa from ω to 2 with χa(n) = 1 if n ∈ a, and = 0 if n ∉ a. It is a point in the Cantor space. The 
following definitions are made for W, the definitions for its subspace C would be exactly 
parallel. 
 A basic set is a subset of W of the form Us = {x: x|n = s} where s is a finite sequence 
and n is its length. Note that the intersection of two basic sets Us and Ut is either equal to one 
of them (if one of s and t is an initial segment of the other) or empty (otherwise). An open set 
is a union of basic sets. Note that the complement of any basic set is an open set. (Why? 
Because the complement of Us is the union of all the Ut for t a finite sequence of length n 
other than s.) Note also that the intersection of any two open sets is open and the union of any 
number of open sets is open. (Why? For the intersection claim, by the distributive law an 
intersection of two unions of (many) basic sets is the union of (many) intersections of two 
basic sets. The union claim should be obvious.) Intuitively, if an infinite sequence x is going 
to get into an open set U, it will effectively have got in by some finite initial segment: There 
will be an n such that not only x but every sequence that agrees with x on its first n terms is in 
U. (Why? Because x belongs to one of the basic Us of which U is the union.) 
 A closed set is the complement of an open set (and vice versa). Note that any basic set 
is “clopen”, meaning both closed and open. To any closed set C there is associated a “tree” of 
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finite sequences T(C) = {y|n: y ∈ C and n ∈ ω}. Note that for any t in T(C), if n is the length 
of t and m > n, then there is an extension s of t having length m that is also in T(C). (Why? 
Well, t = y|n for some y in C, and we can take s = y|m.) Every element y of C determines a 
“branch” through T(C), consisting of y|0, y|1, y|2, y|3, and so on. Conversely, any branch 
through T(C) determines an element of y. (Why? Let y be the infinite sequence that is the 
union of the finite sequences in the branch. If it were in the complement of C rather than in C, 
since that complement is open there would be some finite n such that every element of Uy|n is 
in the complement of C rather than C. But in that case y|n wouldn’t be in the tree T(C) 
determined by C.) The interior C° of a closed set C is the open set that is the union of all the 
Us that are subsets of C (if there are any: the interior may be empty). The boundary of C is 
just the difference C - C°. 
 An Gδ set is an intersection of countably many open sets. Trivially every open set is a 
Gδ, but so is every closed set. (Why? Because the argument given just above in effect shows 
that a closed set C is the intersection of the sets Cn = ∪{Us: s ∈ T(C) and n is the length of 
s}.) An Fσ set is a union of countably many closed sets. The complement of a Gδ is an Fσ. 
(Why? Because the complement of an open set is a closed set, and the complement of an 
intersection of given sets is the union of their complements.) The reader can guess what is 
meant by an Fσδ or Gδσ set. 
 3.3 The Cantor-Bendixson Theorem 
 Let C be a closed set. A point y in C is said to be isolated in C if there is some basic Us 
such that C ∩ Us = {y}. Such a Us isolates y in C. Clearly C can have only countably many 
isolated points, if any (since there are only countably many Us available to isolate them). It 
may have none, as is the case for the clopen sets Us. A set is called perfect if it is closed and 
without isolated points. The result of removing the isolated points from a closed set C is 
called the set-derivative of C and denoted ∂C. It is still a closed set. (Why? Because its 
complement is the union of complement of C with all those Us that isolate points of C.) 
 In terms of the associated tree T(C), the isolation of y means that there is some n such 
that s = y|n has, for any m > n, only one extension of length m in T(C): “there is no branching 
above s.” A little thought shows that T(∂C) = {s ∈ T(C): there is branching above s in T(C)}, 
which we may call ∂(T(C)), by “abuse of language” using the same symbol ∂ for the 
derivative operation on sets and the operation on trees, which in words we may call 
“pruning”.  
 We define for every ordinal α the αth iterate of ∂ applied to C, by transfinite recursion 
as follows:  
 For α = 0,   ∂αC = C 
 For α = β + 1,  ∂αC = ∂(∂βC) 
 For α a limit, ∂αC = ∩β<α∂βC 
By transfinite induction, each ∂αC is closed and each C - ∂αC for countable α is countable. 
For every finite sequence s, if there is any countable ordinal β such that ∂βC is disjoint from 
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Us, let βs be the least such β; if there is no such β for s, let βs be 0. Let α be the supremum of 
the βs, which is still countable since the βs are and there are only countably many of them. 
Then for any s, since α > βs, if ∂αC is not disjoint from Us, then ∂α'C cannot be disjoint from 
Us for any α' > α. In other words, we reach a fixed point with C* = ∂αC, which we call the 
kernel of C. We already know C* is closed and C - C* is countable. In fact, C is either empty 
or perfect: Otherwise, the process of discarding isolated points would not have been finished 
at stage α. We have proved one of the very oldest results in set theory, going back to Cantor’s 
original work on trigonometric series: 
 Cantor-Bendixson Theorem: Every closed set is either countable or the union of a 
countable and a perfect set. 
 Note that though countable ordinals were used in the proof, they are not mentioned in 
the result. 
 Proposition. Any perfect set has the cardinality 2ℵ0 of continuum. 
 Proof. Let D be perfect. Then in the tree T(D) there is “branching above every point”. 
For any s in T(D) take the least m at which there are distinct  extensions of s in T(D) of length 
m, and let s* and s† be the extensions of this kind having the least and next-to-least last terms. 
Recursively define a mapping of the finite zero-one sequences into T(D) by mapping the 
empty sequence to the empty sequence, and if t has been mapped to s, and t* and t† are the 
results of adding a 0 and a 1, respectively, at the end of t, map them to s* and s†, respectively. 
Every infinite zero-one sequence determines a path through T(D) — for example, a sequence 
that begins 0, 1, 1, 0, … determines a path that begins Ø, Ø*, Ø*†, Ø*††, Ø*††* — and thus 
determines an element of D. Moreover, distinct infinite zero-one sequences determining 
distinct elements of D. So there are as many elements of D as there are infinite zero-one 
sequences. 
 We say a set has perfectly many elements if it has a perfect subset. By the proposition 
just proved, “perfectly many” implies “continuum many”. We now have some information 
concerning the continuum hypothesis (CH): 
 Corollary to Cantor-Bendixson: CH holds for closed sets: Any closed set has either 
countably many or (perfectly many and hence) continuum many points. 
 3.4 A Counterexample 
 It easily follows that CH holds for Fσ sets, including open sets. We cannot hope, 
however, to prove CH by showing that every subset of the Baire space has either countably or 
perfectly many elements. 
 Counterexample: Assuming AC, there is a set with continuum many but not perfectly 
many elements. 
 By AC, 2ℵ0 is one of the alephs, and we can well-order any set of that size in the order 
type of that aleph, so that each element has fewer than continuum many predecessors in the 
well-order. There are at most continuum many open sets (each by the union of some subset of 
the set of all basic sets, which is countable); hence there are at most continuum many closed 
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sets and a fortiori at most continuum many perfect sets. Well-order them in such a way that 
each has fewer than continuum many elements. 
 We proceed by transfinite recursion on ordinals α < 2ℵ0 to classify progressively more 
and more elements of W positively or negatively, as follows.  At stage 0, all elements are 
unclassified. Going from β to β+1, fewer than continuum many elements will have been 
classified so far. Consider the βth perfect set P in our well-ordering. Since it has continuum 
many elements, it has two that have not been classified. Classify one positively, the other 
negatively. At limits, we merely count as positively or negatively classified any element that 
has been so classified at an earlier stage.  
 In the end, the set Q of elements classified positively will have continuum many 
elements, since we added a new one at each stage, but will have no perfect subset, since we 
spoiled each perfect subset in turn by classifying one of its elements negatively. 
 3.5 Borel Sets 
 A sigma-field of subsets of a given set I is a family of subsets of I closed under taking 
complements and countable intersections and unions. For any nonempty I and any subset X of 
the power set of I, there is a least sigma-field of subsets of I containing X. 
 Why? Well, there is at least one sigma-field containing X, namely the full power set of 
I. The intersection of all sigma-fields containing X is easily verified to be a sigma-field 
containing X, and then will  necessarily be the smallest one. This is a “top down” proof. 
 There is also a “bottom up” proof. For any subset Y of the power set of I let Y* be the 
union of Y with the set of complements and countable intersections and countable unions of 
elements of Y. Define 
 For α = 0,   Xα = X 
 For α = β + 1,  Xα = Xβ* 

 For α a limit, Xα =  = ∪β<αXβ 
Then it is easily shown that for Ω = the smallest uncountable ordinal we have XΩ = XΩ* and 
it is the smallest sigma-field containing X. 
 For I = Baire space W and X = the set of all open and closed subsets of X, X1 consists of 
the Fσ and Gδ sets, X2 consists of the Gδσ and  Fσδ, and so on, and the smallest sigma-field is 
called the Borel sets. 
  CH is known to hold for Borel sets, and even for the larger class of sets called analytic 
sets, which are the images of Borel sets under continuous functions, a topic that will not be 
gone into here.  

4 Infinite Games of Perfect Information 
 4.1 The Axiom of Determinacy (AD) 
 Let X be any set with at least two elements. (We will mainly be interested in the case 
where X is countable, and especially the case where X = ω.) Let A be a subset of the set of 
infinite sequences of elements of X. We imagine an infinite game for two players as follows.  
 Player I  picks an element x0 of X.  
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 Player II responds by picking an element x1 of X. 
 Player I  responds by picking an element x2 of X. 
 Player II responds by picking an element x3 of X. 
 … 
Thus an infinite sequence x = (x0, x1, x2, x3, …) is generated. In the end — imagine each 
round of play happening twice as fast as the one before, so there is an end — Player I wins if 
x is in A, and Player II wins if x is not in A (is in the complement of A). 
 A strategy for Player I tells that player what to pick as x0, what to pick as x2 as a 
function of the opponent’s previous move x1, what to pick as x4 as a function of the 
opponent’s previous moves x1 and x3, and so on. The notion of strategy for Player II is 
defined similarly. Formally, a strategy for Player I would be a function from finite sequences 
of elements of X (with sequences of length n representing the first n moves of a hypothetical 
opponent) to elements of X (representing Player I’s next move). A strategy for Player II would 
be almost the same, a function from nonempty finite sequences of elements of X to elements 
of X. (Because Player I goes first and Player II second, a strategy for the former must specify 
what to do when the opponent has not yet made any moves, while a strategy for the latter 
need not.) 
 A winning strategy for a given player is a strategy such that, if that player follows it, 
that player will always win, no matter how the opponent plays. It cannot be the case that both 
players have winning strategies. (Else what would happen when each player followed that 
player’s supposed winning strategy?) The game is said to be determined and the set A 
determinate if there exists a winning strategy for one of the players. The Axiom of 
Determinacy (AD) asserts the determinateness of all games, or determinacy of all sets, in the 
case where X is countable. But let us first see what can be proved about the existence of 
winning strategies without assuming the axiom. 
 4.2 The Gale-Stewart Theorem 
 Let us stick to the case X = ω, though the proof to follow does generalize.  
 Gale-Stewart Theorem: Suppose A is an open or closed subset of W. Then the game is 
determinate. 
 Proof: Since the situation is almost completely symmetrical, we just treat the open 
case. Suppose A is open and I does not have a winning strategy, to show that II does have a 
winning strategy. Call a finite sequence s of odd length a position. It represents a possible 
situation early in the game, where II is to move next. If I has a winning strategy for the 
continuation of the game from position s, then call s a losing position for II.  
 Claim: If s is not a losing position for II, then  there is an i such at, if II plays i next, 
then no matter what j I plays next after that, the resulting position, which we write s^i^j, 
meaning “s followed by i followed by j”, will still not be a losing position for II. 
 Proof of Claim: Suppose that whatever i II plays, there is a ji such that if I plays, then I 
has a winning strategy Si for continuing the game from s^i^ji. Then, contrary to the 
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assumption that s is not a losing position, I already has a winning strategy S for continuing the 
game from s: Whatever i II plays, play ji in response, and thereafter follow Si. 
 Proof of Theorem modulo Claim: Let II follow the following strategy T: At any given s 
where I does not have a winning strategy for continuing the game, play an i such that 
whatever j I plays, I will still not have a winning strategy for continuing the game from s^i^j. 
Suppose that II plays according to this strategy, and the result is some x in W. It only remains 
to prove: 
 Claim: x is not in A. 
 Proof of Claim: If x is in A then there is some n, which may be taken to be even, such 
that setting s = x|n, we have that Us is a subset of A. But this means that I has a trivial strategy 
for winning the game continuing from s: Whatever I does, I has in effect already won. But 
II’s strategy insures that there is no finite stage s along the way to x at which I has a winning 
strategy for continuing. This contradiction completes the proof. 
 4.3 Ultrafilters & Games 
 Suppose there is a nonprincipal ultrafilter F on ω. Consider the following game: I and 
II alternately pick finitely many natural numbers not already picked. In the end, I wins if the 
set of all numbers eventually picked by I is in F. (This game could be reduced to the form of a 
game where players alternately pick single natural numbers using a coding of finite sets by 
single numbers.) 
 Proposition. Neither player has a winning strategy for the ultrafilter game. 
 Proof. Suppose I has a winning strategy S (the proof being essentially the same if we 
suppose II has the winning strategy). When I plays a0 as opening move according to S, II 
pretends that she is playing I and her opponent is playing II, and that she picked a0 and he 
then picked the empty set of numbers. II then plays what would be the response by S if that 
had happened, call it b0. The players then continue this way, with I playing the real game 
 a0, b0, a1, b1,… 
and II playing the virtual game 
 a0, Ø, b0, a1, b1,… 
both using S. In the end, since S is a winning strategy, I wins the real game, and the set A that 
is the union of all the an is in F. But II wins the virtual game, and the union of a0 with the set 
B that is the union of all the bn is also in F.  But then the intersection of these two sets must be 
in F. But that intersection is just the finite set a0, and no finite set belongs to a nonprincipal 
ultrafilter. 
 So we get an undetermined game if there exists an nonprincipal ultrafilter. But 
remember that the proof of the existence of such an ultrafilter used AC (in the guise of Zorn’s 
Lemma). 
 4.4  Martin & Friedman 
 Various game-theorists slowly and painfully extended the Gale-Stewart from open and 
closed first to Fσ and Gδ, then to Gδσ and Fσδ, then to Fσδσ and Gδσδ, after which there was 
no further progress. D. A. Martin then proved that assuming large cardinals — much larger 
ones than inaccessibles —one could prove determinacy for all analytic sets, a class that, as 
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already mentioned, properly includes the class of Borel sets. Later he proved, just in ZF+DC, 
determinacy for all Borel sets.  
 The method of proof involves trading an Fσ game on the set W of infinite sequences 
from the set of natural numbers, a set of cardinal 0ב = ℵ0, by an open and therefore 
determinate game on infinite sequences from a set of size 1ב. Similarly a Gδσ can be traded 
for an open and therefore determinate game on infinite sequences from a set of size 2ב. To get 
Borel determinacy one eventually has to consider sets of size up to בΩ. The proof of the 
existence of sets this large definitely requires the use of Replacement, whereas most of 
“down-to-earth” mathematics can be done just in Zermelo set theory, without Replacement.  
 Even before Martin found this result, Harvey Friedman had proved that one could not 
prove analytic determinacy without using large cardinals, nor prove Borel determinacy 
without using Replacement. 
 4.5  AD & CH 
 There are various well known ways to code finite sequences of natural numbers by 
natural numbers. Given a subset A of the set C of all infinite 0,1-sequences, consider the 
following game:  
 
 
 I picks a natural number,  
  and if it is not a code for a finite 0,1-sequence s0 at once forfeits 
 II in response picks a natural number i0 
  and if it is ≥2 at once forfeits 
 I picks a natural number,  
  and if it is not a code for a finite 0,1-sequence s1 at once forfeits 
 II in response picks a natural number i1 
  and if it is ≥2 at once forfeits 
 … 
  
 If neither player forfeits, in the end I wins iff the infinite 0,1-sequence 
  s0^i0^s1^i1^… 
is in A. Of course, AD implies that either I or II has a winning strategy for this game. 
  
 Proposition: If I has a winning strategy, the set A has a perfect subset. 
 Proof: The point is that if S is a winning strategy for I, we have a tree of possible 
positions arrived at in playing the game with I following strategy S, and it is the kind of tree 
associated with a perfect set P: A tree such that “there is branching above any point”, because 
every time it is II’s turn, II can choose either a 0 or a 1. Since every one of the (continuum 
many) branches through the tree represents a play of the game in which I follows strategy S, 
and since S is a winning strategy for I, each branch of the tree, which is to say, each element 
of the perfect set P, is in A, and A has “perfectly many” elements.  
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 Proposition: If II has a winning strategy, the set A is countable. 
 Proof: Let S be a winning strategy for II and x and element of A. It is not possible to 
break the whole of x up into segments  
 x = s0^i0^s1^i1^…  
in such a way that we would have the following (*) 
 i0 would be II’s response by S to I’s playing s0 
 i1 would be II’s response by S to I’s playing s0, s1 
 … 
(Why not? Well, then x would represent a play of the game in which II follows strategy S, and 
since S is supposed to be a winning strategy for II, the result of such play would never be an 
element of A.) It follows that there is some k so that we have a representation  
 x = s0^i0^s1^i1^… ^sk^ik^y 
where y is the rest of x, and (*) holds out to k, but thereafter for any n, II’s response by 
strategy S to I’s playing s0, s1, … , sk, (y0, y1, … , yn-1) would not be yn, but rather the 
opposite, 1 - yn. But this means that the whole of x can be generated recursively using the 
strategy S and the finite data consisting of the sequence σ of plays s0, i0, s1, i1,… , sk, ik. 
Since each element x of A is thus generated from a finite data σ, and there are only countably 
many possibilities for σ, there can be only countably many elements of A. 
 Putting the two propositions together we have: 
 Theorem of Morton Davis: AD implies every uncountable set has a perfect subset. 
 4.6  AD, AC, CH, GCH, GAD 
 Since we saw in §3.4 that AC implies the opposite, it follows (apart from details about 
switching back and forth between Baire and Cantor space) that AC and AD are inconsistent 
with each other. We already knew this from §4.3, but now we have another proof. We could 
give yet another proof involving the a construction resembling that of §3.4, given a well-
ordering. (Well-order the strategies, and so on, and gradually classify elements of the space, at 
each stage classifying some new element positively, but frustrating some strategy.) Looking at 
such a proof we would see that AD implies there is no well-ordering of any set of size 
continuum, and even that no set of size continuum has any uncountable well-ordered subset. 
Adapting the material in §4.3, we could also give an ultrafilter proof of the existence of a set 
of size continuum with no perfect subset. 
 The theorem of Morton Davis can also be quoted as saying that AD implies CH. Note, 
however, that we must here understand CH to be the proposition that there is no cardinal 
number λ with ℵ0 < λ < 2ℵ0 and not as the proposition that 2ℵ0 = ℵ1. But if we ask, not 
what alephs can be mapped one-to-one into the Baire space, or the real numbers, or whatever, 
but rather what alephs one of these spaces can be mapped onto, the answer is that the least 
aleph that it cannot be mapped onto, its so-called Hartog’s number, is very large, and in fact a 
fixed point of the alephs. So looked at one way the continuum seems small, but looked at 
another way it seems large, in the world of AD. 
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 Though AD implies CH, it does not imply its generalization GCH. Without AD, GCH 
must be formulated as saying that for no cardinal κ is there any cardinal λ such that κ < λ < 
2κ. And it was shown by Sierpinski that GCH implies AC. Hartog’s theorem, that for every κ 
there is an ℵ that  κ cannot be mapped onto, is the first step in Sierpinski’s proof. 
 AD pertains to games involving infinite sequences of natural numbers, or elements of 
some other countable set. A stronger assertion, the generalized axiom of determinacy (GAD) 
would be that there exists a winning strategy for one or another player in games involving 
infinite sequences from any nonempty set. But GAD is inconsistent, since it not only includes 
AD as a special case, but also implies AC as another special case:  
 Just imagine, given a set X, a game in which player I picks a nonempty subset A of X 
and then player II picks an element a of X, and II wins if a ∈ A. Clearly I cannot have a 
winning strategy, since whatever set I plays, II can pick an element of it. However, a strategy 
for II would be a function telling II in advance what element to pick as a function of what set I 
picks. And that is just what a choice function for nonempty subsets of X amounts to, se we 
have AC. 

5 Category (& Measure) 
 5.1 Baire Category 
 The theory of Baire category (something much older than and  entirely unrelated to the 
category theory of Mac Lane) is a basic tool in parts of real analysis. Let us go back to the 
Baire space, though most of what we will have to say will apply mutatis mutandis to Cantor 
space. A subset A is called (globally) dense (in W) if for every basic Us, the intersection A ∩ 

Us is nonempty. The set A is called (locally) dense in Us if for every basic Ut ⊆ Us, the 
intersection A ∩ Ut is nonempty. By contrast, the set A is called nowhere dense or rare if it is 
not dense in any Us: in other words, for any Us there is a Ut ⊆ Us such that A ∩ Ut = Ø. Note 
that any subset of a rare set is rare. 
 Example: For any k the set Lack(k) of infinite sequences in which k does not appear as 
a term, is rare. (Why ? Because for any s, taking t = s^k we get a Ut ⊆ Us disjoint from 
Lack(k).) 
 Example: For any closed set C, the boundary C - C° is rare. (Why? For any Us, it 
cannot be contained in the boundary, else it would be contained in C and in the interior C°. 
Since both the complement and the interior of C are open, any point in Us that lies in either 
the complement or the interior will lie in some Ut ⊆ Us that is wholly contained in either the 
complement or the interior, and hence disjoint from the boundary.) 
 A set is first category or meager if it is a union of countably many rare sets. Note that 
any subset of a meager set is meager, and any union of countably many meager sets is 
meager. An example of meager set would be the set of all x such that the not every natural 
number appears as a term of x. (This is just the union of the various Lack(k).)  
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 A set is second category or nonmeager if it is not meager, and is residual or 
comeager if its complement is meager, and residual in Us or comeager in Us if its relative 
complement in Us is meager.  
 5.2 The Baire Category Theorem & Baire Property 
 Intuitively, being meager is to be thought of as a way of being “small”. This way of 
thinking is justified by the next theorem, a famous result often used in existence proofs in 
mathematical analysis. 
 Baire Category Theorem: The whole space W is nonmeager. 
 Proof. Let M be a meager set, the union of rare sets R0, R1, R2, …, to show that there is 
an element of W not belonging to any Ri and therefore not belonging to M. Since R0 is rare, 
starting from W = Uempty_sequence there is a t such that Ut is disjoint from R0. Pick such a t 
(for definiteness, the first in some fixed well-ordering of the finite sequences) and call it s0. 
Then since R1 is rare, starting from Us for s = s0, there is a t extending s0 such that Ut is 
disjoint from R1. Pick such a t and write it as t = s0^s1. Continue in this way, next picking s2 
so that Ut for t = s0^s1^s2 will avoid R2, and so on. Stringing together all the si gives an 
infinite sequence x = s0^s1^s2^… avoiding all the Rk and hence avoiding M, as required. 
 A set A has the Baire property or is almost open, if there is an open set O such that 
the symmetric difference A∆O = (A - O) ∪ (O- A) is meager. Intuitively, being almost open is 
to be thought of as a way of being “regular” or well-behaved. The following characterization 
may clarify the notion. 
 Proposition:  
 (a) The complement of an almost open set is almost open. 
 (b) The union of countably many almost open sets is almost open. 
 (c) The intersection of countably many almost open sets is almost open. 
 (d) Every Borel set is almost open. 
 Proof: For (a), if O is open and M = A∆O is meager, let C be the complement of O and 
N = C - C° the boundary, which is rare. Then M' = M ∪ N is meager, and (complement A)∆C° 
⊆ M'. 
 For (b), if for each Ai we have open Oi and meager Mi with Ai∆Oi ⊆ Mi, then the union 
O of the Oi is open, the union M of the Mi is meager, and for the union A of the Ai we have 
A∆O ⊆ M. 
 (c) follows from (a) and (b) and the DeMorgan laws. 
 (d) follows from (a)-(c) and the definition of Borel sets. 
It is known that analytic sets are also almost open. 
 Proposition: A set A is almost open if for every basic Us there is a basic Ut ⊆ Us such 
that A either is meager in Ut or is comeager in Ut.  
 Proof. Here “A is meager in Ut” just means “Ut ∩ A is meager”. 
 First suppose the condition of the theorem is met. Let U+ be the open set that is the 
union of the Ut in which A is comeager, and U- the open set that is the union of the Ut in 



 26 

which A is meager, and let U be the union of U+ and U-. By the condition, for every basic Us 
there is a basic Ut ⊆ Us such that Ut ⊆ U, hence the complement N of U is rare. Let M be the 
union of N with the meager sets Ut - A for Ut ⊆ U+ and the meager sets Ut ∩ A for Ut ⊆ U-. It 
can be checked that A∆U+⊆ M. 
 Conversely, suppose A is almost open, with open O and meager M such that A∆O = M. 
Let C be the complement of O and N = C - C° the boundary of C, which we proved earlier to 
be a rare set, making M' = M ∪ N meager. As we saw in that proof, any Us either has a Ut ⊆ 
Us contained in O or has a Ut ⊆ Us contained in C° and hence disjoint from O. In the former 
case, Ut - A is a subset of the meager set M', and A is comeager in Ut, while in the latter case A 
∩ Ut is a subset of the meager set M', and A is meager in Ut. So the condition of the 
proposition is met. 
 5.3 The Banach-Mazur Game 
 Given a subset A of the Cantor space C, consider the following game G(A): I and II 
alternately pick finite 0,1-sequences: 
I s0  s1  s2  … 
II  t0  t1  t2  … 
These are strung together to get a point x in A 
 x = s0^t0^s1^t1^… 
and I wins if x ∈ A. For any finite sequence r there is a related game Gr(A), where we start 
with r as given and end with x = r^s0^t0^s1^t1^…, an element of Ur. 
 Proposition: If II has a winning strategy in G(A), then A is meager.  
 Proof. Let S be a winning strategy for II. The idea is to use S to develop a certain tree of 
possible plays (s0, t0, s1, t1, …) of the game. The sequences of x that result from branches 
through the tree will, since S is a winning strategy for II, all belong to the complement of A. 
We need to arrange the tree so that all but a meager set of elements of C correspond to 
branches through it — to be done by arranging the tree so that all but a rare set of elements of 
C correspond to branches up through the nth level of the tree for each n. The rather messy 
details will be given in class, time permitting (and perhaps included in a future edition of 
these notes). 
 Analogously, if II has a winning strategy in Gr(A), then A is meager in Ur. If I has a 
winning strategy for G(A) then there is an s (namely, the sequence the strategy would tell I to 
play on the first move), such that I would have a winning strategy if playing the role of II in 
the game Gs(complement of A) — for that is what the rest of the game G(A) after I’s first 
move looks like. But that means that the complement of A is meager in Gs, and A is comeager 
in Us. Similarly, I’s having a winning strategy in Gr(A) implies A being comeager in Ur^s for 
some s, which is to say, in some Ut ⊆ Us. Comparing with the second proposition of the 
previous section we see that we have the following: 
 Proposition: If all the games Gr(A) are determinate, then A is almost open. 
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 Theorem: AD implies that all sets are almost open. 
 5.4 Projective & Hyperprojective Determinacy 
 There is neither space nor time to develop the basics of measure theory here, but it may 
just be said that there is a close analogy between Lebesgue measure and Baire category, 
explored in some depth in the little book Measure & Category by John Oxtoby (Springer, 
1971). It includes, in particular, in chapter 6, details about the Banach-Mazur game (in a 
slightly different context from the one considered here). Analogous to the theorem of the last 
section we have the following: 
 Theorem: AD implies that all sets are Lebesgue measurable. 
 Applying this to the real line, or plane, or 3-space, it follows that there can be no 
pathologies of the kind exemplified by the Banach-Tarski paradox. Of course, asking us to 
give up AC may seem a high price to get this pleasant result. But a compromise is possible. 
 Work of Martin and a “cabal” of colleagues in SoCal has shown that large cardinals 
imply the determinacy of a very extensive class of point-sets called the hyperprojective sets. 
Like the Borel and analytic sets, these contain all open sets and are closed under countable 
intersection and union; like the Borel and unlike the analytic sets, they are closed under 
complementation; like the analytic and unlike the Borel sets, they are closed under taking 
images by continuous functions.  
 This result of hyperprojective determinacy (HPD) in turn gives us the almost 
openness and measurability of all hyperprojective sets. One also gets a kind of choice-like 
result. Let R be a subset of W⊗W (we could substitute another space of interest for W here). 
A function f from W to W is said to uniformize R if 
 (i) dom f = dom R 
 (ii) for all x in the domain, (x, f(x)) is in R 
Then another implication of HPD is that every hyperprojective relation can be uniformized by 
a hyperprojective function. More could be said about the significance of this result, but our 
survey must stop somewhere. 
 


