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Chapter 1 

 1.1 The converse assertion then follows from the first assertion by applying it to  f -1 

and its inverse  f -1-1. 

 

1.3  For (a) consider the identity function i(a) = a for all a in A. For (b) and (c) use the 

preceding two problems, as per the general hint above. 

 

1.5  Show both sets are denumerable. 

 

1.7  If we can fix for each i an enumeration of Ai 

 Ai = {ai1, ai2, ai3, … } 

Then we can enumerate A, which is the set of all aij for all i and j in the same way we 

enumerated pairs (i, j) in Example 1.2.  

However, when we assume that for each Ai there exists an enumeration of it, it follows 

that there exist many different such enumerations for each Ai; and when set theory is 

developed rigorously, in order to conclude that there is a way of fixing simultaneously for 

each i some one, specific enumeration out of all the many different enumerations that 

exist, we need a principle known as the axiom of choice. As this is not a textbook of set 

theory, we are not going to go into such subtleties. 
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Chapter 2 

2.1  Imitate the proof for the set of positive integers. 

 

2.3  You do not need to use trigonometry or give an analytical formula for the 

correspondence to do this problem; a simple geometric description of a correspondence 

will be enough. 

 

2.5  There is a correction to the statement of this problem. While this can be done 

using the preceding two problems, as per the general hint, for students who remember 

trigonometry, a correspondence can also be defined directly using the tangent function.  

 

2.7  Note that rational numbers whose denominator (when written in lowest terms) is a 

power of two have two binary representations, one ending in all 0’s and the other in all 

1’s from some point on (as in 1/2 = .1000000… = .0111111…), while in every other case 

the binary representation is unique and does not involve all 0’s or all 1’s from any point 

on.  

 

2.9  In addition to the immediately preceding problems, Problem 1.6 may be useful. 

 

2.11  Read carefully through the sequence of preceding problems. 

 

2.13  This is a philosophical rather than a mathematical question, and as such does not 

have a universally agreed answer, though there is a consensus that somehow defining a 

set in terms of the notion of definability itself is somehow to blame for the paradox. 
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Chapters 3  

3.1 One state will be required in (a), two in (b). 

 

3.3 Proceed as in Problem 3.1(b) but when reaching a blank in state 2 print a stroke 

and go into state 3. At this stage you will have a block of n strokes followed by a blank 

followed by a block of m + 1 + k strokes. In state 3 on a stroke move right and go into 

state 4. In state 4 on a stroke erase it. You will now have blocks of n, m + 1, and k  - 1 

strokes. Take it from there. 

 

3.5 Proceed in cycles, during each of which you erase the leftmost stroke of the first 

block and the rightmost stroke of the second block, and add a stroke to a third block to 

the right of them both. When one of the two original blocks has been completely erased, 

erase also the other. The trick is to keep track of when this happens. 

 

 

Chapters 4 

 

4.1 It is certainly not possible just exploring without marking the tape. 

 

4.3 It is not possible to preserve the original block unaltered while making a copy. 

 

4.5 A description of a function of the kind a universal machine would have to 

compute is implicit in the discussion of the diagonal function in the text. 



 4 

Chapter 5 

5.1 Subtraction is to the predecessor function as addition is to the successor function. 

 

5.3 Use problem 5.1. 

 

5.5 Keep subtracting y from x, while checking each time you do so that what is left is 

still ≥ y. 

 

5.7  Manœuvres of just this kind take place the simulation of abacus machines by 

Turing machines. 

 

5.9 See preceding problems. 

 

5.11 See the proof of Theorem 4.1. 
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Chapter 6 

6.1  For instance, in (a), g(x, y) = f(id2
2(x, y)  , id2

1(x, y) ). 

 

6.3  These can be done ‘from scratch’ or, generally more easily, by showing the 

indicated functions are compositions of functions already known to be primitive 

recursive. 

 

6.5  Proposition 6.5 may be useful. 

 

6.7  Each recursive function is denoted by some expression built up using Cn, Pr, and 

Mn from names for the zero, successor, and identity functions. 

 

6.9 Use the following fact: There is a recursive function f such that f(0) = 0 but f(x) is 

undefined for x > 0. (For instance, f(x) = the least y such that |x - y| + y = 0.) 
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Chapter 7 

7.1  Compare with Problem 6.1. 

 

7.3  There is a correction to the statement of this problem. Use Corollary 7.8. 

 

7.5  Consider the auxiliary function g(n) = the least element of A that is > n. 

 

7.7  Apply the preceding two problems to obtain a recursive function a and use it and 

the original f to define a suitable g. 

 

7.9  First show that the auxiliary function g(n) = J(f(n), f(n + 1)) is primitive recursive, 

where J is as in Problems 6.2 and 6.5. 

 

7.11  First introduce a suitable auxiliary function, as in Example 7.20. 

 

7.13 Suppose that ci and d are the numbers associated with gi and f respectively, so that 

 gi(x1, … , xn) < ci max(x1, … , xn) + ci,  

 f(y1, … , ym) < d max(y1, … , ym) + d.   

Show that d(c + 1) will do as a number associated with h.  

 

7.15  There is a correction to the statement of this problem. This is the problem that 

requires most familiarity with mathematical induction, according to which, in order to 

prove that all x and all y have some property it is enough to show that 

 (1) 0 and 0 have the property 

 (2) if 0 and j have the property, then 0 and j + 1 have the property 

and that if i is such that i and j have the property for all j, then  

 (3)  i + 1 and 0 have the property 

 (4) if  i + 1 and k have the property, then i + 1 and k + 1 have the property. 

 

7.17  First show that the auxiliary function  

 f(p, q) = the least s that covers (p, q)  

is a recursive total function.  
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Chapter 8 

8.1 Remember that the right numeral is obtained by reading backwards, so that if 

x1 = 2 and x2 = 3, say, then the right numeral is 11110111. 

 

8.3  Use the graph theorems. 

 

8.5  Use the fact, noted just before the statement of Theorem 8.5 that the graph 

relation of the universal function F constructed in the proof of that theorem has the form 

F(m, x) = y  t Qmxyt where Q is primitive recursive. 

 

8.7 See the problems for chapter 7. 

 

8.9  Let A be as in the proof of Corollary 8.8. 

 

8.11  Show that if this claim failed for some f, then A would be recursive. 
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Chapter 9 

9.1  For readers who have not previously studied logic, or whose memories of their 

previous study of logic are rusty, there will be one subtlety here, over how to represent 

‘All Ms are Ss’. For an indication of the manner in which this construction is treated in 

modern logic, see displayed formulas (9) and (10) in section 9.1. 

 

9.3  There is a correction to the statement of this problem. Here ‘in colloquial terms’ 

would mean, for instance, saying ‘grandparent’ rather than ‘parent of a parent’.  

 

9.5  Use induction on complexity.  

 

9.7  We do (c) as an example. If (F & B) is to be anything less than the whole of (F & 

G), then B) must be a left part of G, and hence by the Lemma 9.4(c) must have an excess 

of left over right parentheses. But this is impossible, since B, being a formula, has equally 

many parentheses of each kind, and therefore B) has one more right parenthesis than it 

has left parentheses. 
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Chapter 10 

10.1  First show that substituting t for c in a closed term does not change the denotation 

of the term. 

 

10.3  You will need to describe an interpretation, specifying its domain and the two-

place relation on it that is to serve as the denotation of R. Reading R as ‘greater than’ may 

help suggest one. 

 

10.5 In mathematics, ‘All As are Bs’ counts as ‘vacuously’ true if there are no As. 

 

10.7  Compare with Example 10.3(d). 

 

10.9 Compare with Example 10.5. 

 

10.11  For (c), think of replacing A by B as a two-step process: introduce a new atomic 

C, and first replace A by C, then C by B. 

 

10.13  For (a), the result for multiple variables is immediate from the result for a single 

replacement, on repeated application of the latter. To prove the result for a single 

variable, define a transformation * on formulas, eliminating bound occurrences of the 

variable y, by induction on complexity as follows. For an atomic formula G, let G* = G. 

If G = ~F, let G* = ~F*, and if G = (F1 & F2), let G* = (F1* & F2*), and similarly for . 

If G = xF(x), where x is a variable other than y, let G* = xF*(x), while if G = yF(y), 

let G* = zF*(z), where z is the alphabetically first variable not already occurring, and 

similarly for . It remains to prove G and G* are equivalent for any sentence G. 
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Chapter 12 

12.1  What does A tells us about the relative numbers of elements in the domain 

satisfying Px and satisfying ~Px? 

 

12.3  This can be done with a language having a one-place predicate Px and two one-

place function symbols f and g. The trick is to find a sentence saying that there are as 

many elements in the domain altogether as there are pairs of elements satisfying Px. 

12.5 Label the vertices in clockwise order A, B, C, D, and label the sides suggestively 

as a = AB, b = BC, c = CD, d = DA. 

 

12.7  In the days before modern computers and calculators, a shortcut used with 

multiplication problems was to turn them into addition problems. How was this done? 

 

12.9 If M is a model of , and if j were an isomorphism from M to the standard model 

N, what would be j(cM)? 

 

12.11 Combine the methods of the appropriate parts of the preceding problem. 

 

12.13 Given a correspondence f from N to X1, call one element a of X1 less than another 

element b of X1 if f -1(a) is less than f -1(b) in the usual order on natural numbers. Let a0,0 

be f -1(0), the least element of X1. For each k let ak+1,0 be the least element of X1 not 

E1-equivalent to any ai,0 for i ≤ k. For each m let ak,m+1 be the least element of X1 that is 

equivalent to ak,0 and not identical to any ak,i for any i ≤ m.  

 

12.15 See Problem 10.6 

 

12.17 Use the preceding problem and the observation that for any one, given 

denumerable nonstandard model or arithmetic, the set of sets of primes encrypted in that 

model is enumerable, since the set of elements of the domain available to encrypt sets of 

primes is. 

 

12.19 Look at the problems to follow. 
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12.21 There is a correction to the statement of this problem. List the elements of the 

domain of j in increasing <A order as a0, a1, … , an, and let bi = j(ai), so that 

b0 < b1 < … < bn in the usual order on natural numbers. What the problem asks you to 

show is that, given any new a in A there will be a rational number b such that b is related 

to the bi  in the usual order on rational numbers in the same way a is related to the ai. 

 

12.23 It will suffice to build a sequence of finite partial isomorphisms ji as in Problem 

12.22. Problem 12.21 can be used to get from ji to ji+1, but some care will be needed to 

arrange that every element of A gets into the domain of some ji eventually.  

 

12.25  Proceed as in Problem 12.23, but this time also take care to arrange that every 

rational number gets into the range of some ji. 

 

12.27 The preceding problems do not yet cover all the possibilities. 
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Chapter 13 

13.1, 13.3, 13.5, 13.7 Hints are given in the text of section 13.5. 

 

13.9  Imitate the proof of the isomorphism lemma, Proposition 12.5. 

 

13.11  For (a) use the preceding problem; for (b) first note that if B(c) implies A and c 

does not appear in A, then x B(x) implies A. (For if xB(x) does not imply A, then 

{xB(x), ~A} is satisfiable, and then by Example 10.5(b) so is {B(c), ~A}, and B(c) does 

not imply A.) 

 

13.13 See Problem 13.12. 

 

13.15  See Problem 12.18. 
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Chapter 14 

14.1  The compactness theorem is relevant. 

 

14.3 Look how we got from (2) to (7) in Example 14.4. 

 

14.5 Look how we got from (2) to (6) in Example 14.12. 

 

14.7 Remember that you may use the results of earlier problems. 

 

14.9  As in Example 14.13, all rides on making a suitable choice of formula A(x) to 

apply (R8) to. 

 

14.11 Imitate the proof of the inversion lemma for negation. 

 

14.13 To show the effect of (R11) can be obtained using (R12), use the relevant 

inversion lemmas. 
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Chapter 15 

15.1  The length is the number of digits in the decimal expansion of e that are < 8.  

 

15.3  Apply Corollaries 12.17 and 15.7 to T  {A} and T  {~A} where neither A nor 

~A is a theorem of T. 

 

15.5  How many of the Ai would it take to deduce all the Bj? 

 

15.7  The idea is just to ‘check for each n through all possible models of size n’, or 

more precisely, through a set of possible models containing at least one representative of 

each isomorphism type of models of size n. Generalize the preceding problem 

appropriately to show the set of isomorphism type representatives for a fixed n can be 

taken to be finite. 

 

15.9  Let R be a recursive relation such that a is the code number of theorem of T if and 

only if n Ran. Consider the set of sentences B such that for some A and n, B is the 

conjunction of n copies of A, and Ran holds, where a is the code number of A. 
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Chapter 16 

16.1 Use Lemma 16.6. 

 

16.3 Use Theorem 16.13. 

 

16.5 See the proof of Corollary 15.6(a).  

 

16.7  Use Proposition 7.17 and the remark following. 

 

16.9 There is a correction to the statement of this problem. Again use Proposition 7.17. 

 

16.11  Recall that we have proved  0 + y = y  and 1 + y = y ' have been proved in 

Examples 16.18 and 16.19. 

 

16.13  For (c) first note that there is a least n with the property ‘there is a sequence of 

length n with property P.’ 

 

16.15  To make (Q1)-(Q2) and (Q7)-(Q10) true, the denotation of 0 should be taken to 

be the least pair (in the <2-order) and the denotation of ' the function that given any pair 

as argument yields as value the least pair (in the <2-order) among the pairs greater (in the 

<2-order). It remains to devise a suitable addition function.  

 

16.17 Use ‘induction in the metalanguage,’ proving the result first for m = 0, then for 

m = n ' assuming it holds for n. 

 

16.19 For (a) again use ‘induction in the metalanguage,’ proving the result first for b = 

0, then for b = c '. 

 

16.21 The first half of the problem is to show how, using induction and the axioms of Q, 

to obtain the two axioms of R that are not axioms of Q. But one of these, (Q0), has 

already been done as Example 16.17, so it only remains to do (Q11). The other half of the 

problem is to show how, using induction and the axioms of R, to obtain the four axioms 

of Q that are not axioms of R. But two of these, (Q7) and (Q9), have already been done 

in section 16.4, so it only remains to do (Q8) and (Q10). For the first half of the problem 

note that according to Problems 16.10 and 16.11, we can get the commutative law for 

addition using induction and axioms common to Q and R. 
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Chapter 17 

17.1 Use Theorem 16.16 and Problem 16.9. 

 

17.3 Imitate the proof of the diagonal lemma, beginning as follows: For formulas 

E1(x, y) and E2(x, y) with code numbers e1 and e2, let the first and second double 

diagonals be  

xy(x = e1 & y = e2 & E1(x, y)), logically equivalent to E1(e1, e2) and 

xy(x = e1 & y = e2 & E2(x, y)), logically equivalent to E2(e1, e2). 

 

17.5 The logical equivalence of A(t) and y(y = t & A(y)) will be useful. 

 

17.7 To begin with R be the Rosser sentence of T, T0 = T + {~R}, T1 = T + {R}. Let Re 

for e = 0 or 1 be the Rosser sentence of Te. Let T00 = T0 + {~R0}, T01 = T0 + {R0}, 

T10 = T1 + {~R1}, T11 = T1 + {R1}, and continue in this way. 

 

17.9 Use the Craig reaxiomatization lemma, Problem 15.9. 

 

17.11 To obtain N, take the set of elements satisfying N(x) as the domain |N |. Let RN 

hold for elements of the domain |N | if and only if RM does, let cN = cM for each constant 

c (as we may since it is given that cM satisfies N(x), that is, belongs to the domain |N |), 

and let the value of f N for elements of the domain |N | be the same as the value of f N (as 

we may since it is given that if elements satisfy N(x) so does the value of f for those 

elements).  

 

17.13 It is enough to find a formula N(x) that is satisfied in Z by an integer if and only if 

that integer is non-negative, for then by Problem 17.12, relativization will be a 

translation, and by Problem 17.10 the set T of sentences true in Z will be undecidable 

since the set S of sentences true in N is undecidable. If we have <, we can simply use 

x = 0  0 < x for N(x). To find an N(x) that does not involve < requires a major result of 

number theory, but one that has been mentioned more than once in this book. 

 

 


