I spent my early years in Toronto, spending weekdays roaming the halls of Bialik Hebrew Day School, summers at Camp Tamakwa, and winter weekends on the small icy slopes of southern Ontario. When I was a senior in high school, I started working in a neuroscience lab at the Clarke Institute (now known as the Center for Addiction and Mental Health) with Drs. Brian Ross and Steve Kish on membrane metabolism in brain disorders (schizophrenia, Alzheimer's and Parkinson's.)

I did my undergraduate studies at McGill University in Montreal. I initially majored in computer science, but decided to follow up my lab work at the Clarke with some coursework in neuroscience. So, I created my own major: joint honours computer science and neuroscience. I spent a summer in the lab of Prof. Matthew Shapiro (now at MSSM) learning about hippocampal place cells and getting my first exposure to rat electrophysiology. It was a course on memory led by Prof. Shapiro that got me interested in the Recovered Memory Debate. I was fascinated by state dependent retrieval, especially in its most extreme expression: dissociative identity disorder. Each summer I returned to Algonquin Park in Ontario for a few days to commune with nature. My winter breaks were generally spent on the slopes of Whistler Mountain in British Columbia

Before committing to a life of academia I decided to give the "real world" a try. I moved to Cambridge, MA to work for Nevo Technologies. At Nevo, I wrote the web application that Harvard undergrads use to sign up for tutorial sections. I learned a lot about databases and team based software engineering. As well, I gained invaluable experience dealing with clients and the world (just barely) outside of academia. While I enjoyed my year at Nevo, I decided to pursue a career in neuroscience, specifically neural mechanisms of emotion and memory.

This led me to New York University, to the lab of Joseph LeDoux, a world leader in the neural basis of emotional learning and memory. I did my thesis there on Amygdala and Prefrontal Contributions to Fear Regulation.

After defending my thesis in April 2006, I spent some time in the LeDoux lab finishing some things up and started a postdoc with Carlos Brody in the fall of 2006. The Brody Lab moved to Princeton at the end of 2006. I moved to Princeton and spent 2007 building the lab with Carlos and the other members of the lab.

How is chaotic neural activity, driven by internal dynamics and external sensory input, resolved into coherent behavior?

Animals have many competing goals and drives as well as a barrage of sensory input to process. If our attention and actions are as frenetic as the world around us (as may be the case in attention deficit disorder) we will have difficulty accomplishing our goals. How does the brain deal with all of this competing input? How do brain structures deal with ambiguous or conflicting sensory information? And how do different brain structures communicate, influence and compete with each other so that the result of this competition is coherent thought and action? These questions cover a range of topics: attention, decision-making, cognitive control, planning, working memory, and others.

Erlich Lab Research Projects

Mapping decision-coding in the cortex of rats

The rat is a relatively understudied animal model for decision-making. But due to their size, cost and cognitive abilities they are a powerful model. During my postdoctoral work in Carlos Brody's lab I helped identify several key areas (e.g. the rat frontal orienting field and posterior parietal cortex) that show decision-related activity. However, the borders of these areas are unknown, and similar activity may be found elsewhere in the cortex. In my lab, we will further map out using electrophysiology and optogenetics the encoding of probability, value, effort, confidence and action across rodent cortex and examine the neural mechanism of competition or tradeoff between factors (e.g. choosing a large effortful reward vs. a small easy reward).

Stress and decision-making

We all experience conflict between immediate rewards (a delicious pastry) and long-term goals (staying fit). One important variable in comparing immediate and future rewards is called the discounting factor: how much we undervalue future rewards. In humans, it has been shown that stress can increase the discounting factor, leading to more choices of immediate rewards. This phenomena can have serious social consequences. Those living in poverty experience significant stress that can perpetuate the cycle of poverty by driving decisions to be more steeply discounted (Haushofer & Fehr, 2014). One project in my lab will be the development of a rodent model of economic decision-making under stress to determine the neural mechanisms by which stress exacerbates discounting.

Attention & Amphetamine: endogenous and exogenous cognitive enhancers

Attention and motivation play an important role in our ability to use our cognitive resources how and when they matter most. In attention deficit hyperactive disorder (ADHD) the ability to engage and disengage these resources is impaired. Stimulants, like amphetamine and methylphenidate, can help people suffering with ADHD, but the mechanism of these drugs is largely unknown. Using rodent tasks that have been inspired by tasks known to be challenging for those with ADHD, we explore the neurophysiological basis of performance enhancement of both endogenous (i.e. attentional and motivational factors) and exogenous (i.e. ADHD drugs) effects on decision-making.

Postoctoral Research Projects

Memory-Guided Orienting

Our memory-guided orienting task is modeled after the classic memory-guided saccade paradigm. Using this task, we demonstrated that the medial agranular cortex (AgM) a structure previously hypothesized, based on anatomy and lesion studies, to be a homologue of the primate frontal eye field (FEF), shows striking similarity to the FEF both in short-term spatially specific persistent activity and also in the effects of temporary inactivation (Erlich et al, 2011).

Pro/Anti Orienting

A classic task for the analysis of executive control is the anti-saccade task (Munoz, 2004). This task, until now, has been exclusively studied in primates (humans and monkeys). In the Brody lab we have trained rats on a pro/anti orienting task where we instruct the animal on each trial whether the rule is pro or anti and then a target appears to the left or right. On pro trials the animal orients towards the target for reward. On anti trials the animal orients away from the target for reward. I have collected data from frontal cortex (both medial prefrontal cortex and the frontal orienting field) and the superior colliculus from this task. I am in the process of collecting additional neural recordings from animals that are also implanted with infusion cannula.

Poisson Click Accumulation Task

Our auditory click integration task is loosely modeled on the random dot-motion task that has been used extensively to study decision-making in primates. The rat has to sit still and listen to a stream of clicks coming from the left and right speakers. In order to maximize reward the rat must count the clicks coming from the left and right speaker and decide whether there were more on the left of the right. Careful analysis and modeling of the behvior of the rats in this task has confirmed that rats indeed perform the task by counting or integrating the clicks (Bruton & Brody, submitted).

I have performed muscimol inactivations of the frontal cortex, AgM in particular, and the posterior parietal cortex (PPC) of rats performing this task. To our knowledge, these are the first frontal and parietal cortex inactivations in animals performing an accumulation of evidence task. Our results, consistent with lesion data, show that unilateral inactivation of frontal cortex result in profound contralateral impairment. That is, rats were significantly more likely to make a response ipsilateral to the infusion site. Surprisingly, inactivations of the parietal cortex had weak and inconsistent effects on behavior. It was only when the AgM was bilaterally inactivated that unilateral inactivation of the PPC resulted in a contralateral impairment. This suggests that for this integration of information task the PPC plays a secondary role to the AgM. This is consistent with recent work from primates showing that PPC inactivations have little effect on instructed choice (Wilke, Kagan & Andersen, 2012). This work is currently being prepared for resubmission.

Flash Counting Task

This task is similar in spirit to the Poisson Click task but in the visual domain. While the subject holds still a sequence of flashes appear on the left and right. A reward is available on the side with the greater number of flashes. Behavioral analyses of rats performing this task showed that subjects used a similar strategy on this visual accumulation task as in the Poisson Clicks task. In collaboration with David Tank's lab, rats have been performing this task during voluntary head fixation in order to record neural activity using 2-photon imaging.

Chaos PendulumsClassic Pendulum atBurning Man 2010

Since 2009, I have taken up metalwork as a hobby. For my first project, I machined a pair of double pendulums, now refered to as the "classics", to bring to an art festival. In 2010 I upgraded the classics, learning from mistakes I had made the first time around. One aspect of the upgrade was to use a steel axle instead of an aluminum axle. This provided much more rigidity and so less energy was lost from wobbling. Another upgrade was to embed an LED and battery inside the outer pendulum. At night, persistence of vision provides a very nice trail of light, which can be approximated in photos using a high aperture and long exposure time.

After the success of the classics in 2010, I wanted a new challenge. Aluminum is a great metal in the machine shop. It is lightweight and relatively soft. However, with the hand controlled mills and lathes that I had access too anything shape other than a bar or cylinder was pretty tricky. So I signed up for a metalworking class at the School of Visual Arts (SVA) in New York to learn how to weld and shape steel. Unfortunately, there was no furnace at the studio at SVA so we were limited to cutting, with saws, and my favorite, the plasma cutter. A plasma cutter lets you cut through a sheet of steel like a hot knife through butter. Although the studio had a computer controlled plasma cutter, I did all my cutting by hand. Using a MIG welder and the plasma cutter I made the octostar double pendulum sculptureoctostar pendulum as a gift to friends in Brooklyn.



Erlich, J. C., and Brody, C. D. (2014). What to do and how. Nature 503, 45-47. link

Erlich, J. C., Bush, D. E. A., and Ledoux, J. E. (2012). The role of the lateral amygdala in the retrieval and maintenance of fear-memories formed by repeated probabilistic reinforcement. Front Behav Neurosci 6, 16. link

Erlich, J. C., Bialek, M., and Brody, C. D. (2011). A cortical substrate for memory-guided orienting in the rat. Neuron 72, 330-343. link

Pai, S., Erlich, J. C., Kopec, C., and Brody, C. D. (2011). Minimal impairment in a rat model of duration discrimination following excitotoxic lesions of primary auditory and prefrontal cortices. Front Syst Neurosci 5, 74. link

Ross, B. M., Moszczynska, A., Erlich, J., and Kish, S. J. (1998a). Low activity of key phospholipid catabolic and anabolic enzymes in human substantia nigra: possible implications for Parkinson's disease. Neuroscience 83, 791-798.pdf

Ross, B. M., Moszczynska, A., Erlich, J., and Kish, S. J. (1998b). Phospholipid-metabolizing enzymes in Alzheimer's disease: increased lysophospholipid acyltransferase activity and decreased phospholipase A2 activity. J Neurochem 70, 786-793.pdf

Ross, B. M., Hudson, C., Erlich, J., Warsh, J. J., and Kish, S. J. (1997). Increased phospholipid breakdown in schizophrenia. Evidence for the involvement of a calcium-independent phospholipase A2. Arch Gen Psychiatry 54, 487-494. pdf

Other Writing

Jeffrey C. Erlich (2006) Ph.D. Thesis. To Fear or Not to Fear: The role of the amygdala & prefrontal cortex in the regulation of fear.pdf

Jeffrey C. Erlich (1997) The Recovered Memory Debate. pdf

Industrial Design

During my graduate work I became very frustrated with the cost and complication of moveable microdrives. When I arrived in Princeton, I researched a design for a cheap and easy to build design. I found a design based on a bic pen. I heavily modified the design, and after several iterations and feedback from lab members, we have a very light, very cheap moveable microdrive that has been used to successfully record from many thousands of neurons in the Brody lab, including individual animals with hundreds of single units over the course of months. The details of the design and the surgical techniques that result in months of viable recording are being written up as a methods paper.



MATLAB is the programming environment of choice in the Brody Lab (and really neuroscience). I have written thousands of lines of MATLAB code and it is certainly the programming language that I am currently most fluent in. MATLAB has obvious benefits. As an interpreted language where a matrix is a primitive data type, development for analysis of data is extremely fast. There are thousands of built in functions and features that allow the quick visualization of data. It is fairly easy to read and debug. However, there are lots of things not to like about MATLAB. First, it is expensive and proprietary. Many people in the scientific community prefer the FOSS R or Python with SciPy, NumPy and MatplotLib. I recently became more acquainted with R and knitR, specifically to use the lme4 package for generalized linear mixed models. I have had a little bit of exposure to Python as well, but I would not say that I am fluent in either language.

Shell scripts and Unix commands

BASH shell scripts using unix commands such as sed, awk, find, and grep are my goto for file manipulation and computer administration. My favorite thing about MacOS is that underneath all the gloss is a very Unix like OS which can be accessed through the terminal.

The Brody lab also has several linux servers that host our subversion code repositories, video archives, wiki, web server, and MySQL databases. Knowing my way around BASH shell has come in very handy.


Java is a fantastic FOSS language with strict object-oriented rules. Non-graphical java code runs fairly seamlessly across platforms, and is a good choice for cross-platform development. My work at Nevo was all in Java, but since then my java skills have gotten a bit rusty. I recently refreshed my Java skills writing a cross-platform java client that runs on the linux computers in the behavioral training facility to help us monitor and maintain those computers. The monitoring system was written by another postdoc in the lab, Chuck Kopec, originally for windows machines only.

Other Languages

During my time as a computer science undergraduate I was exposed to many other programming languages: Pascal, C, Scheme, and 68040 Assembly. Notably, I wrote an artificial intelligence checkers program, Little Wing, in C. Little Wing was undefeatable since it would search about 14 moves ahead in a few seconds on a 1997 computer. It did end many games in a stalemate.

Relational Databases

During my year at Nevo I became aquainted with relational databases (Oracle, specifically). When I returned to academia, i began to use MySQL to store, organize and analyze my data. Additionally, I wrote a message passing system using MATLAB and MySQL that allowed me to run analysis jobs on any machine that could run MATLAB, essentially turning the NYU neuroscience network into a computing grid. This allowed me to run statistical analyses in hours instead of weeks.

When I joined the Brody lab, MySQL was an obvious choice for helping to administer the high-throughput behavioral training facility. I also refined the message passing system into the Brody Computing Grid, so that the computers that are used for training rats during the day can be used for analysis and simulation at night. Best of all MySQL is free and open source (FOSS) software. It was acquired by Oracle in 2009 which sparked the fork of MySQL into MariaDB which is a binary equivalent of MySQL but is completely GPL and not affiliated with Oracle.

I'm very interested in non-relational databases such as SciDB which are designed for large continuous data sets, such as astronomical data. This kind of database would be appropriate for storage and analysis of continuous electrophysiological data or video. Unfortunately, I have not yet had the time to install it and try it out. If you have experience with SciDB and neuroscience get in touch!.

Multiple positions are available in my lab at NYU-Shanghai.

To apply for any position include a letter explaining your interest in the lab and in the position, your C.V. and 2-4 letters of reference to apply@erlichlab.org

Postdoctoral Fellow

Multiple postdoctoral positions are available starting Nov 1, 2014 in Jeffrey Erlich's lab at NYU-Shanghai as part of the new NYU-ECNU Institute of Brain and Cognitive Science. We study the neural basis of cognition using sophisticated behavioral paradigms combined with electrophysiology, pharmacology, optogenetic and computational/theorectical methods. As founding members of the lab, you will contribute to the setup of a high-throughput training facility for rodents, high-channel count awake behaving neurophysiology, and high throughput optogenetic screening of neural circuits involved in cognitive function. English fluency required. PhD in neuroscience or related field required. Experience with rodent behavioral neurophysiology prefered.

Embedded Application Engineer

A hardware/software developer position is available starting Oct 1, 2014 in Jeffrey Erlich's lab at NYU-Shanghai as part of the new NYU-ECNU Institute of Brain and Cognitive Science. We study the neural basis of cognition using sophisticated behavioral paradigms combined with electrophysiology, pharmacology, optogenetic and computational/theorectical methods. This position requires experience designing electronic circuits, including the use of software to design PCBs, programming microcontrollers, e.g. Arduino, and embedded device buses, e.g. I2C, as well as experience in MATLAB, Python, Java or C. Experience with computer vision (e.g. OpenCV) and robotics would be ideal. The primary duty of this position will be the development and maintenance of a behavioral control system and related hardware/software for the high-throughtput behavioral training facility. This could be the ideal position for an electrical engineer who is potentially interested in transitioning to a career in neuroscience. English fluency required.

Administrative Staff

An administrative position is available immediately in Jeffrey Erlich's lab at NYU-Shanghai as part of the new NYU-ECNU Institute of Brain and Cognitive Science. This position requires excellent communication and organizational skills. You will be responsible for maintaining inventory of supplies in the lab, purchasing and receiving orders, hiring and managing technical staff in the lab, providing administration support for grant, manuscript and protocol submissions, and in general providing administrative support for the research staff in the lab as needed. English and Mandarin fluency required. Salary is commensurate with experience. Interested applicants should send a C.V., 2-4 letters of reference and a cover letter addressing their interest in the lab to apply@erlichlab.org