Errata
Charles Cameron and Jonathan Kastellec
“Are Supreme Court Nominations a Move-the-Median Game?”
American Political Science Review, 2016, 110(4): 778-797
February 4th, 2017

Due to an editing error, an incorrect version of Figure 2 was presented in the published version of our article, “Are Supreme Court Nominations a Move-the-Median Game?” (2016, 110(4): 778-797). Some of the text that accompanies the figure (on pp. 783-785) is also incorrect. Note that these errors do not affect the discussion of the predicted locations of nominee ideology—instead, the published version sometimes characterizes nominees as moving-the-median when in fact they do not (the errors also do not affect any of the empirical tests in the article). This mischaracterization occurs for the position-taking senators and mixed-motivations model—for the court-outcome and nearly court-outcome models, Figure 2 and the accompanying text are unchanged. We regret the errors.

Here are the corrections:

• On p. 783, in the first paragraph in the right column, the penultimate sentence in that paragraph should read: “The horizontal dashed lines in each panel thus divide proximal and distal vacancies.” In addition, the subsequent sentence (the last sentence in the paragraph) should be deleted.

• On p. 785, the paragraph titled, “Choice of nominee in the position-taking senators model,” should read as follows:

 – The nomination strategy for the position-taking senators model is shown in Figure 2C. Recall that in this model senators do not care about the location of the new median justice and the president cares at least somewhat about the nominee’s ideology. Thus, because senators weigh the nominee against the status quo, we observe a gridlock nomination whenever the Senate median is opposed to the president—regardless of whether the vacancy is distal or proximal. Conversely, when the Senate median is aligned with the president, the president nominates a confirmable individual as close to his own ideal point as possible (i.e. \(\min\{p, 2s_m - j_0^p\} \)). While the location of the nominee does not depend on which justice departs, whether the location of the median changes depends on whether the vacancy is distal or proximal—the former sees a “smaller shift” nomination in which the median moves, the latter a “restoring” nomination in which the median is maintained.

 – In addition, footnote 8 should appear at the end of this paragraph.

Finally, here is the corrected version of Figure 2 (note the caption differs slightly as well).
Which justice is departing?
{ \{ j_6^0, ..., j_9^0 \} (Proximal vancies)
{ \{ j_1^0, ..., j_5^0 \} (Distal vancies)

A) Court–outcome based model

Type of median senator

A B C D

- Gridlock nomination
 \{ j_5^0 \}

- Smaller shift nomination
 \min(p, 2s_m - j_5^0)

- Maximum shift nomination
 \min(p, x)

(See caption)

B) Nearly court–outcome based model

Type of median senator

A B C D

- Gridlock nomination
 \{ j_5^0 \}

- Smaller shift nomination
 \min(p, 2s_m - j_5^0)

- Maximum shift nomination
 \min(p, x)

(See caption)

C) Position–taking senators model

Type of median senator

A B C D

- Gridlock nomination
 \{ j_5^0 \}

- Smaller shift nomination
 \min(p, 2s_m - j_5^0)

D) Mixed–motivations model

Type of median senator

A B C D

- Gridlock nomination
 \{ j_5^0 \}

- Smaller shift nomination
 \min(p, 2s_m - j_5^0)

(See caption)

Figure 2: The president’s nomination strategy in the four variants of the model. The bottom plot depicts the types of Senate median; the conservatism of the median is increasing from left to right. In panels (A), (B), (C), and (D), we assume \(p > j_5^0 \). The horizontal in these panels depicts the type of Senate median, while the vertical axis denotes which justice departed from the Court—relative to the president—and thus whether a proximal or distal vacancy occurred. For each panel, each “box” indicates the president’s equilibrium choice of nominee under various combinations of the departing justice and/or the location of the Senate median. For panel (D),
\[x = \frac{2s_m - j_5^0 - \lambda s_j^0}{1 - \lambda_s} \text{ if } \frac{j_1^0 + j_0^0}{2} < s_m < j_0^0; \]
\[x = \frac{2s_m (1 - \lambda_s) - j_0^0 + \lambda s_j^0}{1 - \lambda_s} \text{ if } s_m > j_0^0. \]