Reactive Interfaces for Functional Surfaces

Surface Modification of Electronic Materials: Controlling Device Properties at the Molecular Level

Surface Modification to Control the Properties of Electronic Materials

How can we use molecular properties to introduce and control this dipole systematically?

ITO Surface Modification with Tin Complexes

The change in work function correlates with the total surface dipole

The total surface dipole depends on the loading density of surface complexes and the dipole moment of each complex:

- Good news: The dipole moment of the surface complex depends on the dipole moment of the ligand precursor;
- Bad news: The loading density is limited by the number of surface OH groups and the size of the tin reagents (0.2 nmol/cm²).

Enhanced Behavior of Light-Emitting Diode Devices Correlates with Surface Complex Dipoles

Guo; Koch; Schwartz; Bernasek J. Phys. Chem. B, 2005, 21, 4236-4239

Improved OLEDs Using Doped 4TP SAMPs

Comparison With the State-of-the-Art

The $4TP-F_4TCNQ$ device performs comparably to a state-of-the-art OLED. (These devices may be electron-injection limited.)

Hanson; Guo; Koch; Schwartz; Bernasek J. Am. Chem. Soc. 2005, 127, 10058-10062

SAMPs are Good Platforms for Thin Film Transistors

SAMPs of anthracene- or quarterthiophene phosphonate on SiO_2/Si are quite homogeneous

Pentacene-based thin film transistors were fabricated on SAMP platforms

Thin Film Transistor Platforms: Pentacene on a SAM of 9-Anthracenylphosphonate (AP)

McDowell; Hill; McDermott; Bernasek; Schwartz Appl. Phys. Lett. 2006; 073505