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Abstract

Entrepreneurs appear to raise funds largely against their near-term
revenues, even when their investment has a longer horizon. To explain
why, we develop a model of credit horizons in which the inalienable
human capital of an entrepreneur-cum-engineer is essential for con-
structing and then maintaining a production plant. The further dis-
tant into the future, the larger the fraction of the revenue flow that
can be attributed to the engineer’s cumulative maintenance. Looking
ahead from the time of investment, we see that because the engineer
cannot precommit to work for less than her marginal contribution
to (future) production, as time passes more of the surplus goes (has
effectively already gone) to her —and concomitantly less goes to finan-
cial claimants. Hence the investing engineer’s fundraising capacity is
largely governed by revenues in the near horizon.
We use our framework to examine how credit horizons interact

with plant dynamics and the evolution of productivity. We also show
that a permanent fall in the interest rate in small open economy can
lead to a temporary boom followed by slower growth in the long run.
JEL Code: E44
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Conference on Macro, Money and International Finance in Munich on 23 July 2020. We
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1 Introduction

To finance investment, entrepreneurs usually raise external funding against
their future cash flows as well as put up their fixed assets as collateral.1 But
the funds raised are typically only a few years’worth of revenue.2 It can thus
be said that borrowing is largely near-term even when investment projects
are long-term.
In this paper, we develop a model of credit horizons in which the human

capital of an entrepreneur-cum-engineer is essential for the construction and
then maintenance of a production facility. To get a flavour of our model,
think of an engineer, Emma, investing in goods and a building in which to
construct plant. There is no obstacle to Emma raising funds against the
plant: it can be freely sold at the time of investment. What cannot be
sold is Emma’s engineering expertise, her human capital, which we assume
is acquired through learning-by-doing associated with her gross investment.
This inalienability constrains Emma’s fund-raising ability, so the scale of her
investment is limited by her net worth.3

A saver, Sam, who buys the plant will subsequently need an engineer’s
expertise to maintain its productivity. Without adequate maintenance, pro-
ductivity would deteriorate. We adopt a form of ‘roundabout’technology,
inspired by Böhm-Bawerk (1889): we suppose that tomorrow’s plant pro-
ductivity is a function of both today’s productivity and today’s engineering
input. Hence, although on any given date the plant’s current productivity is
historically given, its long-run future productivity will mostly depend upon
the forthcoming cumulative maintenance effort.
Crucially, because her human capital is inalienable, Emma cannot commit

at the time of investment, ex ante, subsequently to supply her maintenance
services to Sam. The division of ex post surplus could be determined through
competition or bargaining. In the body of the paper, we assume there is no

1Lian and Ma (2021) examine firm-level data of US non-financial corporations to doc-
ument that approximately 80% of corporate borrowing is backed by future cash flow and
only 20% by collateral assets —though this 4:1 ratio tends to be lower for smaller US firms
and lower in other countries like Japan. Drechsel (2020) also documents that much of US
corporate borrowing is constrained by firms’current earnings.

2Lian and Ma (2021) further examine debt covenants to find that, at the 25 percentile,
the cash-flow-based debt is restricted by 3 years’worth of EBITDA (earnings before inter-
est, taxes, depreciation and amortization) and, at the 75 percentile, by 4.5 years’worth.

3Hart and Moore (1994).

2



specificity of match between plant and engineers —Sam can hire any engineer
to maintain his plant and Emma can work for any plant owner —so Emma’s ex
post remuneration is determined competitively. Here, our sole departure from
the Arrow-Debreu model is the assumption that Emma is unable to commit
to work for less than the ex post competitive wage; this form of constraint is
sometimes called a non-exclusivity constraint.4 Aside from avoiding the need
to make some auxiliary assumption about a bargaining protocol, the great
merit of the competitive model for us is that it facilitates analysis of a number
of important questions, such as how does an economy with heterogeneous
plant behave dynamically — questions that we couldn’t readily investigate
within a bargaining framework. Nonetheless, it should be admitted that
our competitive model has novel features that require a little digestion. So,
for the moment, let us look at a simple bargaining model that should feel
familiar from the corporate finance literature, and use it to discuss the basic
economics of our theory of credit horizons.
Let us suppose —here in the Introduction only —that Emma’s specific

expertise is needed to maintain the plant she sells to Sam. Then the ex
post division of surplus will be determined through a sequence of bargains
between them. Consider the following example. To construct a unit of plant,
Emma has to outlay x goods, as well as acquire a building at cost q = f
/(R − 1) where f is the building’s alternative (generic) daily use value and
R > 1 is the daily gross interest rate (ignore depreciation). To raise funds,
she sells the plant to Sam for some amount b —to be determined below —
which, in our case of interest, is strictly less than x + q. Think of b as
Emma’s borrowing capacity per unit of investment. The gap, x + q − b, is
the required downpayment per unit of investment that she must find from
her own resources.
Each unit thereafter delivers its owner, Sam, a gross daily return of a,

provided the plant has been maintained by Emma (in this bargaining exam-
ple, she is the only person capable of looking after it). Assume that if she
misses a day, although the plant generates the return a on that day, it there-
after becomes permanently worthless —an extreme form of roundaboutness.
Every day Sam has to bargain with Emma about the level of her pay to
maintain it, bearing in mind that the stakes are high (failure to agree would
be fatal to the future of the project) and that on every subsequent day Emma

4See, for example, Allen (1985), Townsend (1989), Cole and Kocherlakota (2001) and
Attar, Mariotti and Salanie (2011).

3



will be back for more (she cannot commit her future labour).
Assume a simple bargaining protocol: on each day following the initial

investment, Emma extracts — in the form of a payment w —some fraction
(1− θ) of Sam’s end-of-day discounted future surplus, V . That is, V and w
solve

V =
1

R
(a− w + V )

w = (1− θ)V.
Before moving on, we should make two points about interpretation. First,

although we think in terms of credit horizons, the initial contract between
Emma and Sam is really a sales contract whereby Sam, as the new owner,
buys all control rights over the plant, including not only the right to decide
its future maintenance schedule but also the right to liquidate it (to return
the building to its alternative use). Hence external finance is similar to equity
finance —though since for the most part we assume no uncertainty at plant
level, the distinction between debt and equity is moot. Second, for brevity
we will often refer to w as Emma’s wage. But w is not a wage in the usual
sense: it should be seen as the return to a key member of personnel, say
the chief engineer/scientist/chef/founder. In this context, w is more akin to
inside equity.
Now Emma’s borrowing capacity, b, equals the amount Sam is willing pay

per unit of new plant, namely V. It helps to write this out as

b = V =
a

R− θ =
1

R
a+

1

R2
θa+

1

R3
θ2a+

1

R4
θ3a+ ...

Notice how, because of the geometric decay 1, θ, θ2, θ3, ..., Sam’s ex post net
returns are in effect front-loaded. As a result, at the time of investment
Emma is less able to borrow against the more distant future by selling the
plant ownership to Sam. Her credit horizon is foreshortened.
A straightforward intuition can be offered for this front loading: the later

the return comes in, the more opportunities Emma has to bite chunks out of
it. On the face of it, though, this intuition seems at odds with the fact that
V is simply the discounted sum of the daily revenue a net of the wage w:

b = V =
1

R
(a− w) +

1

R2
(a− w) +

1

R3
(a− w) +

1

R4
(a− w) + ...
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And since a and w are both stationary, where is the front-loading? The
answer is that w is itself forward-looking:

w = (1− θ)V =
1− θ
R

a+
1− θ
R2

θa+
1− θ
R3

θ2a+
1− θ
R4

θ3a+ ...

Substituting this formula for w back into the discounted sum of net revenues,
(a − w), and collecting like terms, we obtain yet another way of writing b
and V :

b = V =
1

R
a+

1

R2
[a− (1− θ)a]

+
1

R3
[a− (1− θ)θa− (1− θ)a]

+
1

R4
[a− (1− θ)θ2a− (1− θ)θa− (1− θ)a]

+...

This expression reveals more of the economics. Following the initial invest-
ment, the first day’s revenue a belongs entirely to Sam, insofar as the impact
of Emma’s maintenance contribution on that day only kicks in from the next
day. A portion, (1 − θ)a, of the second day’s revenue a has effectively al-
ready been paid to Emma, on the first day. On the third day, two portions,
(1− θ)θa and (1− θ)a, of the revenue a have effectively already been paid to
Emma —respectively, (1− θ)θa on the first day and (1− θ)a on the second.
And so on. Overall, Sam’s share of revenue is dropping through time.
There may appear to be an error in our economic logic, which we should

address: Sam’s valuation of plant net of the opportunity cost of the building,
V − q, can be written

V − q =
1

R
[a− f ] +

1

R2
[a− (1− θ)a− f ]

+
1

R3
[a− (1− θ)θa− (1− θ)a− f ]

+
1

R4
[a− (1− θ)θ2a− (1− θ)θa− (1− θ)a− f ]

+...
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Notice that in this summation, all the longer-horizon terms —beyond a cer-
tain date in the future —become negative. But then, from that date, why
would Sam continue with a project whose net payoff appears to have turned
negative? Wouldn’t he be better off shutting the project down at that point
and selling the building for q (thereby either returning it to generic use or
handing it on to someone starting a new project)? No. Because the negative
components (1− θ)a, (1− θ)θa, (1− θ)θ2a, ... reflect wages that have already
been paid to Emma and are therefore sunk costs. And looking forward from
any given day, Sam’s net flow of receipts, a − w − f, stays constant and
positive.
These insights from the bargaining example carry over to our competitive

model where engineers’expertise is not specific to the plant. The further
distant we are into the future, the larger the fraction of the revenue flow that
can be attributed to engineers’cumulative maintenance. Looking ahead from
the time of investment, we see that because engineers cannot precommit to
work for less than their marginal contribution to future production, as time
passes more of the surplus goes (has effectively already gone) to engineers —
and concomitantly less goes to the initial plant owner. Hence the price of new
plant —an investing engineer’s fund-raising capacity —is largely governed by
revenues in the near horizon.
Parenthetically, we note that an often made criticism of a capitalist econ-

omy is that the horizons of shareholders and managers are too short-term.
This idea finds an echo in our model. Plant owners — who are akin to
shareholders and managers —derive value mainly from the plant’s near-term
revenues, insofar as they are obliged to pay engineers —their key workers —
a forward-looking reward to maintain the plant.5

Our model displays a rich interaction between credit horizons and firm/plant
dynamics. As the owner of new plant, Sam has to decide on a plan for its
future maintenance. He has a distinct choice. Either he curbs maintenance
costs and allows productivity to deteriorate slowly, to some point when he
decides to exit and liquidate plant as a generic building —call this his stop-
ping strategy. Or he pays the costs needed to maintain, or even improve,
productivity with a view to staying in production over the long haul —call
this his continuing strategy.
This dichotomous decision —either planning to stop within a finite hori-

5De la O and Myers (2021) find that expectations of cash flow growth in the near future
explain most movements in the S&P 500 price-dividend and price-earnings ratios.
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zon, or planning to continue for the long haul —reveals an intriguing feature
of equilibrium. For an open set of parameters, even though all plant starts
off identical in productivity, their qualities diverge over time: some plant
improves in productivity and other plant deteriorates and eventually shuts
down. (Allowing for initial heterogeneity would purify this mixed-strategy
equilibrium so that plant owners would, more realistically, follow pure strate-
gies.6 Incidentally, this is where the competitive framework comes into its
own; we doubt that these complex dynamics would be tractable in a bargain-
ing model.) In the complementary part of the parameter space, all owners of
new plant choose the continuing strategy and their qualities do not diverge.
We think all this may be a fruitful new vein for research into firm/plant dy-
namics, which should inform the study of how aggregate productivity evolves.
A question of particular concern to us is whether persistently low real

interest rates can stifle aggregate investment and growth. The question is
motivated by Japan, where the economy struggles to regain robust growth
despite interest rates having been close to zero for over two decades. Recently,
this has become a concern for other developed economies too. With this in
mind, we model a small open economy where the world interest rate, R,
is taken to be exogenous. What happens if the real interest rate R falls
permanently?
Let us go back to our bargaining example. Because Emma’s pledgeable

return is predominantly near horizon, when R is lower, Sam’s willingness
to pay for new plant, b, does not increase much: b = a/(R − θ) is not very
sensitive to R (unless θ is close to 1). On the other hand, Emma’s investment
cost, x+ q, includes the building cost, q, which has a longer duration: q = f
/(R−1) is much more sensitive to R. Now consider the impact of a permanent
fall in R. Because the building has a longer duration than Sam’s valuation
of plant, q can rise more than b with a fall in R. In which case, Emma’s
required downpayment per unit of investment, x+ q− b, will rise —contrary
to the usual notion that lower interest rates help borrowers.
The scale of Emma’s investment, I, will be given by a critical ratio, now

common in macroeconomic models of investment under financing constraints:
her net worth (net of her consumption), N , divided by the required down-
payment per unit of plant,

I =
N

x+ q − b,

6Aumann et al. (1983).
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We show that, as might be expected, when R falls, the numerator of this
critical ratio, net worth N , rises. (N is largely determined by the wage
w, which rises as R falls.) However, because the pledgeable returns have a
shorter duration than investment cost, the denominator can also rise —the
more so, the more major an element of cost is the building.
There may be a parallel here with the housing market. When interest

rates fall persistently, we often observe housing prices rising more than bor-
rowing capacities. As a result, first-time buyers have a hard time getting
onto the housing ladder. On the other hand, people who already own their
houses enjoy a large increase in net worth and can afford to move into larger
properties.7 In the long run, the housing market may stagnate if not many
new buyers enter into the market.
Along a time path following an unexpected fall in R, the rise in net

worth initially dominates the rise in the required downpayment, leading to a
temporary boom—especially if the liability to foreign creditors is not indexed.
But the rise in the required downpayment can eventually overwhelm the rise
in net worth. Overall, we demonstrate that domestic investment can fall
with a fall in world interest rates, as can the growth rate in the long run.
Further, we show that the welfare of all domestic agents —their discounted
utilities calculated at the time of the fall in R so as to include any beneficial
effects of the temporary boom —can fall too.

We believe the dynamic path we uncover here —especially the disjunction
between the initial rise in the value of total investment (including real estate)
versus the subsequent fall in underlying productive investment in plant and
human capital —may provide a sobering account of a number of property-
fuelled booms sparked by lower interest rates. In particular, it may give a
less rosy picture of, say, the Japanese property boom in the late 1980s, or the
property boom in southern Europe following the introduction of the euro in
the early 2000s, than more popular narratives based on asset price bubbles.
Lastly, in terms of policy intervention, we show there can be scope for

an investment subsidy, financed by a plant-level payroll tax on engineers’
maintenance services. This policy can improve welfare by implementing a
form of additional group borrowing by the engineers, although the success of
any such policy depends on exactly what the government is able to monitor.
The plan of the paper is as follows. In the next section, we lay out the

model. Section 3 describes equilibrium in the part of the parameter space

7Kiyotaki and Moore (1997).
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where no plant owner chooses the stopping strategy —what we call the Pure
Equilibrium with No Stopping. Section 4 considers the complemetary part
of the parameter space, where some plant owners choose to stop and others
choose to continue —what we call the Mixed Equilibrium. Section 5 looks at
the effects of a fall in the interest rate. Section 6 extends the model to allow
for idiosyncratic uncertainty across plant. Finally, Section 7 considers policy
intervention.

2 Model

We consider a small open economy with an exogenous world real interest
rate R. There is no aggregate uncertainty and, for the moment, we focus
on steady state equilibrium (later, we will examine the effects of an unan-
ticipated persistent drop in R). There is a homogeneous perishable con-
sumption/investment good at each date t = 0, 1, 2, . . . We use this good as
numeraire as we consider a non-monetary economy.
There is a continuum of domestic agents, each maximizing utility of con-

sumption ct from the present to the infinite future:

E0

[ ∞∑
t=0

βt ln ct

]
, (1)

where β ∈ (0, 1) is the utility discount factor and ln c is the natural logarithm
of c. We assume that the exogenous world interest rate is nonnegative in net
terms and lower than the subjective interest rate:

1 ≤ R <
1

β
. (2)

Each agent sometimes has an investment opportunity (being an entre-
preneur or simply “engineer”), and sometimes not (“saver”). The transition
probabilities of being an engineer conditional on being an engineer or a saver
in the previous period are given by

Prob (engineer at t | engineer at t− 1) = πE,

Prob (engineer at t | saver at t− 1) = πS.

We assume the arrival of an investment opportunity is persistent to a limited
degree so that 0 ≤ πS ≤ πE < 1.
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At each date t, an engineer E can jointly produce plant and tools from
goods and building: within the period, per unit of plant,

x goods
1 building

}
→
{
plant of productivity 1

1 E-tool
. (3)

The investment technology is constant returns to scale and scalable by any
positive number i. Plant and tools are ready for use from date t + 1. Here
we can think of tools as the engineer’s human capital acquired through her
learning by doing. As in Arrow (1962), the learning by doing is associated
with gross investment instead of regular production.
Each tool (or human capital) is specific to the engineer (“E-tool”) in that

only she knows how to use it —unless she sells it to another engineer and
teaches him. Because the engineer cannot usefully sell her tools to savers
and her human capital is inalienable, she raises funds by selling all that she
can, the plant.
The plant owner has a constant returns to scale production technology.

Match between plant and engineer is not specific. At each date, the owner of
one unit of plant of productivity z can hire any number h ≥ 0 of tools (hiring
each tool along with the engineer who knows how to use it) at a competitive
rental price w (“wage”) to produce goods and maintain plant productivity:
within the period, per unit of plant,

plant of productivity z
h tools

}
→


y = az goods

λ plant of productivity z′ = zθhη

λh tools
. (4)

a > 0 is the common productivity of all plant and z′ is plant productivity
after maintenance. λ < 1 reflects depreciation, by which a fraction 1 − λ
of plant and tools are destroyed after use. The parameter θ is the share
of present plant productivity and η is the share of engineers’tools (human
capital) in maintaining plant productivity. We assume that θ, η > 0, and
θ + η ≤ 1.We can think of physical plant as tangible capital, productivity of
plant as intangible capital, and both contributing to production at present
and future.
A brief word about interpretation is in order here. Although we call w

the engineer’s “wage”, it is important to distinguish it from the simple wage
of, say, an unskilled worker. The engineer’s remuneration is like payment to
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a skilled core employee who influences the firm’s future productivity.8 Notice
that, unlike in a more fleshed-out macroeconomic framework, we assume a
simple reduced-form production of output: proportional to the productivity
of the plant. In Appendix A we show that this formulation is justified when
output is a general decreasing returns to scale function of plant productivity
and unskilled labor, where unskilled labor is hired by plant owners in a
competitive market.
New buildings are supplied by foreigners. We assume foreign builders

have an alternative use of building to produces a fixed amount of goods f
per unit every period and the a building depreciate at the same rate as plant
as

1 building→
{

f goods
λ building

.

Because foreigners are indifferent between supplying building to home engi-
neers and using building themselves, the price building q is

q =
f

R
+
λf

R2
+
λ2f

R3
+ ... =

f

R− λ.

Competitive foreign builders have enough capacity to satisfy the building
demand of the domestic economy at their marginal cost q. We introduce
foreign builders to ease the exposition.9 Alternatively we can think engineers
and plant owners rent building and pay the rent f per unit every period.
Whether building is owned or rented by plant owners does not matter much
the economic implication.10

The plant owner always has the option to stop and convert the plant into
generic building after production. The value of a unit of plant of productivity

8Whether the remuneration is a spot payment or a claim to future revenue of the plant
does not matter, because, to finance downpayment, an investing engineer can equally use
a spot payment or the sale of a claim.

9Any difference between the building purchase price and the construction cost is the
profit of foreign builders. If builders were domestic agents, we would need to take into
account the impact of their income and wealth on the domestic economy —although we
do not expect this would qualitatively change our findings.
10More generally, we can think plant owner needs to pay fixed cost f per period to

operate the plant. If f is fixed cost for production, total fixed cost should be subtracted
from GDP. Otherwise, it does not matter much whether f is opportunity cost of using
building (as in text), rental price, or fixed cost of production.
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z at the end of the period is given by

V (z;w,R) = az + max
h≥0

{
−wh+ max

[
λq,

λ

R
V
(
zθhη;w,R

)]}
. (5)

The first term in the right hand side (RHS) is the revenue from production.
The value q inside the braces is the value of stopping, while the second term
is the value of continuing —minus wage cost and the capital value of the
remaining λ units of plant with productivity z′ = zθhη.
Knowing that the return from maintaining plant productivity depends

upon his future production and maintenance choices, the plant owner must
devise a long-term plan: Either stop after a finite number of periods T ,
or continue forever (T = ∞)? For each T = 0, 1, 2, . . ., define recursively
the owner’s value of a unit of plant of current productivity z stopping in T
periods:

S0(z;w,R) = az + λq,

S1(z;w,R) = az + max
h

[
−wh+

λ

R
(azθhη + λq)

]
, (6)

. . .

ST (z;w,R) = az + max
h

[
−wh+

λ

R
ST−1

(
zθhη;w,R

)]
. (7)

If the plant is shut down this evening, the value S0(z;w,R) is az + λq. If
the plant owner shuts down in tomorrow evening, he hires tools today to bal-
ance the cost and benefit of maintaining plant productivity for production
tomorrow. Generally, the owner’s value of a unit of plant of current produc-
tivity z stopping in T periods, ST (z;w,R) , equals the sum of present cash
flow (revenue minus wage cost) and the present value of λ units of plant of
productivity zθhη stopping in T − 1 periods.
Now, for all value of z, the plant owner chooses the optimal stopping time

so that
V (z;w,R) ≡ sup

T≥0
ST (z;w,R) . (8)

Because new plant that she sells to a saver at the time of investment has
productivity 1, the engineer raises, per unit of plant,

b =
1

R
V (1;w,R). (9)
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The value b can be thought of as the engineer’s fund-raising capacity per unit
of investment.
The required own-funds (downpayment) per unit of investment equals the

gap between the investment cost and the fund-raising capacity:

x+ q − b.

We assume that a new saver —an engineer yesterday who switched to being
a saver today —can sell her tools (after use today) to an engineer, and teach
him how to use them, at a competitive price x+ q − b.
The budget constraint of an agent at date t who has ht tools and dt

financial assets is

ct + (x+ q − b)it +
dt+1
R

= wht + dt,

where ht is positive only if the agent was an engineer yesterday. Here, fi-
nancial assets consist of the value of plant ownership as well as maturing
one-period discount bonds. The discount bond is traded internationally at
the interest rate R. Only if the agent is an engineer today, investment it can
be positive and her tools tomorrow will be

ht+1 = λht + it.

The budget constraint can be rewritten as

ct + (x+ q − b)ht+1 +
dt+1
R

= [w + λ(x+ q − b)]ht + dt = nt,

where nt is net worth — the sum of flow return (wage) and capital value
(replacement cost or resale value) of tools, plus financial assets.
The rate of return for an engineer investing with maximal fund-raising is

given by

RE =
w + λ(x+ q − b)

x+ q − b , (10)

the ratio of total returns of one tool to the downpayment of investment.
(Remember she sells plant to a saver at the time of investment and so does
not receive the return on plant.) If the return on investment RE exceeds the
interest rateR, then, thanks to the logarithmic utility function, the engineer’s
consumption and investment are

ct = (1− β)nt, (11a)

(x+ q − b)ht+1 = βnt. (11b)
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And a saver’s consumption and asset holdings are

ct = (1− β)nt, (12a)
dt+1
R

= βnt. (12b)

Notice that individual consumption depends only on present net worth and
not on whether the agent has an investment opportunity today. Because
marginal utility is independent of whether or not there is an investment
opportunity, there are no gains from insurance (such as the agent receives a
bonus if she has an investment opportunity while pays a premium if not).
A steady state equilibrium of our small open economy is characterized by

the wage w and the new plant price b, together with the quantity choices of
savers/plant owners (c, d, h, z, y), engineers (c, h, i), and foreigners (who have
net asset holdings D∗), such that the markets for goods, tools, plant, and
bonds all clear.

3 Pure Equilibrium with No Stopping

We use a guess and verify method to characterize equilibrium. Suppose that
in the steady state, no plant owner shuts down his plant until it depreciates
exogenously. Then the value function (5) is the present value of net cash flow
into the indefinite future:

V (z;w,R) = yt − wht +
λ

R
(yt+1 − wht+1) +

(
λ

R

)2
(yt+2 − wht+2) + ...

An optimal sequence {ht, zt+1, ht+1, zt+2, ht+2, . . .} equates the discounted
sum of marginal product to the wage (see Appendix B for the derivation):

w =
λ

R
aη
zt+1
ht

+

(
λ

R

)2
aη
zt+1
ht

θ
zt+2
zt+1

+

(
λ

R

)3
aη
zt+1
ht

θ
zt+2
zt+1

θ
zt+3
zt+2

+ . . . (13)

The first term on the right hand side is the marginal impact of a date-t tool
on output yt+1 through its impact on plant productivity zt+1. The second
term is the marginal impact of the date-t tool on yt+2 through its impact on
zt+1 which impacts zt+2. The third term is the marginal impact of the date-t
tool on yt+3 through its impact on zt+1 which impacts zt+2 which in turn
impacts zt+3.
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Multiplying through by ht and simplifying, we get

wht =
λ

R
ηyt+1 +

(
λ

R

)2
ηθyt+2 +

(
λ

R

)3
ηθ2yt+3 + . . . (14)

The present wage bill for engineers equals the present discounted value of
a fraction η of tomorrow’s output, plus a fraction ηθ of output two periods
later, plus a fraction ηθ2 of output three periods later, etc.
An engineer raises funds by selling new plant at price

b =
1

R
V (1;w,R)

=
1

R
a+

λ

R2
yt+1(1− η) +

λ2

R3
yt+2(1− η − ηθ) + . . . (15)

All plant starts with productivity z = 1. Moreover, investment generates
an equal number of plant and tools, which have the same technological de-
preciation rate 1− λ. If no plant is stopped, the ratio of tools to plant stays
one-to-one. Then because

z′ = zθhη = 1 when z = h = 1,

all plant is maintained at initial productivity z = 1 until the exogenous death
of plant through depreciation. Output per unit of plant is unchanged from
the initial level:

yt+1 = yt+2 = yt+3 = . . . = a.

The engineer’s fund-raising capacity b becomes

b =
1

R
a +

λ

R2
a(1− η) +

λ2

R3
a(1− η − ηθ) + . . . (16)

Notice how the plant owner’s share declines in more distant future output:
1, 1− η, 1− η − ηθ, . . .
In Figure 1, the horizontal axis is time horizon: t measures how far dis-

tant future is from present. The vertical axis is output, and the shares of
future output for the plant owner and engineers as functions of time horizon.
The parameters and equilibrium wage rate w shown in the figure. In pure
equilibrium with no stopping, output is yt = a. The downward sloping curve
is the share of future output the plant owner obtains. Think of this as his
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Figure 1: Horizons of owner’s contribution to firm’s revenues.

rightful reward for his "contribution" to those revenues, stemming from the
initial productivity z = 1 of the plant that he paid to own.
By calculating the present value of the engineers’payoff from new plant

1

R
w +

λ

R2
w +

λ2

R3
w + . . .

= 0 +
λ

R2
aη +

λ2

R3
a(η + ηθ) +

λ3

R4
a(η + ηθ + ηθ2) + . . . (17)

we see that, correspondingly, the engineers’share rises in more distant future
output: 0, η, η+ηθ, η+ηθ+ηθ2, . . .The gap between output and the owner’s
share in Figure 1 is the engineers’share of future output. Intuitively, as the
cumulative contribution of engineers’human capital to plant productivity
rises with horizon, the effects of the plant’s initial productivity —essentially
what a saver gets when he buys a new plant —tails off. Figure 1 illustrates
why the plant owner’s share (investing engineer’s pledgeable return) is largely
near-term, and she raise funds against near future revenue.11

11Notice that Figure 1 shows which shares of future output belongs to the plant owner vs.
engineers as a function of time horizon —how distant is the future from now. Because wage
reflects contribution to future output and past wage payment is sunk cost, the realized
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Take a special case of constant returns to scale maintenance technology
η + θ = 1 and no depreciation λ = 1. The value function of plant with no
stopping is

V (z) = az +Max
h

[
−wh+

1

R
V (zθh1−θ)

]
.

The first order condition for h implies

w =
1

R
(1− θ)V ′(z′)z

′

h
=

1

R
(1− θ)V ′(z′)

(z
h

)θ
. (18)

We guess the value function to be proportional to z as

V (z) = υz = az +
θ

R
υz′

= az +
θ

R
V (z′). (19)

Because h and z′ are proportional to z from (18) and V ′(z) = υ, we verify
the guess.
This expression (19) is identical to the bilateral bargaining between Emma

(engineer) and Sam (plant owner) if the bargaining powers of Sam and Emma
are θ and 1 − θ. In bilateral bargaining, because Sam needs Emma every
period, he only obtains θ < 1 fraction of the continuation value of the plant
at the end of next period. In our baseline model, because the wage bill of
engineers equals a fraction 1 − θ of the next period value V ′(z′)z′ = V (z′)
under constant returns to scale maintenance technology from (18) , the plant
owner captures only θ fraction of the continuation value as in (19).
In particular, in Pure Equilibrium with No Stopping, we have z = h =

1 = z′ and
b =

1

R
V (1) =

1

R
υ =

a

R− θ .

In both bilateral bargaining and competitive market cases, the saver (Sam)
is willing to provide fund to the investing engineer (Emma) at the time of
investment only against near-term revenue. An advantage of using a com-
petitive framework with non-exclusivity constraint is that we can analyze
dynamics of economy without specifying details of bilateral bargaining when

division of output does not change with the age of plant in Pure Equilibrium with No
Stopping: a− w to the plant owner and w to engineers.
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each agent may or may not have an investment opportunities at each future
date.
Returning to the general baseline model, we can aggregate across en-

gineers and savers to obtain aggregate tool holdings Ht+1, financial asset
holdings Dt+1/R, consumption Ct, and net worth of engineers and savers(
NE
t and N

S
t

)
:

(x+ q − b)Ht+1 = βNE
t , (20a)

Dt+1

R
= βNS

t , (20b)

Ct = (1− β) (NE
t +NS

t ), (20c)

NE
t = πE [w + λ(x+ q − b)]Ht + πSDt, (20d)

NS
t = (1− πE) [w + λ(x+ q − b)]Ht + (1− πS)Dt.(20e)

Equation (20a) says the aggregate capital value of tools equals the aggregate
net worth of engineers after subtracting their consumption, and equation
(20b) says the aggregate value of financial assets equals the aggregate net
worth of savers after consumption. In equation (20c), aggregate consumption
equals a fraction 1−β of the aggregate net worth of domestic residents. The
aggregate net worth of engineers is the sum of the net worth of continuing
and new engineers in equation (20d), and the aggregate net worth of savers
is sum of the net worth of new and continuing savers in equation (20e).
The economy exhibits endogenous growth G: along a steady state path,

such that
Ht+1

Ht

=
Dt+1

Dt

=
Ct+1
Ct

= G,

GNE
t = NE

t+1 = πEREβNE
t + πSRβNS

t ,

GNS
t = NS

t+1 = (1− πE)REβNE
t + (1− πS)RβNS

t .

Substituting out Ns
t

NE
t
, we find that G solves

G = πEREβ + πSRβ
(1− πE)REβ

G− (1− πS)Rβ
. (21)

The growth rate depends on the rates of return for engineers and savers as
well as on the wealth distribution between them.

18



Now, under certain conditions, we can verify our initial guess that no
plant owner stops in the steady state:12

Proposition 1: If the opportunity cost for using building for produc-
tion is smaller than some critical value f critical, then there is a steady state
equilibrium in which
(a) no plant owner stops;
(b) the aggregate ratio of tools to plant stays one-to-one: h = 1;
(c) all plant is maintained at the initial productivity level: z = z∗ = 1;
(d) All plant has output y = a.

We call this a Pure Equilibrium with No Stopping, that exists when
the model’s parameters lie in the P-Region. In Appendix B, we derive a
suffi cient (but not necessary) condition for the existence of a pure equilibrium
with no stopping:

f < a
R(1− θ − η)

λ(1− θ)

[
1− R− λ

R

(
R− λθ
R

) η
1−θ−η

]
. (22)

4 Mixed Equilibrium

What happens if the condition for the pure equilibrium with no stopping is
violated, i.e. the opportunity cost is higher than the critical level f critical in
Proposition 1? It turns out there is a clear dichotomy for the plant owner
between continuing forever and stopping after a finite number of periods (for
a given wage and interest rate):

Lemma:
(a) If the current plant productivity z is below some cutoff value, z†, it is
optimal for the plant owner to stop after, say, Tmax(z) <∞ periods.
(b) If z is above z†, it is optimal to continue forever.
(c) The cutoff value z† increases with the opportunity cost f . It is also a
function of the wage rate and the interest rate.

In Figure 2, we plot the per-unit plant value, as a function of the current
productivity z, for a given wage w and interest rate R, and for different

12All proofs and details of derivations are in Appendix B. Proposition 3(b) is demon-
strated numerically.
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Figure 2: Value functions and stopping horizons.

stopping horizons T . The function S∞ (z;w,R) is the value when the plant
owner chooses to maintain production forever. The upper envelope of all
these functions is the value function of plant V (z;w,R) with an optimal
choice of stopping (including non-stopping). If z is very low, then it is optimal
for the owner to shut down the plant immediately after present production.
Thus, if z is not very low but lower than z†, the owner will shut down plant
not immediately but in a finite horizon, where the horizon is an increasing
function of z. At z = z†, the plant owner is indifferent between continuing
forever and shutting down in a finite time (for this numerical example, in 20
periods). If z is higher than z†, the plant owner will continue forever —that
is, until the plant dies exogenously.
In Figure 3, we plot ST (z;w,R) as a function of horizon T for three differ-

ent levels of plant productivity, z = 0.9z†, z†, and 1.1z†. If plant productivity
is relatively low, at z = 0.9z†, then the value reaches a maximum with finite
horizon: for our example, around T = 15 so that the owner will shut down in
15 periods. If plant productivity is exactly equal to z†, then the plant owner
is indifferent between shutting down in 20 periods (T = 20) and continuing
forever (T = ∞). If plant productivity is relatively high, at z = 1.1z†, then
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Figure 3: Value functions ST (z) near threshold z† where plant owner is
indifferent between stopping in a finite horizon or continuing forever.
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the owner finds that S∞ (z;w,R) > ST (z;w,R) for any finite T so that he
will continue forever.
In general equilibrium, the wage rate w and the value of z† are endoge-

nous. The aggregate dynamics of net worth, tools, financial asset holdings
and consumption are still described by equations (20a)−(21) but, in contrast
to Proposition 1, there is now stopping:

Proposition 2: If the opportunity cost for operating a unit of plant f
is larger than a critical value f critical from Proposition 1, then there is an
equilibrium in which:
(a) Plant owners are initially indifferent between stopping in finite time

T and continuing forever: z† = 1; in particular,
(i) if the initial output is larger than the opportunity cost, a > f , then

plant owners are initially indifferent between stopping in finite time T ≥ 1
and continuing forever, whereas

(ii) if the initial output is smaller than the opportunity cost (a <
f), then plant owners are initially indifferent between stopping immediately
(T = 0) and continuing forever;
(b) The aggregate ratio of tools-to-plant is larger than one-to-one for

continuing plant: h > 1;
(c) With decreasing returns to scale, θ + η < 1, the productivity of con-

tinuing plant increases over time, converging to some z∗ ∈ (1,∞); whereas
with constant returns to scale, θ+η = 1, the productivity of continuing plant
grows at some constant rate g > 1;
(d) If f ∈ ( f critical, a), then the productivity of stopping plant decreases

over time;
(e) There is no equilibrium where all plant stops in finite time.

We call this aMixed Equilibrium, that exists when the model’s para-
meters lie in theM-Region (the complement of the P-Region). Within this
region, the initial productivity is exactly equal to the critical productivity z†

for shutting down, so that some plant is stopped and some continues forever
(modulo depreciation). Because the owners of stopping plant do not hire
many tools, the aggregate ratio of tools to plant is larger than one-to-one for
continuing plant: h > 1. With an abundant supply of tools per plant, contin-
uing plant keeps improving in productivity. If the maintenance technology
has decreasing returns to scale, θ+η < 1, the productivity of continuing plant
converges to some finite steady state level z∗. If the maintenance technology
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has constant returns to scale, θ+ η = 1, the productivity of continuing plant
grows at some rate g > 1. Therefore, even though all plant is homogeneous
when new, some plant improves in productivity while the rest fails to main-
tain productivity and eventually exits (or immediately exits if a < f). That
is, firms evolve heterogeneously in their productivity and output even though
they start off homogenous and face no idiosyncratic shocks.13

If all plant were to stop in finite time, the market for tools (engineers)
would be in excess supply: because of exit the quantity of active plant would
be smaller than tools, plus there would be little demand for tools by plant
owners who are planning to stop, so the equilibrium wage rate for tools
would fall to the point where at least some plant owners switch strategy and
continue forever.

5 Effects of Falling Interest Rate

Figure 4 adds to Figure 1 the opportunity cost of using operating plant
instead of liquidating in Pure Equilibrium with No Stopping. The grey and
red heights are the plant owner’s share of output net of the opportunity cost
f . In the near horizon his net share is positive (the grey area), as might
be expected. But in the far horizon his net share has switched to become
negative (the red area).

This begs the question: Why doesn’t the plant owner shut down at this
point and liquidate the plant? The reason is that, while the present wage bill
equals the present value of engineers’current contribution to future revenues,
past wage bills are sunk costs for the plant owner. As long as the present value
of his future cash flows exceeds the opportunity cost, a − w > f , the owner

13This is different from the standard approach taken by Jovanovic (1981) and Hopen-
hayn (1992) in which initial heterogeneity and/or subsequent heterogeneity (induced by
idiosyncratic shocks) are essential to firm dynamics. Even allowing for idiosyncratic shocks
(see Section 5), our approach may provide a different perspective on firm dynamics. Our
model is more closely related to, for example, Atkeson and Burnstein (2010), Clementi and
Palazzo (2016), Ericson and Pakes (1995), Klette and Kortum (2004), and Rossi-Hansberg
and Wright (2007), all of which stress the interaction between heterogeneity, idiosyncratic
shocks, and investment.
Griliches and Regev (1995) presents evidence that the productivity of many firms starts

deteriorating before exiting, calling it the "shadow of death.”
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Figure 4: Horizons of owner’s contribution to firm’s revenues.

wants to continue with maintenance and production. The following Figure
illustrates the relationship between the forward looking and sun cost aspects
of wage costs. At date t, the area above the curve ABC is the contribution
of the cumulative maintenance effort of the engineer to future output of
each horizon, representing the engineers’share. The area below ABC is the
contribution of the date-t productivity to future output, representing as the
share of the plant owner.
When the plant evolves as time passes from date t to t′, the horizon

starts from date t′. The plant owner considers date-t′ productivity as his-
tory, considers the past wage wt, wt+1, ..wt′−1 as sunk cost, and derives the
continuation value of the plant as the present value of the area under the
curve A’B’C’. (The present value of the area A’BCC’B’A’ corresponds to
the contribution of the past engineering service for the earnings from date
t′ onward, for which the owner already paid.) When there is no change in
plant productivity nor earning, there is no change of owner’s value nor the
engineer’s wage, i.e., Vt = Vt′ and wt = wt′ . When the plant evolves to date
t”, the owner derives the value as the present value of the area under the
curve A"B"C". Thus the owner’s share of future earning being front-loaded
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and the engineer’s share being back-loaded does not mean that the profit is
declining and the wage is increasing with real time. When we observe the
data of profit and wage, they are more or less stationary over time.14 But
under this stationary surface, the plant owner anticipates a fraction η of con-
tinuation value to be paid to the engineer as a bonus every future period and
derives the value largely from his share of earning in the short horizon.
The past wage being a sunk cost explains why the owner does not liquidate

the plant after some periods, even if the owner’s share of earning declines
with horizon and the owner can liquidate his plant into a generic building
to recover the building value. As long as the present value of future profit
(the continuation value) is larger than the liquidation value of the plant, the
owner chooses to continue production.15

Because terms in the more distant future are more sensitive to a per-
manent change of interest rate, a fall in R may not expand the engineer’s
fund-raising capacity as much as the building price. In particular, when
θ + η = 1, we can solve (16):

b =
a

R− λθ . (23)

Notice that the plant owner’s share of gross output decreases with the horizon
by factor λθ, because the owner in effect pays to engineers an increasing
fraction of more distant future output for their maintenance services. In
contrast, the engineer’s investment cost per unit equals

x+ q = x+
f

R− λ
14Thus the implications of our credit horizon model are very different from the dynamic

contract literature in which the owner chooses the agent’s wage to be back-loaded in order
to induce her effort, when the earning depends upon the agent’s unobservable effort and
idiosyncratic temporary shocks.
15We often hear the criticism of a capitalist economy that the horizon of shareholders

and managers are too short-term. Superficially our framework appears to be consistent
with this criticism. The plant owners —who correspond to shareholders and managers —
derive value mainly from the plant’s near-term revenues, in so far as they are obliged to pay
engineers —their key personnel —a fraction of the plant value as a reward for maintaining
the plant. In our framework, the plant owner deriving largely from near future revenues
is not distortionary once investment takes place, but can limit the ability for engineers to
raise fund at the time of investment. This will lead to under investment relative to the
first best allocation as will be seen below.
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which is the sum of goods and building cost per unit. Since λ > λθ, building
has a longer horizon than the owner’s share of gross output: a fall in R does
not expand the present value of the plant owner’s share of gross revenues
(engineer’s pledgeable returns) in (23) as much as the unit investment cost.
This can increase the downpayment x+ q − b which the engineer has to pay
from her net worth.

Proposition 3 (Pure Equilibrium with No Stopping):
(a) For an open subset of the P-Region, in particular for R and λ not

too far from unity, there is a pure equilibrium with no stopping such that
an unexpected permanent drop in the interest rate R leads to a lower steady
state growth.
(b) Immediately following the drop in R, all agents (engineers and savers)

can be strictly worse off.

In a pure equilibrium with no stopping, an unexpected permanent drop
in the interest rate R leads to a lower steady state growth rate G if πS = 0
and

f > a
R− λ(θ + η)

R− λθ − aG− βRπ
E

G− βλπE
λη(R− λ)

(R− λθ)2
. (24)

This inequality and a suffi cient condition for the existence of Pure Equilib-
rium with No Stopping (22) are mutually consistent if R and λ are not too
far from unity.16

To understand why a fall in R can stifle investment and growth, consider
the effect on the equation for gross investment:

gross investment (Ht+1) ↓ =

β
saving rate

×
net worth of engineers

(
NE
t

)
↑

investment cost (x+ q) ↑↑ − borrowing capacity (b) ↑ .

16If πS > 0, then a suffi cient condition for the growth rate to fall with an unexpected
permanent drop in the interest rate is that

λ (1− θ) f > (R− λ)2x+ λ(1− θ − η)a.

This condition guarantees that the rate of return for an investing engineer is an increasing
function of the interest rate. See Appendix B. Because — unlike (24) — this condition
involves x, it cannot be readily juxtaposed with (22).
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Although engineers’net worth increases with a fall in R (primarily through a
rise their wage w), a decrease in their borrowing capacity may have a larger
negative effect on investment, and therefore on growth. Much of the macro
finance literature (including Bernanke and Gertler (1989) and Kiyotaki and
Moore (1997)) has emphasized effects on net worth in the numerator. Here
we are focussing on the effect on borrowing capacity in the denominator.
In terms of welfare, a fall in R can make all domestic agents (engineers

and savers) strictly worse off. It is not surprising that savers may be worse
off with a lower rate of return on financial assets. The reason why engineers
may be worse off is that their leveraged rate of return

RE =
w + λ(x+ q − b)

x+ q − b
can fall though increase of downpayment x + q − b. Appendix B derives
the welfare of engineers and savers immediately after an unanticipated and
permanent fall in the interest rate, taking into account the stochastic arrival
of future investment opportunities.
Suppose the economy was in steady state at date t − 1, for a presumed

constant interest rate. Unexpectedly at date t, the interest rate falls perma-
nently. If the parameters satisfy the condition of Proposition 2(a), then the
long-run growth rate falls. Figure 5 shows the movement of the aggregate
values of investment, consumption, output and foreign debt holdings, when
the real interest rate unexpectedly falls from 2.5% to 1.5% permanently at
date 5.
Initially, the measured value Imt of total investment value increases be-

cause buildings are more expensive and the new engineers have greater net
worth due to capital gains on the buildings they hold from the previous
period. Consumption increases too, with the greater net worth. Because
domestic absorption (investment and consumption) expands more than out-
put, foreign debt rises rapidly during the transition. Despite the boom, the
growth rate of plant and human capital eventually falls. As the boom fades,
the slower growth of productive capacity, exacerbated by a larger foreign
debt-to-income ratio, causes secular stagnation.17

It has been observed that during the credit and asset price booms in Japan
in the late 1980s and in southern Europe in the early 2000s, the aggregate
17This sequence of events may correspond better to southern European countries in the

early 2000s than to Japan in late 1980s, insofar as the fall in their interest rate was fast
and considered to be permanent.
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Figure 5: Impluse Response to Permanent Fall in Interest Rate
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values of credit and assets grew faster than productive capacity. (See Hoshi
and Ito (2020) and Gopinath, Kalemi-Ozcan, Karabarbounis and Villegas-
Sanchez (2017)). In the macro-finance literature, many authors have ob-
served that credit booms associated with asset price booms are often followed
by financial crises. (See for example, Reinhart and Rogoff (2008), Schularick
and Taylor (2012) and Jorda, Schularick and Taylor (2018).) These authors
consider such booms as being associated with excessive expansion of credit
and assets values. Our model provides a different perspective, even though
we do not deny the possibility of excessive assets values.
From this perspective, a persistently lower real interest rate leads to an

initial credit and asset value boom, but stagnation in the long run, not be-
cause the boom was excessive, but because the underlying growth rate of the
productive capacity declined.18

For the Mixed Equilibrium we have limited analytical results, and derive
our findings by numerical simulations:

Proposition 4 (Mixed Equilibrium)

An unexpected permanent drop in the interest rate R can lead to a lower
steady state growth rate G.

In Figure 6, we illustrate how nine endogenous variables depend on the
interest rate R in the range between 1 and 1.03 (between 0 and 3% net) in
steady state equilibrium. We choose the parameters so that the economy is
in the pure no-stopping region (P-Region) for R ∈ [1.015, 1.03] and in the
mixed equilibrium region (M-Region) for R ∈ [1, 1.015).

18Another, complementary, perspective to ours is that credit and asset price booms as-
sociated with lower interest rates tend to lead to greater misallocation of capital when the
domestic financial system is underdeveloped. See, for example, Aoki, Benigno and Kiy-
otaki (2007), Reis (2013), Gopinath, Kalemi-Ozcan, Karabarbounis and Villegas-Sanchez
(2017), and Asriyan, Martin, Vanasco and Van der Ghote (2020).
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θ share of past productivity in maintenance 0.9
η share of engineer in maintenance 0.09
λ one minus depreciation rate 0.98
a productivity 1
f opportunity cost 0.2091
x investment cost per plant 6.127
β utility discount factor 0.92
πE probability of staying to be engineer 0.7
πS probability of saver to become engineer 0.1
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Figure 6: Lower real rate, credit horizons and stagnation.

In the top-left panel of Figure 6, the wage rate is a decreasing function of
the interest rate because an engineer’s contribution to future output through
maintenance work has a long horizon. In the top-middle panel, the engineer’s
borrowing capacity increases with the interest rate because the plant owner’s
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share of output has a shorter duration than opportunity cost. Notice that
this effect is smaller in the M-Region, with an endogenous adjustment of
the fraction of stopping plant (extensive margin) and of the stopping time
(intensive margin). In the top-right panel, the economy’s growth rate is an
increasing function of interest rate, albeit that the sensitivity is weaker in
the M-Region.
In the middle-left panel, the asymptotic plant productivity z∗equals 1

in the P-Region and is a decreasing function of R in the M-Region. The
threshold plant productivity for continuing and stopping z† equals 1 (initial
productivity) in the M-Region (consistent with plant owners being indifferent
between stopping and continuing) and is a decreasing function of R in the P-
Region (consistent with plant owners gaining more indirectly from the lower
wage rate than hurting directly from the higher interest rate). In the middle-
middle panel, the number of periods before stopping (Tmax) is finite and is
an increasing function of R for those who choose to stop in the M-Region.
In the P-Region, no-one stops and Tmax =∞. In the middle-right panel, the
fraction of stopping plant is zero in the P-Region and is a decreasing function
of R in the M-Region.
In the bottom-left panel, we see that the net financial asset holdings of

foreigners is negative, i.e., domestic residents lend to foreigners in net terms.
Despite the foreign interest rate being lower than the subjective interest rate
(R < 1/β) , the domestic economy has a shortage of means of saving due to
the financial friction and needs to make use of foreign bonds. With a lower
interest rate, the financing constraint is tighter and domestic savers hold a
yet larger position in foreign bonds. In the bottom-middle panel, the welfare
of a representative engineer (who holds the average net worth of engineers)
is an increasing function of R in the P-Region, i.e., welfare is lower with
lower R. In our example, when R falls from 1.03 to 1.015 unexpectedly and
permanently, the welfare of a representative engineer falls by the equivalent
of a 0.12% permanent fall in consumption. We do not have comparable
results for the M-Region, because one cannot define simply what is meant by
a representative engineer. In the bottom-right panel, the welfare of savers is
an increasing function of R in the P-Region. The effect on savers is larger:
when R falls from 1.03 to 1.015 unexpectedly and permanently, their welfare
falls by the equivalent of a 1.2% permanent fall in consumption.
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6 Extension: idiosyncratic uncertainty

In the model thus far, even though plant produces output deterministically,
we find that equilibrium plant dynamics emerge in the mixed equilibrium
where some plant owners hire insuffi cient engineers to maintain plant pro-
ductivity and slowly exit. In this section, we further connect our theory to
the literature on plant dynamics by introducing idiosyncratic shocks to plant
productivity. We study how these shocks affect plant owners’decisions on
maintenance and exit.
Let us modify the production technology (4) to:

plant of productivity z
h tools

}
→


y = az goods

λ plant of productivity z′ = εzθhη

λh tools
,

where ε is an idiosyncratic productivity shock, i.i.d. across plant and over
time. It follows a lognormal distribution whose mean is normalized to one:

log ε ∼ N(−σ
2

2
, σ2).

The value of a unit of plant of productivity z at the end of a period is

V (z) = az +Max

{
q, max

h
[−wh+

λ

R
EV (εzθhη)]

}
. (25)

Compared with the plant value without productivity uncertainty, the only
difference is that the continuation value of the firm is subject to the idiosyn-
cratic shock, ε.
To illustrate the effect of the idiosyncratic shock, we continue with the

numerical example in the previous sections (θ = 0.9, η = 0.09, λ = 0.98,
a = 1, f = 0.2091, R = 1.015, and w = 0.6497).
When the productivity shock has a small variance, the owner’s produc-

tivity maintenance decision is similar to that in a deterministic environment.
Figure 7 illustrates the maintenance decision, h, and the expected produc-
tivity in the following period, z′, when idiosyncratic shocks have a small
dispersion, σ = 0.0001. In this case, there still exists a dichotomy between
those plants that the owners intend to exit and those that the owners intend
to continue. If current plant productivity z is below a critical value, z†, the
plant owner does not hire much maintenance service and most likely exits in
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Figure 7: Productivity maintenance with small idiosyncratic risk, σ = 0.0001.
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random finite number of periods but not immediately. If z is above z†, the
plant owner hires distinctively larger engineering service and continues oper-
ating until the plant dies exogenously, unless extremely unlucky idiosyncratic
shocks bring down the plant productivity below z†.
At z = z†, the plant owner has two distinct optimal levels of maintenance:

his expected value from maintenance has twin peaks. If he chooses the slow
exit strategy, he saves some maintenance costs but receives less profit from
future production. If he chooses to continue operating the plant for the long
haul, he pays more to maintain the plant and in return receives more profit
from future production. The maintenance input h and expected productivity
z′ increase discontinuously as current productivity z moves up across the
critical value z†, as the plant owner finds it optimal to operate the plant for
the long haul.
Figure 8 illustrates the plant owner’s maintenance decision, h, and pro-

ductivity distribution in the following period, z′, when the idiosyncratic
shocks are large, σ = 0.02. In the figure on realized productivity, z′, the
blue curve represents the expected productivity in the following period. The
red curves represent the realized productivity that are three standard devi-
ations above or below the expected value. With large productivity shocks,
the dichotomy between exiting and continuing is blurred: the plant owner’s
maintenance input is a continuous function of the current plant productiv-
ity z. This is because even when the plant owner would like to improve
productivity, a large negative idiosyncratic shock may still lead to a low pro-
ductivity. This smooths the plant owner’s expected payoff from maintenance
and makes it single-peaked.

7 Policy

When the competitive equilibrium is not effi cient, it is natural to ask whether
the government could improve welfare through taxes and subsidies. The
sole departure from the Arrow-Debreu model in our framework is the non-
exclusivity constraint: a saver who buys plant from an engineer (the creditor
who lends to the engineer against the plant) cannot prevent this engineer
from working for another plant in future. In effect, we are supposing it is
impossible to keep track of each engineer’s trading history.
However, because the plant is easy to locate, it may be possible for the
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Figure 8: Productivity maintenance with large idiosyncratic risk, σ = 0.02.
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government to keep track of how much the plant owner buys the maintenance
services of engineers —even though government does not know the identity of
engineers. Suppose government can tax the payroll for engineers of each plant
owner at rate τ , and use the tax revenue to subsidize engineers by s per unit
of investment. We ignore idiosyncratic shocks to the realized productivity
after maintenance and restrict our attention to the steady state of a Pure
Equilibrium with No Stopping (the parameters lie in Region P). We assume
the government’s budget is balanced:

τwH = sI = s(G− λ)H.

τwH is the payroll tax revenue and sI = s(G−λ)H is the investment subsidy.
Because plant owners equate the marginal contribution of engineers’ex-

pertise to the wage cost including the payroll tax, we have

(1 + τ)w = wo =
ηλ

R− λθa, (26)

where wo and w are wage rates for the plant owners and engineers. The last
equality comes from (13) with ht = zt = 1 in the steady state. Notice that
the payroll tax does not affect the wage cost to the plant owner, but reduces
the wage rate for engineers. Together, these equations imply that

s =
τ

1 + τ

wo

G− λ. (27)

The price of new plant is unchanged at

b =
1

R
V (1) =

a− wo
R− λ .

The budget constraint of the agent becomes

ct + (x+ q − b− s)it +
dt+1
R

= wht + dt.

Solving for the individuals’choices and aggregating across agents, we get

(x+ q − b− s)Ht+1 = βπE [w + λ(x+ q − b− s)]Ht + βπSDt,

Dt+1

R
= β(1− πE) [w + λ(x+ q − b− s)]Ht + β(1− πS)Dt.
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As in (21), the steady state growth rate becomes

G = βRE

[
πE +

πS(1− πE)Rβ

G− (1− πS)Rβ

]
, (28)

where the rate of return for the engineer to invest with maximum leverage is

RE =
w + λ(x+ q − b− s)

x+ q − b− s

=
wo

(1 + τ)(x+ q − b)− τ wo

G−λ
+ λ,

using (26, 27) . Then we learn that the rate of return from investment changes
with the tax and subsidy in the neighborhood of τ = 0 as

∂RE

∂τ
=

w

(x+ q − b)2

[
w

G− λ − (x+ q − b)
]

=
w

(x+ q − b)(G− λ)

[(
w

x+ q − b + λ

)
−G

]
=

w

(x+ q − b)(G− λ)
(RE −G). (29)

Because the growth rate of the economy G is the weighted average of the
growth rate of engineers, βRE, and savers, βR, where RE > R in our econ-
omy, we learn G < βRE < RE and

∂RE

∂τ
> 0.

The equilibrium growth rate in (28) solves

βπERE =
G

πE + πS(1−πE)βR
G−(1−πS)βR

.

Since the RHS is an increasing function of G, we have

∂G

∂τ
> 0.

Thus the introduction of this tax and subsidy scheme increases steady state
investment, and therefore growth, relative to the laissez-faire.
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To get a handle on the overall effect of this policy intervention on the
welfare of the domestic economy, we define a measure of social welfare as the
population-weighted average of the expected discounted utilities of engineers
and savers. The point is that we need to account for any short-term losses
(as well as gains) at the time the policy is introduced, in addition to the
longer-term benefits of higher growth. We show in Appendix B that, by this
measure, social welfare goes up.
Why? In our framework, because of the non-exclusivity constraint (an

individual engineer can work for any plant owner without getting traced by
her creditors ex post), the engineers each face a borrowing constraint ex ante
at the time of investment. By taxing the payroll of the plant owners, the
government in effect acts as a collective creditor —the receipts from which,
when fed back to the engineers, subsidize investment. It is as if, through
the government intervention, the engineers as a group promise to pay back
a portion of each others’debt obligations.19 Crucial to the effectiveness of
this policy is the government’s ability to keep an eye on all the various units
of plant (presumed to be fixed in buildings), to tax the owners’payments
to engineers, in a context where the identities of the engineers themselves
cannot be traced.

19In our model, the burden of the payroll tax is entirely borne by the engineers, because
plant owners face unchanged wage costs and plant prices. In this sense, it is the most
favorite case for the tax-subsidy scheme to boost the growth rate. In more general model,
the tax burden would be split between the engineers and plant owners.
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9 Appendix

9.1 Appendix A

In the main text, we assume that output is proportional to plant productivity.
More generally, suppose that gross output ŷ depends upon plant productivity
ẑ and unskilled labor ĥ as

ŷ = âẑα1ĥα2 , where α1 + α2 ≤ 1.

Suppose there is a competitive labor market for unskilled workers at wage
rate ŵ. Then we can define the per-unit gross profit of a plant owner as

y = Max
ĥ

(
âẑα1ĥα2 − ŵĥ

)
= az, (30)

where

z = ẑ
α1

1−α2 ,

a = (1− α2)
(α2
ŵ

) α2
1−α2 â.

If the supply of unskilled labor is perfectly elastic, we can treat a as exogenous
—this is the case of our model. (Otherwise, we need to take into account the
general equilibrium effect on a through ŵ.)
If plant productivity depends upon initial plant productivity and human

capital of engineer h as

ẑ′ = ẑθhη̂, where θ + η̂ ≤ 1.

we can rewrite this as

z′ = zθhη, where η =
α1

1− α2
η̂. (31)

Thus we obtain the formulation in the text: (30, 31) .
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9.2 Appendix B

9.2.1 Individual Choice

An individual agent takes wage, building price, plant price and interest rate
$ = {w, q, b, R} as given. An engineer chooses consumption, gross invest-
ment on tools and financial assets (c, h′, d′) as a function of net worth n to
maximize V E(n;w, b,R),

V E(n;$) = Max
c,h′,d′

{
ln c+ β

[
πEV E(n′;$) + (1− πE)V S(n′;$)

]}
, (32)

subject to the budget constraint

c+ (x+ q − b)h′ + d′

R
= n, and n′ = [w + λ (x+ q − b)]h′ + d′.

Define the leveraged rate of return on investment as

RE =
w + λ (x+ q − b)

x+ q − b .

The first order conditions of the engineer’s optimization problem are

1

c
≥ RE β

c′
, where = holds if h′ > 0,

1

c
≥ R

β

c′
, where = holds if d′ > 0.

Thus if RE > R, we have d′ = 0, (11a, 11b) and

n′ = REβn. (33)

A saver chooses consumption and financial assets (c, d′) as a function of net
worth n to maximize

V S(n;$) = Max
c,d′

{
ln c+ β

[
πSV E(n′;$) + (1− πS)V S(n′;$)

]}
(34)

subject to the budget constraint

c+
d′

R
= n, and n′ = d′.
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Using the first order condition

1

c
= R

β

c′
,

we get (12a, 12b) and
n′ = Rβn. (35)

From these, we conjecture that the value functions of the engineer and
the saver are given by

V E(n;$) = νE ($) +
1

1− β lnn, (36a)

V S(n;$) = νS ($) +
1

1− β lnn. (36b)

From (11b, 33, 12b, 35) , the conjecture is verified if and only if

νE ($) = βπEνE ($) + β(1− πE)νS ($) +
β

1− β lnRE ($) + ln(1− β),

νS ($) = βπSνE ($) + β(1− πS)νS ($) +
β

1− β lnR + ln(1− β),

when there is no change of $ = {w, q, b, R} in the future. Then we get

νE ($) = β
(1− β + βπS) ln

(
RE ($)

)
+ β(1− πE) lnR

(1− β)2(1 + βπS − βπE)
+

ln(1− β)

1− β , (37)

νS ($) = β
βπS ln

(
RE ($)

)
+ (1− βπE) lnR

(1− β)2(1 + βπS − βπE)
+

ln(1− β)

1− β . (38)

The plant owner/saver’s choice is given by the value function (5) in the main
text. The first order condition for those who choose to continue operating
the plant this period is

w ≥ η
z′

h

λ

R
V ′ (z′; ς) , where = holds if h > 0, (39)

V ′(z; ς) = a+ θ
z′

z

λ

R
V ′ (z′; ς) . (40)
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where ς = {w, q, R} is aggregate state variables that the plant owner takes
as given. From these, if ht, ht+1, . . . > 0, we have

w =
λ

R

[
η
zt+1
ht

a+ η
zt+1
ht

θ
zt+2
zt+1

λ

R
V ′ (zt+2; ς)

]
=

λ

R
aη
zt+1
ht

+

(
λ

R

)2
aη
zt+1
ht

θ
zt+2
zt+1

+

(
λ

R

)3
aη
zt+1
ht

θ
zt+2
zt+1

θ
zt+3
zt+2

+ . . .

This is (13) in the text. Multiplying through by ht, and simplifying, we get
(14) in the text. Then we get

V (z; ς)

= (yt − wht) +
λ

R
(yt+1 − wht+1) +

λ2

R2
(yt+2 − wht+2) + . . .

= yt +
λ

R
yt+1(1− η) +

λ2

R2
yt+2(1− η − ηθ) + . . .

This implies (15) in the text.
If ht, ht+1 > 0, we can use (39, 40) to derive an alternative first order

condition as

w =
λ

R
η
zt+1
ht

a+
λ

R
wη

zt+1
ht

θ zt+2
zt+1

η zt+2
ht+1

=
λ

R
η
zt+1
ht

a+
λ

R
θ
ht+1
ht

w. (41)

Note that the second term on the right hand side equals the discounted wage
rate times the marginal rate of substitution between ht and ht+1 to keep zt+2
constant. Thus equation (41) says the marginal cost of increasing ht by one
unit equals the discounted value of marginal benefit —the sum of additional
output through zt+1 and saving of wage bill, keeping zt+2 constant.
In the case of constant-returns-to-scale maintenance technology, θ+η = 1,

we conjecture
S∞(z; ς) = aA∞z,

ST (z; ς) = aAT z +
λT+1

RT
q.
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For plant which continues forever, we conjecture and verify that

ht+1
ht

=
zt+1
zt

=

(
ht
zt

)1−θ
= g > 1.

Then from (41), we get

w =
λ
R
η zt+1

ht
a

1− λ
R
θg

=
λ (1− θ) a
R− λθg g−

θ
1−θ . (42)

Then from (5) , we learn that the Bellman equation for continuing plant holds
if and only if

A∞ =
R

R− λθg . (43)

For stopping plant in finite time, (39) implies that

w = (1− θ)
(
zT

hT

)θ
λ

R
aAT−1, (44)

where zT and hT are the productivity and tools of plant when it stops in T
periods. Then from (5) , we learn that the Bellman equation for continuing
plant holds if and only if

AT = 1 +
λ

R
θAT−1

(
1− θ
w

λ

R
aAT−1

) 1−θ
θ

= 1 +
λ

R
θgAT−1, (45)

for T ≥ 1, using (42), and A0 = 1.
When the maintenance technology is decreasing returns to scale, θ+ η <

1, we conjecture that the productivity of plant that continues forever will
converge to a steady state productivity

z = z∗.

Thus the amount of tools employed converges to

h = h∗ = (z∗)
1−θ
η .
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We also conjecture that

S∞(z; ς) = az∗U∞
( z
z∗

;R
)
,

ST (z; ς) = az∗UT
( z
z∗

;R
)

+
λT+1

RT
q.

Using (41) for plant to continue forever in steady state, we get

w =
ληa

R− λθ (z∗)−
1−η−θ
η . (46)

Define z̃ = z
z∗ . Using the relationship h =

(
z′

zθ

) 1
η , we get

wh

az∗
=

λη

R− λθ

(
z̃′

z̃θ

) 1
η

.

Thus the guess is verified if U∞(z̃) and UT (z̃) solve

U∞(z̃;R) = Max
z̃′

z̃ − λη

R− λθ

(
z̃′

z̃θ

) 1
η

+
λ

R
U∞(z̃′;R), (47)

UT (z̃;R) = Max
z̃′

z̃ − λη

R− λθ

(
z̃′

z̃θ

) 1
η

+
λ

R
UT−1(z̃′;R), (48)

for T ≥ 1 and U0(z̃;R) = z̃.

9.2.2 Market Clearing

In order to describe the aggregate economy, let Kt (τ) be the aggregate num-
ber of age-τ plant which continues forever at date t. Suppose some owners
choose to operate new plant for T periods and then stop. Let LT−τt (τ) be
aggregate number of age-τ plant which stops in T − τ periods at date t. A
plant that stops in 0 period stops at the end of the period, after production.
Then the laws of motion for Kt(τ) and LT−τt (τ) are

Kt(τ) = λKt−1(τ − 1),

LT−τt (τ) = λLT−τ+1t−1 (τ − 1) , for τ = 1, 2, . . . , T. (49)
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Let It be the aggregate investment at date t. We also have

It = Kt+1(0) + LTt+1 (0) , (50)

We also know that

b =
1

R
S∞(1; ς) =

1

R
ST (1; ς) in M-Region, (51)

b =
1

R
S∞(1; ς) and LTt (0) = 0 in P-Region.

Let zT−τt (τ) be the productivity of age-τ plant which stops in T−τ periods
at date t. Let hT−τt (τ) be the number of tools employed by one unit of age-τ
plant to stop in T − τ periods. Then the aggregate output and demand for
tools (and engineers) are given by

Yt =
∞∑
τ=0

az∞t (τ)Kt(τ) +
T∑
τ=0

azT−τt (τ)LT−τt (τ) , (52)

Ht =
∞∑
τ=0

h∞t (τ)Kt(τ) +
T∑
τ=0

hT−τt (τ)LT−τt (τ) . (53)

Aggregate domestic asset holding at the beginning of period t equals the sum
of gross profit and the value of plant from the last period minus net foreign
debt:

Dt = Yt − wHt −D∗t

+
1

R

[ ∞∑
τ=1

V (z (τ))Kt(τ) +
T∑
τ=1

ST−τ
(
zT−τt (τ)

)
LT−τt (τ)

]
. (54)

The goods market clearing condition is given by

Ct + (x+ q)It +D∗t −
D∗t+1
R

= Yt. (55)

Output equals consumption, investment and net export (which equals net
debt repayment to foreigners). One of the market clearing conditions for
output, tools and financial asset is not independent by Walras’Law.
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9.2.3 Pure Equilibrium with No Stopping

When no plant owner stops his plant, the total number of continuing plant
equals the total number of tools,

∞∑
τ=0

Kt(τ) = Ht,

and the ratio of tools to plant remains at the initial ratio

h∞t (τ) = 1, for all τ and t.

The plant productivity remains at the initial level as

z∞t (τ) =
[
z∞t−1 (τ − 1)

]θ [
h∞t−1 (τ − 1)

]η
= 1, for all τ and t.

Thus the plant growth rate g = 1 with constant-returns-to-scale maintenance
technology, steady state productivity z∗ = 1 with decreasing-returns-to-scale
maintenance technology, and

w =
ληa

R− λθ = w(R), (56a)

b =
a− w
R− λ =

a

R− λ
R− λ (θ + η)

R− λθ = b(R). (56b)

In order to show that non-stopping is an optimal strategy for the plant
owner, we need to check

b(R) >
1

R
Max
T

ST (1; ς(R)) =
1

R
Max
T

[aUT (1; ς(R)) +
λT+1

RT
q(R)], (57)

for any finite T, where UT (1;R) is given by (48) with decreasing returns to
scale and equals AT with the constant returns to scale maintenance technol-
ogy, and ς(R) = {w(R), q(R), R} takes into consideration the dependance of
wage rate and building price on interest rate R.
Then from (52, 54), we have

Yt = aHt,

Dt = (a− w)Ht + bλHt −D∗t . (58)

We also have

Ct = (1− β)[(w + λ(x+ q − b))Ht +Dt]. (59)
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From (20a, 55), we obtain the transitions:

(x+ q − b)Ht+1 = β
{
πE(w + λ(x+ q − b))Ht + πSDt

}
, (60a)

D∗t+1
R

= −aHt + Ct + (x+ q)(Ht+1 − λHt) +D∗t . (60b)

(w, q, b) is a function of R and the other parameters, and (Dt, Ct) is a function
of (Ht, D

∗
t ) and R (through w and b). Then, the perfect foresight equilib-

rium (aside from a unanticipated permanent shock on R) is characterized
recursively by

(
Ht+1, D

∗
t+1

)
as a function of (Ht, D

∗
t , R) .

In steady state, we can use (21) to find steady-state growth rate where

RE =
w (R) + λ [x+ q(R)− b (R)]

x+ q(R)− b (R)
.

9.2.4 Mixed Equilibrium

For the mixed equilibrium, we only describe the steady state equilibrium.

Mixed equilibrium under constant returns to scale maintenance
technology From (42, 43) , we have

w =
λ (1− θ) a
R− λθg g−

θ
1−θ = w(g;R)

b =
a

R− λθg = b(g;R).

Find
{
A1, A2, A3, . . . , AT

}
to solve (45) with A0 = 1 as a function of (g;R).

Find g to solve the indifference condition:

b(g;R) =
1

R
Max
finite T

[
aAT (g;R) +

λT+1

RT
q(R)

]
. (61)

Equilibrium stopping time is the solution to equation (61) for this equilibrium
g.
Then we can find the steady state growth rate from (21) by using

RE =
w(g;R) + λ[x+ q(R)− b(g;R)]

x+ q (R)− b(g;R)
.
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For plant that continues forever, because z∞(0) = 1, we get z∞(τ) = gτ and

h∞(τ) =

[
z∞(τ + 1)

(z∞(τ))θ

] 1
1−θ

= g
1

1−θ+τ .

For those stopping in T periods, we get from the first order condition (44)

hT−τ (τ)

zT−τ (τ)
=

[
(1− θ)λ
w/a

AT−τ−1
] 1
θ

=

(
AT−τ−1

A∞

) 1
θ

g
1

1−θ , (62)

for τ = 0, 1, 2, . . . , T−1. Because zT (0) = 1, we obtain {hT−τ (τ), zT−τ−1 (τ + 1)}
which satisfies (62) and

zT−τ−1 (τ + 1) =

(
AT−τ−1

A∞

) 1−θ
θ

gzT−τ (τ) ,

for τ = 0, 1, 2, . . . , T − 1.

Mixed equilibrium under decreasing returns to scale maintenance
technology With decreasing returns, from (46), we get

w =
ληa

R− λθ (z∗)−
1−θ−η
η = w(z∗;R).

For plant to continue for ever, we have from (47):

U∞(z̃) = Max
z̃′

[
z̃ − λη

R− λθ

(
z̃′

z̃θ

) 1
η

+
λ

R
U∞(z̃′)

]

z̃′ = argMax
z̃′

[
z̃ − λη

R− λθ

(
z̃′

z̃θ

) 1
η

+
λ

R
U∞(z̃′)

]
≡ ϕ∞(z̃)

Let z̃∞(τ) and h̃∞(τ) be productivity and number of tools of age-τ plant
which continues forever relative to the steady state. The we have

z̃∞(τ) = (ϕ∞)τ (z̃∞(0)) = (ϕ∞)τ
(

1

z∗

)
h̃∞(τ) =

[
z̃∞(τ + 1)

(z̃∞(τ))θ

] 1
η

.
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For plant to stop in T periods, we have from (48):

UT (z̃) = Max
z̃′

[
z̃ − λη

R− λθ

(
z̃′

z̃θ

) 1
η

+
λ

R
UT−1(z̃′)

]

z̃′ = argMax
z̃′

[
z̃ − λη

R− λθ

(
z̃′

z̃θ

) 1
η

+
λ

R
UT−1(z̃′)

]
≡ ϕT (z̃) ,

where U0(z̃) = z̃. Let z̃T−τ (τ) and h̃T−τ (τ) be productivity and tools of age-τ
plant which stops in T −τ periods relative to the steady state. Then we have

z̃T−τ (τ) = ϕT · ϕT−1 · . . . · ϕT−τ+1
(

1

z∗

)
h̃T−τ (τ) =

[
z̃T−τ−1(τ + 1)

(z̃T−τ (τ))θ

] 1
η

.

We then find z∗ to satisfy the indifference condition

az∗U∞
(

1

z∗

)
= Max

finite T

[
az∗UT

(
1

z∗

)
+
λT+1

RT
q(R)

]
(63a)

= Rb (z∗;R) (63b)

This common value under equilibrium z∗ is the engineer’s borrowing capacity.
Equilibrium stopping time equals argMax

[
az∗UT

(
1
z∗

)
+ λT+1

RT
q(R)

]
.

We can find the steady state growth rate from (21) with

RE =
w(z∗;R) + λ [x+ q(R)− b (z∗;R)]

x+ q(R)− b (z∗;R)
= RE (z∗;R) .

9.2.5 Tools and goods market clearing in mixed equilibrium

In the steady state, we observe

G =
Ht+1

Ht

=
Kt+1(τ)

Kt (τ)
=
LT−τt+1 (τ)

LT−τt (τ)
.

For both constant and decreasing returns-to-scale maintenance technology,
we have aggregate output under mixed equilibrium as (52) . Using (49) , we
obtain

Yt =

∞∑
τ=0

az∞(τ)
λτ

Gτ
Kt (0) +

T∑
τ=0

azT−τ (τ)
λτ

Gτ
LTt (0) .
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Similarly, aggregate demand for tools (53) becomes

Ht =
∞∑
τ=0

h∞(τ)
λτ

Gτ
Kt (0) +

T∑
τ=0

hT−τ (τ)
λτ

Gτ
LTt (0) . (64)

Because It = (G− λ)Ht = Kt+1 (0) + LTt+1 (0) , dividing (64) by Ht, we find
in the steady state:

1 =
∞∑
τ=0

h∞(τ)
λτ

Gτ+1
(G− λ)ik +

T∑
τ=0

hT−τ (τ)
λτ

Gτ+1
(G− λ)(1− ik), (65)

where ik ≡ Kt+1(0)
It

∈ (0, 1) . We can solve for ik ∈ (0, 1) to satisfy (65) .
Similarly, output per tool is

Yt
Ht

=
∞∑
τ=0

az∞(τ)
λτ

Gτ+1
(G− λ)ik +

T∑
τ=0

azT−τ (τ)
λτ

Gτ+1
(G− λ)(1− ik). (66)

Aggregate domestic financial asset holding (54) under constant-returns-
to-scale maintenance technology is given by

Dt = Yt − wHt −D∗t

+
∞∑
τ=1

a

R− λθg
λτ

Gτ
Kt (0) +

T∑
τ=1

aAT−τzT−τ (τ)
λτ

Gτ
LTt (0) ,

or
Dt

Ht

=
Yt
Ht

− w − d∗t

+

∞∑
τ=1

a

R− λθg
λτ

Gτ+1
(G− λ)ik +

T∑
τ=1

aAT−τzT−τ (τ)
λτ

Gτ+1
(G− λ)(1− ik),

where d∗t = D∗t /Ht.
Similarly, domestic financial asset holding per tool under decreasing re-

turns to scale is
Dt

Ht

=
Yt
Ht

− w − d∗t

+
1

R

[ ∞∑
τ=1

az∗U (z̃∞(τ))
λτ

Gτ+1
(G− λ)ik +

T∑
τ=1

az∗U
(
z̃T−τ (τ)

) λτ

Gτ+1
(G− λ)(1− ik)

]
.
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We also find

Ct
Ht

= (1− β)

[
w + λ(x+ q − b) +

Dt

Ht

]
.

From (55) ,in steady state,

Yt
Ht

=
Ct
Ht

+ (x+ q)(G− λ) + d∗ − G

R
d∗

or (
1− G

R

)
d∗ =

Yt
Ht

− Ct
Ht

− (x+ q)(G− λ). (67)

From this, we find the ratio of net foreign debt to tools in steady state.

9.3 Proof of Proposition 2

We first derive a suffi cient condition for the existence of a pure non-stopping
equilibrium in P-region:

V (1) =
R

R− λa
R− (θ + η)λ

R− θλ

≥ a

(
1− θλ

R

) η
1−θ−η 1− θ − η

1− θ +
aηR

(1− θ) (R− θλ)
+

λf

R− λ. (68)

We consider a suffi cient condition of (57)

b(R) >
1

R
Max
T

ST (1;w(R), R),

for the case of decreasing-returns-to-scale maintenance technology. Consider
an optimal stopping strategy where the plant owner stops in T periods in
the RHS as{

zT (0) > zT−1 (1) > . . . > z0 (T )
}

= {z0 > z1 > . . . > zT}

such that z0 = 1 and zT ≥ z = f/a. Associated with {zt}, there is a sequence
of human capital demand ht =

(
zt+1
zθt

)1/η
. Let v(h|z) denote the flow payoff

of the owner of a unit of plant with productivity z who hires h units of tools.

v(h|z) = az − wh.
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Because optimal stopping strategy zt > zt+1 is better than staying at zt with

h = z
1−θ
η

t , we get

v(ht|zt) +
λ

R
V (zt+1) ≥ v

(
z
1−θ
η

t |zt
)

+
λ

R
V (zt), or

V (zt)− V (zt+1) ≤
R

λ

[
v(ht|zt)− v

(
z
1−θ
η

t |zt
)]

. (69)

Let φ(z|zt) ≡ v
((
z/zθt

) 1
η

∣∣∣ zt) = azt − w
(
z/zθt

) 1
η .

v(ht|zt)− v(z
1−θ
η

t |zt) =

∫ zt

zt+1

−φ′(z|zt)dz,

where

−φ′(z|zt) =
w

η

z
1
η
−1

z
θ
η

t

.

Notice that because
∂

∂zt
[−φ′(z|zt)] < 0,

we have

−φ′(z|zt) =
w

η

z
1
η
−1

z
θ
η

t

≤ w

η
z
1−θ
η
−1 = −φ′(z|z), for zt+1 ≤ z ≤ zt.

Then,

v(ht|zt)− v(z
1−θ
η

t |zt) =

∫ zt

zt+1

−φ′(z|zt)dz ≤
∫ zt

zt+1

−φ′(z|z)dz.

Combining this inequality with inequality (69), we have

V (zt)− V (zt+1) ≤
R

λ

[
v(ht|zt)− v

(
z
1−θ
η

t |zt
)]
≤ R

λ

∫ zt

zt+1

w

η
z
1−θ
η
−1dz,

V (1)− V (zT ) =
T−1∑
t=0

[V (zt)− V (zt+1)] ≤
R

λ

∫ 1

zT

w

η
z
1−θ
η
−1dz,
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where we use z1 = 1 in the last inequality. Because

V (zT ) = azT + λq

and
R

λ

∫ 1

zT

w

η
z
1−θ
η
−1dz =

Rw

λ(1− θ)

(
1− z

1−θ
η

T

)
,

we have

V (1) ≤ azT + λq +
Rw

λ(1− θ)

(
1− z

1−θ
η

T

)
≡ RHS (zT ) , (70)

if we are not in region P , i.e., some plant owners stop their plant.
To derive a suffi cient condition for Region P , we use the fact that equi-

librium wage in this region satisfies

w

a
=

λη

R− θλ.

Then RHS of (70) reaches the maximum when

zT =

(
1− θλ

R

) η
1−θ−η

RHS = a

(
1− θλ

R

) η
1−θ−η 1− θ − η

1− θ +
aηR

(1− θ) (R− θλ)
+ λq.

A suffi cient condition for the economy to be in Region P is

V (1) =
aR

R− λ
R− (θ + η)λ

R− θλ

≥ a

(
1− θλ

R

) η
1−θ−η 1− θ − η

1− θ +
aηR

(1− θ) (R− θλ)
+ λ

f

R− λ.

This yields an upper bound on f/a:

f

a
≤ R (1− θ − η)

λ(1− θ)

[
1− R− λ

R

(
1− θλ

R

) η
1−θ−η

]
≡ z(f/a).

z(f/a) denotes an upper bound for f/a as a suffi cient condition for the
existence of a pure equilibrium with no stopping.
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Now we proceed to derive a lower bound on f/a such that the growth
rate is an increasing function of real interest rate in state equilibrium. From
(21) , we learn

0 = (G− πEβRE)[G− (1− πS)βR]− πS(1− πE)β2RRE

=

[
G− πEβ

(
λ+

w

x+ q − b

)]
[G− (1− πS)βR]− πS(1− πE)β2R

(
λ+

w

x+ q − b

)
≡ Ψ

(
G;R,

w

x+ q − b

)
. (71)

Because we assume βR < 1, we restrict our attention the case

G > (1− πS)βR.

Then we learn

G ≥ πEβ

(
λ+

w

x+ q − b

)
.

Then we learn
∂

∂G
Ψ

(
G;R,

w

x+ q − b

)
> 0,

in the neighborhood of the equilibrium G. We can easily check

∂

∂R
Ψ

(
G;R,

w

x− b

)
< 0,

∂

∂
(

w
x+q−b

)Ψ

(
G;R,

w

x+ q − b

)
< 0.

Thus a suffi cient condition for

dG

dR
= −

∂
∂G

Ψ
(
G;R, w

x+q−b

)
∂
∂R

Ψ
(
G;R, w

x+q−b

)
+ ∂

∂( w
x+q−b)

Ψ
(
G;R, w

x+q−b

)
d
dR

(
w

x+q−b

) > 0

is

0 <
d

dR

(
w

x+ q − b

)
=

w

(x+ q − b)2(R− λ)2(R− λθ)
[
λ (1− θ) f − (R− λ)2x− λ (1− θ − η) a

]
,
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or
λ (1− θ) f > (R− λ)2x+ λ (1− θ − η) a. (72)

If πS = 0, then from (21), we have G = πEβ
(
λ+ w

x+q−b

)
, or

x = F (R,G) =
a− f − w
R− λ +

βπE

G− βλπEw

=
a− f
R− λ −

G− βRπE
(R− λ) (G− βλπE)

w.

Because FG < 0, dG/dR > 0 if and only if FR > 0. And because

(R− λ)FR = −a− f − w
R− λ +

G− βRπE
G− βλπE

aηλ

(R− θλ)2
,

dG/dR > 0 iff

f/a >
R− (θ + η)λ

R− θλ − G− βRπE
G− βλπE

ηλ (R− λ)

(R− θλ)2
≡ z(f/a)

when πS = 0. For the growth-enhancing effect of interest rate in Region P ,
we need

z(f/a)−z(f/a) > 0

or

z(f/a)−z(f/a)

R− λ =
R (1− θ − η)− λ(1− θ)(θ + η)

λ(1− θ) (R− θλ)

− 1− θ − η
λ(1− θ)

(
1− θλ

R

) η
1−θ−η

+
G− βRπE
G− βλπE

ηλ

(R− θλ)2
> 0.

Suppose both R and λ are close to 1,

z(f/a)−z(f/a)

R− λ ≈ 1− θ − η − (1− θ)(θ + η)

(1− θ)2 − 1− θ − η
(1− θ) (1− θ)

η
1−θ−η +

η

(1− θ)2

=
1− θ − η

1− θ

[
1− (1− θ)

η
1−θ−η

]
> 0.

This proves that for any f/a, there exists an open set of interest rates and
depreciation rates, both of which are close to 1, where we have the property
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that the growth rate is an increasing function of the interest rate in Region
P .
To examine the effect of an unanticipated fall in real interest rate on

welfare in the pure non-stopping region, we use (36a, 36b, 37, 38) . Continue
to assume πS = 0. Then we have

dV E

dR
=

1

1− β
d

dR
(lnnE)

+
β

(1− β)(1− βπE)

d

dR

[
ln

(
w + λ(x+ q − b)

x+ q − b

)]
+

β2(1− πE)

(1− β)2(1− βπE)

d

dR
lnR. (73)

From (56a, 56b) , we have

dw

dR
= − w

R− λθ ,

db

dR
=

1

R− λ

(
w

R− λθ − b
)
.

Then we get

d

dR
ln [w + λ(x+ q − b)] =

1

w + λ(x+ q − b)
1

(R− λ)2

(
a− f − R2 − λ2θ

(R− λθ)2ηa
)
,

d

dR
ln

(
λ+

w

x+ q − b

)
=

w

[w + λ(x+ q − b)](x+ q − b)(R− λ)2(R− λθ)2
·
[
ληa− λ(1− θ)(a− f)− (R− λ)2x

]
.

When πS = 0, nE = [w + λ(x+ q − b)]h. Then from (73) , we have

(1− β)(1− βπE)(R− λ)2(R− λθ)2 [w + λ(x+ q − b)] dV
E

dR
/λ

= (1− βπE)
[
(R− λθ)2(a− f)− (R2 − λ2θ)ηa

]
+
βaη

x− b
[
ληa− λ(1− θ)(a− f)− (R− λ)2x

]
+
β2(1− πE)

1− β
(R− λ)(R− λθ)

R
{(R− λθ) [(R− λ)x− (a− f)] +Rηa}.

59



9.4 Welfare effect of policy

From (36a, 36b, 37, 38) , we learn that the welfare of a continuing engineer,
retiring engineer, new engineer, and continuing saver are

V EE = β
(1− β + βπS) lnRE + β(1− πE) lnR

(1− β)2(1 + βπS − βπE)
+

ln[w + λ (x+ q − b− s)]
1− β h+ constant,

V ES = β
βπS lnRE + (1− βπE) lnR

(1− β)2(1 + βπS − βπE)
+

ln[w + λ (x+ q − b− s)]
1− β h+ constant,

V SE = β
(1− β + βπS) lnRE + β(1− πE) lnR

(1− β)2(1 + βπS − βπE)
+

ln d

1− β + constant,

V SS = β
βπS lnRE + (1− βπE) lnR

(1− β)2(1 + βπS − βπE)
+

ln d

1− β + constant,

where h is the number of tools and d is financial asset held from the last
period. Notice that government tax-subsidy does not affect the value of
plant b and thus it does not affect d. From (26, 27, 29) , we see that in the
neighborhood of τ = 0,

∂

∂τ
lnRE =

w

[w + λ(x+ q − b)](G− λ)
(RE −G),

∂

∂τ
ln [w + λ (x+ q − b− s)] = − w

[w + λ(x+ q − b)](G− λ)
G.

In steady state, we learn that the fractions of population of engineers and
savers, (mE,mS), satisfy

πSmS = (1− πE)mE,

where the LHS is the flow of savers to become engineers and the RHS is the
flow of retiring engineers. Thus

mE =
πS

πS + 1− πE , and mS =
1− πE

πS + 1− πE .

We consider a welfare measure as the population-weighted average of the
welfare of each type of agents:

V = mE

[
πEV EE + (1− πE)V ES

]
+mS

[
πSV EE + (1− πS)V SS

]
.
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Using the above expressions, we learn

V =
πSνE + (1− πE)νE

πS + 1− πE +
πS ln[w + λ(x+ q − b)]

πS + 1− πE + constant

=
πS

(πS + 1− πE)(1− β)2
{
β lnRE + (1− β) ln[w + λ(x+ q − b)]

}
+ constant.

Therefore the effect of a tax and subsidy on the social welfare is

∂V

∂τ
=

πS

(πS + 1− πE)(1− β)2
w

[w + λ(x+ q − b)](G− λ)

[
β(RE −G)− (1− β)G

]
=

πS

(πS + 1− πE)(1− β)2
w

[w + λ(x+ q − b)](G− λ)
(βRE −G)

> 0.

The last inequality is obtained because the growth rate of economy is the
weighted average of growth rate of engineers βRE and savers βR and RE > R
in our economy.
Individually, if πS is close to zero, we learn

∂V EE

∂τ
> 0,

∂V ES

∂τ
< 0,

∂V SE

∂τ
> 0,

∂V SS

∂τ
> 0.

For the continuing engineer, because the welfare gain from the higher rates of
return dominates the loss from the lower new worth, welfare increases,∂V

EE

∂τ
>

0. For the retiring engineer, the loss from lower net worth dominates the gain
from the higher rates of return when she becomes an engineer in the future,
and thus welfare decreases, ∂V

ES

∂τ
< 0. For those who were the savers in the

previous period, there is no capital loss and only gains from the higher rates
of return, and welfare increases, ∂V

SE

∂τ
, ∂V

SS

∂τ
> 0.

9.5 Calibration strategy

We choose the following parameter values, θ, η, λ, β, πE and πS. We nor-
malize the productivity of plant productivity a to be 1.
We solve for f such that the economy is at the boundary between Region

P and Region M at R = 1.015. We design an algorithm to solve for the
infinum of the set of f for which a plant owner stops in a finite number of
periods.
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Suppose the plant owner stops in T period at a particular value of f . Then
St(1; f, w,R) as a function of t reaches its peak at T . Define a sequence of
ft such that at f = ft, for z∗ = 1:

St+1(1; ft, w,R) = St(1; ft, w,R).

Intuitively, ft tracks the movement in the peak as we vary f . If f = ft, the
peak is either t or t + 1. As t goes to infinity, the peak shifts to infinity.
Because

St+1(1; a, w, r) = U t+1 (1;R) +
λt+1

Rt
q

and

St(1; a, w, r) = U t (1;R) +
λt

Rt−1 q,

we have

ft =
Rt

λt
[
U t+1 (1;R)− U t (1;R)

]
.

The calibrated value of f is equal to inft=1,2,...ft, which we approximate
by mint=1,2,...,T ft with T large enough. For any value of f strictly above
inft=1,2,...ft, there must exist a finite optimal stopping time. For any value of
f strictly below inft=1,2,...ft, there cannot exist a finite stopping time.
After we calibrate the value of f , we solve for x to target a growth rate

of 0.5% at gross interest rate R = 1.015.

x =
a− f − w
R− λ +

βΠ

G− βλΠ
w,

where w = λη
R−θλa and

Π = πE + πS
βR(1− πE)

G− βR(1− πS)
.
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