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ABSTRACT 

The usefulness of a video database relies on whether the video of 
interest can be easily located. To allow exploring, browsing, and 
retrieving videos according to their visual content, efJicient tech- 
niques for evaluating the visual similarity between diyerent video 
clips are necessary. We present a framework for measuring video 
similarity across different resolutions - both spatial and tempo- 
ral. In particular; the video clips to be compared can be properly 
aligned through the use of suitable weightingfunctions and align- 
ment constraints. Dynamic programming techniques are employed 
to obtain the video similarity measure with a reasonable computa- 
tional cost. An application to searching MPEG compressed video 
by example is presented to demonstrate the potential use of the 
proposed video similarity measure. 

1. INTRODUCTION 

Just like today’s text databases (e.g., the World Wide Web), the 
usefulness of a video database relies upon whether the video of 
interest can be found within a reasonable amount of time. As it is 
not easy to describe video content in words, searching video based 
solely on text information has its limitations. Furthermore, a text 
annotation standard for video does not currently exist. Not surpris- 
ingly, most existing video contains very limited textual annotation 
and this annotation is done in a variety of styles. Search techniques 
which allow exploring, browsing, and retrieving video based on its 
visual content provide a more intuitive searching approach. They 
should complement other searching mechanisms, such as keyword 
search, and make searching large video databases much easier. 
One of the prerequisites for these content-based search techniques 
is being able to evaluate the visual similarity between different 
video clips. 

We consider the problem of measuring the visual similarity 
between two video clips. As video is a medium containing both 
spatial and temporal information, both of these aspects need to be 
taken into account in assessing the visual similarity of different 
video clips. 

In the literature on classifying and browsing video clips, much 
attention has been focused on comparing video shots using rep- 
resentative or key frames [1][2]. Recently, techniques for re- 
trieving video clips by comparing the intensity and motion signa- 
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tures extracted from the representative frames have been proposed 
in [3][4]. For example, with a predefined frame comparison strat- 
egy, the technique described in [3] can compare video clips which 
have about the same number of frames or representative frames. 
Although these techniques have attained certain levels of success 
in their target applications, we believe that the temporal informa- 
tion in video clips can be further exploited. 

To strike a good balance between searching accuracy and com- 
putational cost, different resolutions (both spatial and temporal) 
in the comparison of video similarity may be required for differ- 
ent applications. For example, in searching a unique or distinc- 
tive video clip from a video archive, key-frame matching may be 
enough to achieve the goal; however, in searching a video pro- 
gram for video segments which are similar to a given video clip, a 
more refined measure of video similarity may be useful. In addi- 
tion, different resolutions for comparison can be applied to differ- 
ent phases of a video search. The amount of data processed can be 
substantially reduced by starting with a low-resolution search and 
then applying finer and finer resolution searches to the candidates 
found from the previous low-resolution searches. 

In this paper we propose a framework for measuring video 
similarity across different resolutions - both spatial and tempo- 
ral. In general, two video clips to be compared may not have 
the same number of frames or representative frames, and similar 
frames may not be well aligned in time. Nevertheless, the pro- 
posed framework can, within certain alignment constraints, iden- 
tify similar frames from two video clips and obtain a useful video 
similarity (or distance) measure. Discrete time-warping and dy- 
namic programming techniques are used to determine the video 
similarity with a reasonable computational cost. An application to 
the problem of video query by example is presented to demonstrate 
the potential use of the proposed video similarity measure. 

2. FRAME AND VIDEO SIMILARITY 

We use block-based image color histograms to construct the frame 
similarity measure. Each video frame (or its down-sampled ver- 
sion, such as a DC image extracted from MPEG compressed 
video) is divided into B sub-blocks, and the frame similarity is 
measured by comparing the color histograms of the corresponding 
sub-blocks. Specifically, the similarity between two video frames 
f and g depends on the absolute difference of the corresponding 
block-based image color histograms, defined by 
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where B is the total number of image sub-blocks, L is the total 
number of color histogram levels, P is the total number of im- 
age pixels (we assume the two frames have been normalized to 
the same number of pixels), and H f ( b ,  1 )  and H,(b,  1 )  are the re- 
spective color histogram values for images f and g at sub-block 
b and histogram level 1. The similarity between two video frames 
can be measured at various resolutions by changing the number of 
image sub-blocks and color histogram levels. The frame distance 
measure d ( . ,  .) takes values from 0 to 1, with values closer to 0 
indicating more similar frames. 

Now we address how the temporal similarity of two video 
clips can be measured properly. As far as the visual content is 
concerned, two video clips can be considered similar even if they 
have different lengths (i.e., total number of frames). For exam- 
ple, the fact that a video clip is played at two different rates does 
not usually hide the similarity of the content. However, in such 
cases, simply comparing the visual similarity on corresponding 
but mis-aligned frames may not yield a useful similarity mea- 
sure. To assess the similarity between two video clips, we need 
to properly align the frames to be compared and measure the sim- 
ilarity between each potential pair of aligned frames. For this 
reason, we consider two video clips R = { r l r ~  . . . r ~ ~ }  and 
S = (s1sZ . . . S N ~ }  to be similar if there exist alignment func- 
tions U(.) (1 5 u(n) 5 NR)  and U(.) (1 5 v(n) 5 Ns)  such that 
frame T ~ ( ~ )  is similar to frame s ~ ( ~ ) ,  for 1 5 n 5 N7 ,  where N7 
is the total number of frame pairs to be compared. Frame ru(*) is 
considered similar to frame sv(,,) if their frame distance measure 
d ( ~ ~ ( ~ ) ,  sv(,,)) is sufficiently small. 

We hence propose to measure the distance between two video 
clips R and S by 

NT 

o(a,~> = m i n x  w(u(n)i v(n)) ' d(ru(n), sv(n)> (2) 
n=l  

u,v 

where w(., .) is a weighting function which puts different empha- 
sis on different aligned frame pairs, and w ( U (  n) , (n) )  = 
1. Finding the optimal alignment functions U(.) and v(.) that min- 
imize the weighted sum of frame distance measures defined in (2) 
is an integral part of the process of comparing the two video clips. 

Without suitable constraints on the weighting function w( ., .) 
as well as the alignment functions U(.) and U(.), the computed 
video similarity measure may not be particularly useful. For ex- 
ample, suppose w(*, .) = 1 / N 7 ,  .(.) and .(.) can be any func- 
tions, and d(rp, s q )  = min,,, d(rm, sn). In this case, it is 
easy to see that the video similarity measure degenerates into 
D ( R 1  S) = d(rpl s q ) ,  i.e., the minimum frame distance of all 
possible frame pairs, by setting U(.) = p and v(n> = q for 
1 5 n 5 N 7 .  Therefore, a small video distance measure can be 
obtained from two video clips that are visually very different but 
happen to have just a single frame in common. To prevent degen- 
erate cases like this, where only a small number of video frames 
from the two video clips are involved in the comparison, or video 
frames that are similar in content are repeatedly compared to one 
another and those that are not similar are skipped, the weighting 
function and the alignment functions need to be carefully chosen. 
We shall discuss some useful weighting functions in this section. 
Constrains on the alignment functions will be addressed in the next 
section. 

One reasonable choice for the weighting function is to relate 
the weight imposed on the current frame distance measure to the 
number of frames skipped since the last corresponding frame pair. 

The greater the number of skipped frames, the more weight should 
be assigned to the current frame distance measure. Below are some 
examples of weighting functions which have this property: 

1 .  w1(u(n),v(n)) = aU(n&A+l 

2. wz(.(n),v(n)) = * + * 
3. w ~ ( u ( ~ ) , z J ( ~ ) )  = V ( A U ( ~ ) ) ~  + ( A ~ ( n ) ) ~ / w s  

with Au(n) = u(n) - u(n - l ) ,  Av(n) = v(n) - v(n - 
l ) ,  u(0) = v(0) = 0; and where W1 = Ci(Au(n)  + 
Av(n)), WzU = CnAu(n) ,  WZ,, = x n A v ( n )  and W3 = 
E, v ( ~ u ( n ) ) z  + ( ~ v ( n ) ) 2  are proper normalization factors 
which make each of the weighting functions have unit sum, i.e., E, w(u(n),  v(n)) = 1. By choosing proper alignment func- 
tions, these weighting functions can lead to a symmetric video dis- 
tance measure, i.e., D(R,S) = D ( S , R ) .  Note that the video 
similarity measure so defined is also bounded between the mini- 
mum and maximum frame distance measures of all possible frame 
pairs drawn from the two video clips. This property could facil- 
itate the incorporation of the proposed video similarity measure 
into a framework for searching images based on an image similar- 
ity measure. 

3. ALIGNMENT CONSTRAINTS AND DYNAMIC 
PROGRAMMING 

To compute the video distance measure defined in (2). we need 
to search through a large number of possible frame alignments. 
Even for two short video clips, this number can be so large that an 
exhaustive search is computationally intractable. Fortunately, in 
most potential applications we are interested in comparing video 
clips subject to certain alignment constraints. For example, when 
measuring video similarity, the temporal order in which frames 
are present in each video clip is usually required to be preserved. 
Together with the weighting function w(., .), these alignment con- 
straints can measure, in different resolutions, the temporal similar- 
ity between the two video clips. 

For the alignment functions U ( . )  and v(.), some useful align- 
ment constraints are given below with N7 denoting the total num- 
ber of frame pairs to be compared. 

C1: u(1) = 1 andv(1) = 1 

C2: u(N7)  = NR and v ( N 7 )  = Ns  
C3: u(n) 5 u ( n + l )  andv(n)  5 v(n+l),  where 1 5 n < N7 
C4: If { ~ ( n ) ,  v(n)} = { k ,  I } ,  then {U(. + l ) ,  v(n + 1)) = 

{ p , q } ,  where k I p 5 k + z, 1 5 q 5 1 + z ,  I P  - k (  + 
(q  - 11 > 0, and z E (1, 2 , .  . .}. 

C5: a 5 (v(N7) - v ( l ) ) / ( u ( N ~ )  - u(1)) 5 p. where a 5 1 
a n d p  2 1. 

C6: If u(k)  = u(1) (or v(k) = v(Z)), where 1 > k ,  then 
Iv(1) - v(k)( 5 a (or Iu(1) - u(k)l 5 b) ,  where a 2 1 
(or b 2 1). 

Constraint C1 requires that the first frames from the two video 
clips be compared to each other, while constraint C2 requires that 
the last frames of the two video clips be compared. Constraint C3 
ensures that the video frames are compared in a proper temporal 
order. Constraint C4 specifies the possible frame pairs which can 
be compared to each other after the current corresponding frame 
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pair. Constraint C5 restricts the lengths of the two video clips not 
to be different by more than a certain ratio. Constraint C6 pre- 
vents the situation in which a single frame in one clip is used for 
comparison with frames which are too widely separated in time in 
the other video clip. Notice that some of these constraints have 

numerical comparisons. Therefore, the optimal path, and hence 
the video similarity measure between the video clips R and S, can 
be obtained with O(NRNS)  algebraic operations and O(NRNS)  
numerical comparisons. 

4. AN APPLICATION TO VIDEO QUERY BY EXAMPLE an effect on the global alignment of the two video clips (e.g., con- 
straints C1, C2, and C5), and some have more influence on the 
local alignments (e.g., constraints C3, C4, and C6). Not all these 
constraints are independent of one another. For example, con- 
straint C4 implies constraint C3. Depending upon the objective, 
these constraints can be selectively combined to provide different 
measures of temporal similarity between the two video clips. For 
example, in searching a large video database for video segments 
with content similar to an example video clip, constraints C1 
and C2 cannot be applied together because the locations of the 
similar video segments are unknown before the search. Instead 
of constraint C2, constraint C5 can be used together with other 
suitable constraints to find similar video segments whose lengths 
are not different by more than a certain ratio when compared to 
the length of the example video clip. An application of these con- 
straints to video query by example will be illustrated in the next 
section. 

With these alignment constraints, evaluating the video dis- 
tance measure according to equation (2) is equivalent to finding 
the path of minimum cost in a lattice as shown in Figure 1, where 
each node in the lattice is attached with the cost of the frame dis- 
tance measure d ( r m ,  sn) between the two associated frames rm 
and sn. The weighting scalar w(., .), which is imposed on the cost 
d( . ,  .) at each node, is actually a measure of the distance between 
the current and previous nodes along a potential path. For exam- 
ple, the weighting function wl( ., .) defined in Section 2 measures 
the normalized Manhattan distance between any two successive 
nodes along a potential path. Each path in the lattice delineates 
how frames from two video clips are compared with one another. 
The alignment constraints restrict the possible ways of going from 
one node to the next. For example, the paths (a) and (b) shown 
in Figure 1 satisfy most of the alignment constraints listed above. 
However, path (c) does not meet the constraints C2 and C3. 

With this framework, the optimal path (i.e., the path with min- 
imum cost) can be efficiently found using forward dynamic pro- 
gramming techniques [5 ] .  As an example, we show here how to 
find the optimal path subject to constraints C1, C2 and C4 (with 
I = l), and weighting function w1 (., .). Let V(m,  n) be the min- 
imum cost of all the legitimate paths that start from node ( T I ,  5 1 )  

(due to constraint C1) and end up in node ( r m ,  s,) (i.e., images 
rm and S, are compared with each other). With these choices and 
due to constraint C2, we have D(R, S)_= V(&, N s ) .  The min- 
imum cost V(m,  n) for all 1 < m 5 NR and 1 i n 5 Ns can 
be computed according to the recurrence equation, 

where 1 and 2 are the weighting scalars resulting 
from the weighting function w1(., .), V(m, n) = 00 for m = 0 
or n = 0, and the recurrence equation is initialized by V(1 , l )  = 
d ( q ,  s1).2/(N~ + N s ) .  After the frame distance measures for all 
possible frame pairs have been computed, the computation of each 
V(m, n) needs only three algebraic operations (each algebraic op- 
eration consists of one addition and one multiplication) and two 

Na+Ns N a + N s  

In this section we show that the proposed video similarity measure 
can be used to search for video segments directly from a MPEG 
compressed video that are visually similar to a video clip of inter- 
est. We shall denote the query video clip by Q = {q, : 1 < n < 
NQ}, and the video to be searched by S = {sn : 1 5 n 5 Ns} .  
In general, we have NQ << N s .  Since the locations of similar 
video segments are unknown before the search, each frame in S 
can be considered as the starting frame of a video segment which is 
potentially similar to Q. The alignment constraints C1, C4 and C5 
given in Section 3 and forward dynamic programming techniques 
are used to locate and align each potential video segment, and 
hence to obtain the video distance measure. We denote the video 
distance measure computed from each potentially similar video 
segment with starting frame s, as D( Q, S,). 

As neighboring video frames are highly similar in content, 
the computed video distance measure D(Q,S,), as a function 
of frame number n, generally does not vary too wildly. Figure 2 
shows a typical example of the video distance measure D( &, S,) 
computed from a 3-minute video sequence with a 100-frame query 
video clip. In the figure, the minimum point of each valley of the 
function actually indicates the first frame of one of the five video 
segments similar to the query video clip Q. Notice that the deeper 
the valley, the smaller the video distance measure, and hence the 
more similar the corresponding video segment is to the query video 
clip. 

As the function D(&,S,) is fairly smooth, its local minima 
can usually be found without exhaustively sampling values of the 
function. This can reduce the number of computations required. 
On the other hand, the distance between two successive samples of 
function D(Q, S,) needs to be reasonably small so that no simi- 
lar video clip will be missed. To provide a reasonable tradeoff be- 
tween the search accuracy and the computational cost, we have de- 
signed a progressive searching scheme which can normally locate 
all the local minima of function D(Q,  S,) by first evaluating a set 
of uniformly-spaced samples of function D( &, S,), and then per- 
forming a finer sampling search between each pair of equal-distant 
samples where a local minimum is likely to occur. Compared to 
an exhaustive search, i.e., evaluating every data point of the func- 
tion D( Q, Sn), the progressive search can reduce the total number 
of the required computations considerably. Our experience shows 
that most of the similar video clips can be located when the num- 
ber of frames between each pair of the initial uniformly-spaced 
samples is not much larger than NQ, the length of the query video 
clip. In this case, the number of computations can be reduced by 
about a factor of NQ compared to an exhaustive search. 

Figure 4 shows two examples of the results from a video query 
by example. The experiments were performed on MPEG com- 
pressed video and the DC image of each frame was extracted for 
evaluating the image distance measure without fully decompress- 
ing the MPEG video. In each example, the first row contains sam- 
ple frames of the query video clip, and the other rows contain the 
aligned frames from sample similar video segments found by the 
query engine. In the first example, a 100-frame left-to-right fast- 
break was used to search a 3-minute basketball video. All of the 
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four similar fastbreaks in the video were retrieved successfully. 
Also, since temporal information was well exploited, none of the 
three right-to-left fastbreaks contained in the video were identi- 
fied as similar to the query video clip. In the second example, a 
100-frame diving video clip was used to search for similar video 
segments from a 20-minute video of a diving contest. Seventeen 
similar video segments of dives performed by different divers were 
successfully identified. Furthermore, since the proposed video 
similarity measure can compare video clips with different lengths, 
the lengths of these retrieved video segments have lengths rang- 
ing from 51 to 169. Figure 3 shows the video distance measure 
D( &, S,) computed from the diving contest video with the query 
diving video clip. The seventeen local minima corresponding to 
the similar video segments identified can be clearly seen in the fig- 
ure. In this example, the most similar video segment found is the 
original query video clip itself and the second most similar one is 
a slow-motion replay of the query video clip in the same program. 

5. CONCLUDING REMARKS 

We have presented a framework for measuring the visual similar- 
ity, both spatially and temporally, between two video clips. With 
our algorithm, the two video clips to be compared are properly 
aligned according to the visual similarity of their individual frames 
through the use of proper weighting function and alignment con- 
straints. Dynamic programming techniques are employed to ob- 
tain the video similarity measure with a reasonable computational 
cost. An application to searching MPEG compressed video for 
segments with content similar to an example video clip is pre- 
sented to demonstrate the potential use of the proposed video sim- 
ilarity measure. The proposed framework can be extended to in- 
corporate other video features, such as other intensity/color/texture 
features, carnerdobject motion, and speech/audio information, for 
assessing video similarity. 
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Figure 1: The lattice diagram for comparing two video clips sub- 
ject to different alignment constraints. 

Video with live similar video segments 
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Figure 2: Video distance measure computed from a 3-minute video 
which has five video segments similar to the query video clip. 
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Searching similar diving video segments from a diving contest video 
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Figure 3: Video distance measure computed from a 20-minute diving contest video with a 100-frame example diving video clip. 

Examole 1 : Basketball video 

Examnle 2: Diving contest video 

Figure 4: Sample experimental results of video query by example. Clip 1 is the example, and 1,2,3 are the best three rank ordered matches. 
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