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1. INTRODUCTION 

This paper is concerned with the efficient temporal propa- 
gation of correspondences between frames of two video se- 
quences, an integral component of many video processing 
tasks. The main contribution of the paper is a framework 
for the recursive propagation of these correspondences. 

The propagation consists of a time update step and a 
measurement update step. The time update depends only on 
the dynamics of the rotating source cameras, while the mea- 
surement update can be tailored to any member of a general 
class of image correspondence algorithms. Using these re- 
sults, the correspondence between points of each frame pair 
can be propagated and updated in a fraction of the time re- 
quired to estimate correspondences anew at every frame. 

We discuss an application of the recursive correspon- 
dence propagation framework to the creation of virtual video. 
Previous virtual view algorithms have been used to gener- 
ate synthetic video of a static scene, in which objects seem 
frozen in time. In contrast, the algorithms described here al- 
low the creation of “true” virtual video, in the sense that the 
synthetic video evolves dynamically along with the scene. 

While virtual video is our motivating application, the 
recursive correspondence propagation framework applies to 
any two-camera video application in which correspondence 
is difficult and prohibitively time-consuming to estimate by 
processing frame pairs independently. 

2. IMAGE DYNAMICS 

We consider a pair of rotating cameras, C O  and C1, taking 
images of a dynamic scene. The image taken by Cj at time 
i is defined by Zj( i ) .  This image lies on a coordinatized 
image plane Pj  (i) (Figure 1). 

We assume the cameras’ centers of projection are not 
coincident, so the image planes Po(i) and Pl( i )  are related 
by a fundamental matrix F ( i )  [l]. We also assume each 
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camera’s center of projection to be constant. Hence, the 
plane coordinates of Pj(i  - 1) and Pj(i) are related by a 
projective transformation [2], denoted by P( i )  and Q(i)  for 
j = 0 , l  respectively. 

4 ’  . 

H(i+l) Po(i+l) P, (i+i) 
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Fig. 1. Relationships between image planes. 

To facilitate the detection and matching of correspond- 
ing regions between the image planes % ( i )  and PI ( i ) ,  it is 
common to rectify the planes by applying projective trans- 
formations G(i)  and H ( i )  to produce image planes Pl(i )  
and P:(i) in which conjugate epipolar lines are horizontal 
and have the same image plane y coordinate. As discussed 
in Hartley [3], the choice of a rectifying pair of projective 
transformations is not unique. 

3. RECURSIVE PROPAGATION 

Fix N scene points S k ,  IC = 1,. . . , N ,  which are visible 
from the perspectives of both cameras. Let Z* ( i )  denote the 
associated vector in (Et2 x R2)N defined by corresponding 
pairs of image points { ( p t ( i ) , p f ( i ) )  E %(i) x Pl(i ) ,  k = 
1,. . . , N } ,  i.e., the points in the kth pair are projections of 
S k  at time i .  Let .(i) be a vector of estimates of z*(i)  
obtained by the application of a correspondence algorithm 
CZ. We assume that the application of the operator Ci is a 
time-consuming task. 

We wish to more efficiently estimate x* (2) at each time. 
We do so by exploiting the temporal regularity of the video, 
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estimating the effect of camera motion and using a compu- 
tationally simpler approximation of C a .  Namely, let P ( i  I j) 
be an approximation of 5(i) based on information from time 
j. 2(i  1 j )  satisfies: 

i ( 0  I O )  = q o )  (1) 
P ( i  + 1 I i) = T%+l(2(i  I i)) (2)  

P ( i  + 1 I i + 1) = M%+l(P(i  + 1 I i)) (3) 

Here, Ti+l is a time update operator which propagates the 
correspondence estimate from frame pair i to frame pair 
i + 1, and Ma+1 is a measurement update operator which 
refines the estimate using new information that has become 
available at time i + 1. The time-dependency of the up- 
date operators arises from their dependency on the images 
Zo(i + 1) and Zl(i + 1). 

To make this algorithm more concrete, we now discuss 
the operators T a  and M i  in more detail. 

3.1. Time Update 

Given complete knowledge of the camera motion of Figure 
1 ,  the time update for a correspondence ( p 0 , p l )  E Po(i) x 
PI (i) is 

T i + ' ( p o , ~ i )  = (P( i  + l ) ~ o , Q ( i  + 1 ) ~ i )  (4) 

However, the projective transformations are generally 
estimated using a regression algorithm [4,5], and in practice 
we use an approximation of Ti+l given by 

+i+l(Po,Pl) = ($(i + l)Po,Q(i + 1)Pl) ( 5 )  

where i)(i + 1) and Q(i + 1) are estimates of P(i + 1) and 
Q(i + 1) respectively. In Section 3.3 we will analyze the 
implications of this approximation. 

In the case of rectified images, the image plane pairs 
(Pi (i), Pg(i+ 1)) and (P; (i), Pi  (i+ 1)) are related by pro- 
jective transformations R(i + 1) = G(i + l ) P ( i  + l)G(i)-l  
and S( i  + 1) = H ( i  + 1)Q(i + l )H(i)- l ,  respectively. In 
this case, for (p0,pl) E Pi ( i )  x PT(i), 

Ti+l(P0,Pl) = (R(i + l)Po, S( i  + 1)Pl) (6)  

As above, the rectifying projective transformations are 
generally estimated from noisy data [3, 6, 71 and R(i + 1) 
and S( i  + 1) are replaced in (6) b? noisy est!mates a(i + 
1) = G(i+ l )P ( i+ l )G( i ) - l  and S(i+l) = H ( i + l ) Q ( i +  
l ) f i ( i ) - l  to produce an approximation pi+1. 

In practice, we propagate the es_timates G(i) andAfi(i) 
by the relations G(i + 1) = G(i)P(i  + 1)-l and H ( i  + 
1) = fi(i)Q(i + 1)-l. In this case the time update takes 
the particularly simple form 

?+l(PO,Pl) = ( P 0 , P d  (7) 

3.2. Measurement Update 

For clarity, we briefly present an example pair of families 
{ Ci} and {Mi} when the desired correspondence lies along 
a pair of conjugate epipolar lines, a commonly made as- 
sumption in correspondence algorithms. 

A classical approach to correspondence estimation is 
Ohta and Kanade [SI, in which intervals of nearly constant- 
intensity pixels (obtained using an edge detector) are matched 
between a pair of conjugate epipolar lines (eo, el), using 
the commonly made assumption that correspondences ap- 
pear along the lines in the same order. Points in a pair of 
matched intervals are put into correspondence by linearly 
interpolating between the endpoints. 

Fix a pair of conjugate 
epipolarlinesto E Po(i) and 
el E Pl (i) of length N, and 
define A as the set of mono- 

si" nada 

tonic sequences of straight 
' 0 lines which connect the left 

endpoints of ( e o , l , )  to the 
right endpoints in the graph 
lo x el.  For a cost function 
J :  A +- R+,let 

ci(lo,el) = min ~ ( z )  

z 
$ 
I 

e n n ~  
md. 

Fig. 2. Epipolar pair match- 
ing graph. x E d  

(8) 
Finding C2 by an exhaustive search over A without any 

a priori notion of the correct matching path is computation- 
ally expensive. However, let P be a prior estimate of the 
matching path, and define B = {z E A I d(z,  2 )  5 E }  for 
some distance function d : d2 + R+ . Then define 

(9) 

For a distance function d based on the L1 norm, B is 
approximately zr'$e' the size of A, a substantial difference 
when 6 is small relative to N .  

~1 I 2) = min ~ ( z )  
XEB 

3.3. Error Analysis 

We use the recurrence P ( i  1 i) = MiYi(P(i  - 1 I i - l)), 
where Fi is an estimate of the true Ti induced by camera 
dynamics as in Section 3.1. We'are intere:ted in bounding 
the difference between the output of the (T ,  M )  algorithm 
and the true correspondence x*( i ) .  To this end, we fix a 
norm 11 . 11 on (EXz x and define two estimation errors 
at each time i: 

€ . T M ( i )  = 11z*(i) - i ( i  I i)ll (10) 
ED(i)  = p(i) - P ( i  I i)ll ( 1  1 )  

We assume that there exist constants cy, &, ,B, Y, 6, and p 
such that for all i, 

IITi(.) -Ti(z>ll 5 Y (12) 
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IITi(Z) - W Y ) I l  L a 112 - YII (13) 
Ilm4 - Ti(Y)Il 5 8 11% - YII (14) 

p* ( i  + 1) - Ti(.*(i))ll 5 6 (15) 
Ilq9 - Z*(i)ll L P (16) 

Mi(E( i ) )  = 5(i) (17) 
11Mi(4 - Mi(Y)ll I P 112 - YII (18) 

The error in the approximation of Ti  by Ti is bounded by 
y, where y is a function of the data and the projective trans- 
formation estimation algorithm. The parameters of the Lip- 
schitz conditions (13) and (14) can be extracted from the 
rotation parameters of the cameras, the derivative of the pro- 
jective transformation function, and the finite extent of the 
image planes. The 6 parameter reflects scene dynamics that 
are not modeled by the rotation of the cameras. The error 
in the correspondence estimator Ci is bounded by p. We 
require that the output 5(i) of Ci is fixed by M i ,  which is 
the case when M i  is a restriction of Ci over a smaller do- 
main. In the example of Section 3.2, the parameter ,f3 of 
the Lipschitz condition (18) is a function of the length of 
the epipolar lines and the diameter E of the search neighbor- 
hood. 

Theorem 1 Zfthe operators Ti, Ti, Ci and Mi satisfy (12)- 
(18) with 8p < 1, the ( T ,  M )  algorithm is stable in the 
sense that 

Proof Sketch. 
isfy 

It can be shown that the errors ~ g ( i )  sat- 

(20) 

for i = 1 , .  . . , W. The assumption Sp < 1 guarantees 
boundedness of E D ,  and hence the asymptotic estimation er- 
ror limsup  ED(^) is bounded by a c c a : ~ ~ ~ 6 + r ) .  The result 
then follows by taking the limsup of the inequality E T M ( ~ )  5 

By (1 9), the recursive propagation algorithm can only 
approximate the true correspondence as well as the corre- 
spondence algorithm Ci. In particular, when p = 0, i.e. the 
operator Ci produces the true correspondence Z* (i), the er- 
ror in the (9, M )  algorithm is bounded by a quantity which 
depends on the amount of object motion in the scene and the 
error in the approximation of Ti  by Ti.  As these quantities 
decrease to zero, so does the asymptotic error of the (T ,  M )  
algorithm. 

ED(i )  5 sp ED(i - 1) + p ( (a  + 1)p  + s + 7) 

P + E D ( i ) .  0 

4. VIRTUAL VIDEO 

Previous work (e.g. [7 ] )  addressed the virtual view prob- 
lem. Fix a scene and a triple of cameras (CO, C1, C,). Given 

the pair of images (Z0,Zl) of the scene produced by the 
uncalibrated cameras (CO, Cl), the problem is to synthesize 
the “virtual” image Z, of the scene from the perspective of 
C,. Under certain constraints on the position of the virtual 
camera with respect to the source cameras, this problem can 
be solved using a dense set of correspondences between the 
pair of input images (Z0,Zl). 

The virtual video problem is: for a pair of image se- 
quences ({Zo(i)}, {TI (i)}) of a dynamic scene produced 
by rotating, uncalibrated cameras (CO, Cl),  synthesize the 
“virtual” image sequence {Z,(i)} of the scene from the per- 
spective of a moving virtual camera C,. 

One nalve solution to the virtual video problem is to 
treat it as a sequence of virtual view problems over a period 
of time, processing each image triple independently. How- 
ever, since correspondences are expensive to obtain, this ap- 
proach is prohibitively time-consuming. More importantly, 
it does not exploit the temporal regularity of the input video. 
Since the source video sequences fit into the framework of 
Figure 1, we apply the recursive algorithm discussed above 
to propagate the dense correspondences required to create 
each virtual image. 

Frame 41 5: Initialization Frame 415: Meas. Update 

- - - - .* - 
(a) (b) 

Frame 417:Time Update Frame 417: Meas. Update 

(C) fd) 

Fig. 3. (a) Initialization of the correspondence graph. (b) 
Measurement update of the initial estimate. (c) Time update 
to compensate for camera motion. (d) Measurement update 
to compensate for object motion. 

To construct the correspondence and measurement up- 
date operators, we use a conjugate epipolar line matching 
approach with a modified version of the Ohta and Kanade 
[8] cost function. The monotonicity assumption is usually 
violated in our virtual video database, and our implementa- 
tion handles these cases by searching the set of physically 
valid, piecewise monotonic matching paths through each 
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Fig. 4. Frames of virtual video. The top row contains original frames from camera 1, the bottom row contains original frames 
from camera 2 taken at the same time, and the middle row contains virtual images synthesized from the perspective of a 
camera moving along the baseline of the original camera pair. 

graph to x el.  We call these special piecewise monotonic 
paths correspondence graphs. 

Figure 3 illustrates the results of our recursive propa- 
gation algorithm for a typical epipolar line pair from real 
video. The blue segments indicate points which are seen 
in both images, while the red and green segments indicate 
points which are seen in just 10 or 11, respectively. Mov- 
ing objects in the video have been segmented and tracked, 
and this information is used to determine the structure of 
the correspondence graph for each epipolar line pair. The 
initial correspondence x* (0) for the background pixels in 
this example is approximated by a straight line through the 
matching path. This line is induced by an estimate of the 
projective transformation which relates a dominant plane in 
the image pair. 

Figure 4 illustrates the final virtual video result, using 
view morphing [7] to render the virtual frames. The top and 
bottom rows are synchronized frames of video from two real 
cameras. The first camera undergoes a slow pan to the right 
over the course of the clip, while the second camera slowly 
zooms in. The virtual camera moves smoothly from the per- 
spective of the first camera to the perspective of the second, 
while the virtual images evolve at the same rate as the input 
video. The virtual video contains arrangements of objects 
(e.g. the goalie and the goalpost) that did not occur in either 
of the original sequences. Operating with correspondence 
graphs instead of monotonic matching paths makes this re- 
alism possible. 

Our current implementation produces virtual video at 
about 20 frames per minute. The only user intervention re- 

quired is a sparse set of point correspondences in the initial 
frame pair (used to estimate the fundamental matrix and the 
projective transformation relating the dominant plane in the 
image pair), and segmentation and tracking information for 
moving objects in each frame (used to construct correct cor- 
respondence graphs). In future implementations it would be 
convenient to incorporate the segmentation and tracking al- 
gorithm inline, and to automatically detect when the propa- 
gation process destabilizes. 
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