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A Metric Entropy Bound is Not Sufficient
for Learnability

R. M. Dudley, S. R. Kultkarni, T. Richardson, and
O. Zeitouni

Abstract—We prove by means of a counterexample that it is not
sufficient, for probably approximately correct (PAC) learning under a
class of distributions, to have a uniform bound on the metric entropy of
the class of concepts to be learned. This settles a conjecture of Benedek
and Itai.

Index Terms—Learning, estimation, PAC, metric entropy, class of distri-
butions.

1. INTRODUCTION

Let (2, %) be a measurable space. Let % be a class of
probability measures on (2, &). Let # (the “concept class” in
the language of learning theory, as introduced in [1]) be a subset
of &&. Suppose one is given a sequence of independent and
identically distributed (i.i.d.), #valued random variables
X,,++, X, distributed according to P", where P € £. In addi-
tion, for some unknown ¢ € %, one is given data
(X, I(X ), (X,, I(X,)) which we henceforth denote by
9,(c). The problem of learning consists roughly of the question
“given &, 2, how large should n be for approximating ¢ with
high accuracy and low probability of error based on the data
2.(c)?”” In mathematical terms, assume that (Z, #) is a Borel
space, and define on £ the pseudometric dp(cy,c,) =
P(c, A c,). Let I be the algebra of all four subsets of {0,1}. A
learning rule is a map T": (X {0,1})" — & such that, for any
cE€%,any P €% and any € > 0,

(X, Xy i) dp(e, TMUX 1)), (X, 8,0)) > €}
ezg"eg". (1
It follows that for any ¢,d € &,

(X, X,): dp(d, T"(2,(c))) > €} €B". Q)

We say that the concept class & is probably approximately
correct (PAC) learnable under the class of probability measures
2 (in short: ¢ is PAC learnable under &) if, for every € > 0,
8> 0, there exist an integer n = n(#,%, €, 8) and a learning
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rule 7" such that, for any P €2 and ¢ € &,
P{(X,, -, X,): dpc, T(2,(c))) > €}) < 8. 3

The notion of learnability in the form (3) has recently received
much attention (e.g., see [2], [3], [1]), and in the learning litera-
ture is referred to as probably approximately correct (PAC)
learning, for reasons obvious from its definition. Intuitively, in
PAC learning one attempts to achieve a good prediction on
future samples, after seeing some finite number of samples,
uniformly in P €% and ¢ € %.

Sufficient and necessary conditions for PAC learnability are
by now well known for some cases. Let B(c,e) ={¢ €&:
dp(c, &) < €}, and define the e-covering number of # with re-
spect to P by

N(e,#, P) = inf {N: ¢y, er, ey € P such that

N
#c | B(c;, e)}.
i=1

The balls B(c;, €) above are said to form an e-cover of &, and
log N(e, %, P) is often referred to as the metric entropy of &
with respect to P. A necessary and sufficient condition for PAC
learnability of % in the special case where 2 is a singleton,
namely & = {P}, is that N(e¢, &, P) < for all > 0 (see [4]
and, in greater generality, [5), pp. 149-151). Moreover, if & =
M), the space of Borel probability measures on 2, then
(under suitable measurability conditions) a well-known necessary
and sufficient condition for PAC learnability of ¢ under &£ is
that the Vapnik—Chervonenkis (VC) dimension of # be finite,
which turns out to be equivalent to the condition that, for all
€> 0, suppe y, 2o N(e, &, P) <  (see [2}, [6], [3], [5], [7}, [8] for
proofs and additional background on the VC dimension and
metric entropy). The similarity between these two extreme cases
led Benedek and Itai to conjecture in [4] that the condition

Ve > 0, sup N(¢,%,P) <=
PeP

is necessary and sufficient for the PAC learnability of & under
2. While necessity is fairly obvious, the sufficiency part is less so
because of the difficulty in simultaneously approximately deter-
mining ¢ € % and P € 2. (We mention that if (4) is replaced by
the stronger condition that there exists a fixed finite e-cover of
# under all P €2, then the sufficiency is just a standard
extension of the single measure case. Some cases where (4) is
sufficient are described in [9].) It is the purpose of this note to
show, by a counterexample, that (4) is not sufficient in general
for learnability. The question of finding a necessary and suffi-
cient condition for PAC learnability of & under & remains
open.

4

II. A COUNTEREXAMPLE

Let Q =2=1{0,1F, let X' denote the coordinate map of
X €2, and let @ be the Borel o-field over 2. Let (py, pa, )
e [0,1F be defined by p, = 1/log,(i + 1) < 1, and note that
for every finite n, T7_, p* = . Identifying p; = P(X’ = 1), the
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vector p,, p,, - induces a product measure P, on the product
space #Z. For any measure P on £, P" denotes the product
measure on Z" obtained from P.

Let o denote a permutation (possibly infinite) of the integers,
i.e., 0: N - N is one to one and onto, and define P, as the
measure on £ induced by (p,-1.1y, P,-12), ***)- The ensemble of
all permutations is denoted X. Thus, P,(X°@ = 1) = p; and, if
o is the identity map, then P, equals the P, defined above.

Nowlet #={P,,0€3),letc;={Xe2: X' =1}, and let
#={c;, i€N). It is easy to check that for any P €%,
N(e, %, P) < . Since any ¢; with p,-1;, < e satisfies dp (c;, D)
< €, we have that for any P € 2,

N(e, %, P) < 2Ve.
It follows that supp . » N(€, %, P) < . We now claim
Theorem I: & is not PAC learnable under .

Proof: We use a random coding argument. Suppose that the
theorem’s assertion is false. Then, for each € > 0, § > 0, it is
possible to find an n = n(e, 8) and a learning rule 7" which
satisfy (3) for all ¢ € € and P € 2. In particular, for any finite
k, it satisfies (3) for c € ¥ and P € #*, where &* = {c,,
i=1k}, 3¥={o: 0(i) =i, Vi>k}, and #*={P,, c €
3K}, ie., 2% are all possible permutations of the vector
(py, py,+++) which involve only the first k coordinates. Let the
error event be defined as

ers = (X, X,): dpa(c,T"(.@,,(C))) > €}.

(It follows from (2) that er{
each c € ¥ and P, € 2,

Plr(erf) < 8.

In particular, if Q is any probability measure on the finite set
{(o,c) o€ 3k c € g, then

Eg(Pr(erd)) < 8.

is a measurable event.) Then, for

(5

Now choose Q such that Qls is uniform over 3* while ¢ = c,(l)
(ie, Qlo,c) = 1/k! if o € 2% and ¢ = c,, and Qo ¢) =

otherwise). This Q forces the true concept to involve the coordi-
nate of maximal probability (where in fact the probability is 1) in
P,. Note that by our choice of Q, if e<1—1/log,(3) =
min;, | dp(cy, ¢;), then, when (o, ¢) are distributed according to

’

dplc,f) <e=c=C=c,qQas..
Thus, in this set-up, Q as.,
erf = {(X,, X,): c # T"(D,(c))}.
Using the notation oX to denote the element of 2 with
coordinates (¢ X) = X°'® and o9, to denote the corre-
sponding permutation on Z,(c) when ¢ = ¢, i.e.,
09, = ((0X,, 1, (0X)) (0 X, L, (0 X,)))

Co(1)

= (o X, Icl(Xl)),"',(O'X,,, Icl(X,,))), 6)
we have
Ey(PMerg)) = Ex(P)(c + T™(2,(c))))
= Exy(Pl(c,qy * T D, (cs0))))
= Ey(PMc,qy * T"(02,)))
=EpE)l,, .10, @)
For given vectors x = (x4, x,) €2 and X = (X, X,) €

2, denote by S(X, ¥) the set of permutations o € 3¥ such that
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o X = % (Note that for many pairs (X, %), S(X X) is empty.) It
follows from the definition that, for o € S(X, 2),

09, = (Cxry, Ly (X)), (g, L X)),

By _ghe construction of Q, the distribution of o conditioned on
S(X, ¥) is uniform there. Let now

J¥=li<k:X]=1,¥j=1,,n},
and
F={is<kixi=1Vj=1-,n}.

S(X, %) is nonempty only if {J*| = {J! Xl When X has distribu-
tion Py, we have 1 € JX almost surely, so IJXI >1Let g €3
be a fixed permutation such that o.(i) € J% if i € JX. Decom-
pose each permutation o € S(X, %) into ¢ = o, ° g, © g, with
0,: JX > J% and o, equals the identity on {1,-,k}\ J * ‘while
a,: (1, k}\JX - {1 -, k}\J* and o, equals the identity on
J*. This is always possnble because all permutatlons in S(X, %)
must satisfy o X = %. Note that whenever S(X, %) is nonempty
then |a,l = 17%11, where

ot {o:oesX,D), o5t (008X, 0}.

Using now (7),
Eg(Pr(erf))

_ E,,r( % o Liny e € SCE. D)QUS(E, i’)))

Z E 1T"(a§,,)ae [

o,E0p 0,€E0,

r X1 ’

0,E0p 0,€E0,

= Ep | LO(S(X, %)) ®)

where in the last equality we have used the uniformity of the
conditional distribution over S(X %), and the sum over X is
taken over all different vectors in 2. By (6), 09, is constant
for o € S(X, %), so

T(09D,) = cr
for some ¢y = c(X,%) € # not depending on o € S(X, %).
Here ¢ (-,-) is measurable by (2). Thus, since the number of
permutations o € g, for which T"(¢2,) = ¢, is at most

equal to the number of permutations in g, which have a
prescribed index in J* unchanged,

¥ lrgayeea = (5= DX - DY,

0,€0,
whereas

Y 1=,

LA

It follows that, for any > 1,

(7% = DQIE - D1 !
Eg(PMerg)) 2 Epp X I EP’HUHXI

1 S
1-—-PMT* < n)).
n

It remains therefore only to show that 17| may, with high
probability, be made arbitrarily large by choosing a k large
enough. But this is obvious because, by the Borel-Cantelli
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lemma, using X' £ (X}, X)),
PP X" = (1,~,1) infinitely often) = 1,

since T, Pf(X' = (1,+-,1)) = £=_, p!' = . Thus, for any 7,
one may find a k large enough such that Pp(IJ¥] <) is
arbitrarily small. ]

Remark: Note that we have actually shown that, for any fixed
n and any € < 1 — 1/log,(3), one may construct a & and a &
such that the probability of error is arbitrarily close to 1. By
defining p;, i > 2, to be smaller, we could also take any € < 1.
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Non White Gaussian Multiple Access Channels
with Feedback

Sandeep Pombra and Thomas M. Cover

Abstract— Although feedback does not increase capacity of an additive
white noise Gaussian channel, it enables prediction of the noise for
non-white additive Gaussian noise channels and results in an improve-
ment of capacity, but at most by a factor of 2 (Pinsker, Ebert, Pombra,
and Cover). Although the capacity of white noise channels cannot be
increased by feedback, multiple access white noise channels have a
capacity increase due to the cooperation induced by feedback. Thomas
has shown that the total capacity (sum of the rates of all the senders) of
an m-user Gaussian white noise multiple access channel with feedback
is less than twice the total capacity without feedback. In this paper, we
show that this factor of 2 bound holds even when cooperation and
prediction are combined, by proving that feedback increases the total
capacity of an m-user multiple access channel with non-white additive
Gaussian noise by at most a factor of 2.
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Index Terms—Feedback capacity, Capacity, Multiple-access channel,
Non-white G ian noise, G i h 1

L. INTRODUCTION

In satellite communication, many senders communicate with a
single receiver. The noise in such multiple access channels can
often be characterized by non-white additive Gaussian noise.
For example, microwave communication components often in-
troduce non-white noise into a channel.

In single-user Gaussian channels with non-white noise, feed-
back increases capacity. The reason is due solely to the fact that
the transmitter knows the past noise (by subtracting out the
feedback) and thus can predict the future noise and use this
information to increase capacity. A factor of 2 bound on the
increase in capacity due to feedback of a single-user Gaussian
channel with non-white noise was obtained in [1], {2], [10]. Thara
[9] has shown that the factor of 2 bound is achievable for certain
autoregressive additive Gaussian noise channels.

Unlike the simple discrete memoryless channel, feedback in
the multiple access channel can increase capacity even when the
channel is memoryless, because feedback enables the senders to
cooperate with each other. This cooperation is impossible with-
out feedback. This was first demonstrated by Gaarder and Wolf
[5]. Cover and Leung [6] established an achievable rate region
for the multiple access channel with feedback. Later, Willems [7]
proved that the Cover-Leung region is indeed the capacity
region for a certain class of channels including the binary adder
channel. Ozarow [8] found the capacity region for the two-user
Gaussian multiple access channel using a modification of the
Kailath—Schalkwijk [4] scheme for simple Gaussian channels.
Thomas [11] proved a factor of 2 bound on the capacity increase
with feedback for a Gaussian white noise multiple access chan-
nel. Keilers [3] characterized the capacity region for a non-white
Gaussian noise multiple access channel without feedback. Cod-
ing theorems for multiple access channels with finite memory
noise are treated in Verda [14].

The case of non-white Gaussian multiple access channel with
feedback combines the above two problems. Here feedback
helps through cooperation of senders, as well as through predic-
tion of noise. If we simply use the factor of 2 bounds derived by
Cover and Pombra [10] and Thomas [11] for the single-user
Gaussian channel with non-white noise and the Gaussian multi-
ple-access channel with white noise, respectively, we might ex-
pect feedback to quadruple the total capacity of a non-white
m-user Gaussian multiple access channel. However this reason-
ing is misleading due to the following reasons: Prediction of
noise by the receiver and cooperation between the senders are
not mutually exclusive events. Also the factor of 2 bound on the
feedback capacity of a non-white Gaussian channel has been
shown to be tight for the case of only one sender, where there is
no interference among the senders. If we have more than one
sender, the interference among the senders may diminish the
feedback capacity gain due to the prediction of noise.

In this paper, we establish a factor of 2 bound on the increase
in total capacity due to feedback for an m-user additive Gauss-
jan non-white noise multiple access channel. Throughout this
paper, we define the total capacity of the multiple access chan-
nel to be the maximum achievable sum of rates of all the
senders.

The paper is organized as follows. In Section IT (Theorem 2.1),
we prove an expression for the total capacity C, in bits per
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