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Abstract—Rates of convergence for nearest neighbor estimation
are established in a general framework in terms of metric cov-
ering numbers of the underlying space. Our first result is to find
explicit finite sample upper bounds for the classical independent
and identically distributed (i.i.d.) random sampling problem in a
separable metric space setting. The convergence rate is a function
of the covering numbers of the support of the distribution. For
example, for bounded subsets of R", the convergence rate is
0O(1/n*/7). Our main result is to extend the problem to allow
samples drawn from a completely arbitrary random process in
a separable metric space and to examine the performance in
terms of the individual sample sequences. We show that for
every sequence of samples the asymptotic time-average of nearest
neighbor risks equals twice the time-average of the conditional
Bayes risks of the sequence. Finite sample upper bounds under
arbitrary sampling are again obtainéd in terms of the covering
numbers of the underlying space. In particular, for bounded
subsets of R” the convergence rate of the time-averaged risk
is O(1/n*/7). We then establish a consistency result for k.-
nearest neighbor estimation under arbitrary sampling and prove
a convergence rate matching established rates for i.i.d. sampling.
Finally, we show how our arbitrary sampling results lead to
some classical i.i.d. sampling results and in fact extend them to
stationary sampling.Our framework and results are quite general
while the proof techniques are surprisingly elementary.

Index Terms—Nearest neighbor, nonparametric regression esti-
mation, rates of convergence, metric entropy, covering numbers,
worst case, consistency, deterministic sampling, arbitrary sam-
pling.

I. INTRODUCTION

HIS PAPER deals with the problem of estimating a

random variable Y;, € Y given a sample X,, € X, where
Y,, is drawn according to an unknown conditional distribution
F(y | z) given X, z. In addition to X,,, the estimate
can be based on n — 1 previous pairs of data {(X;,Y;)}"
where, given X; = z;, the label Y; is drawn independently
and distributed according to F'(y | X; = z;). One simple
and widely studied nonparametric estimation procedure is the
nearest neighbor (NN) rule: selecting as an estimate of Y,, the
Y; associated with the nearest neighbor of X,,. Most existing
work generally considers the case in which the samples
{X;}7, are drawn independent and identically distributed
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(i.i.d.) from a probability distribution. We add to that body of
work by bounding the rate of convergence of the NN rule in a
separable metric space. The main concern of this paper is the
formulation of a new estimation problem in which the samples
{X;}?_, need not be drawn iid. but can be an arbitrary
random process. We investigate convergence of the NN rule in
this framework. Our proof techniques are elementary and are
based on deterministic sample path analyses, while the results
are quite general. In fact, we easily recover the traditional
iid. sampling results from the arbitrary sampling results.
We emphasize that while the arbitrary sampling results are
useful as they recover traditional i.i.d. results, they are also
interesting in and of themselves as they apply to completely
general sampling schemes including general nonstationary and
nonergodic processes, as well as deterministic and mixed sam-
pling strategies. Furthermore, the approach is in keeping with
recent trends in information theory to examine performance
for arbitrary individual data sequences (e.g., [6], [10]).

Nearest neighbor classification/estimation has received
much attention since it was first studied by Fix and Hodges
[11]. Cover and Hart [3], [4] proved that under mild conditions
on the distribution the nearest neighbor rule risk converges to
twice the Bayes risk under squared error loss and is upper-
bounded by twice the Bayes risk for metric loss functions.
Some results on the convergence rate of the nearest neighbor
rule have been established for the classification problem
under various assumptions [5], [12], [21]. Convergence of
k,,-nearest neighbor regression estimation has also been the
subject of much work. Stone [19] investigated the consistency
of a general class of nonparametric regression estimators. In
particular, he proved that k,,-NN type estimators are “weakly
universally consistent” (converge in L, for all p > 1).
This work was continued in [8], [9], [14], where “strong -
consistency” (almost-sure convergence) of k,-NN estimators
was studied. Another generalization of the nearest neighbor
estimate was introduced in [7] where it was shown that under
various noise conditions the estimates are strongly uniformly
consistent. Other results on the convergence rates of k,-nearest
neighbor regression estimation can be found in {1], [2], [13],
[16], [17], [20].

In Section II, we precisely formulate the nearest neighbor
estimation problem and define various preliminary quantities.
Our results allow X3, Xs, - -+, X, to be a sequence of random
variables taking values in a general separable metric space
X equipped with metric p. The labels Y7,Ys3,---,Y; are a
sequence of random variables drawn from the conditional
distribution F(y | X; = z;) taking values in a Hilbert space
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Y. We consider several performance criteria such as average
risk, cumulative risk, and time-average risk with respect to
squared-error loss. Convergence rates for the various risks are
obtained in terms of covering numbers of totally bounded sets
(sometimes supports of distributions), and so these quantities
are discussed in Section II-C.

Our first goal is to find explicit finite sample bounds, i.e.,
bounds on the convergence rate, of the large sample risk for
the standard formulation with i.i.d. sampling. In Section IIL,
we find an upper bound on the expected NN distance for all
distributions with support on a totally bounded subset of a
separable metric space in terms of the covering numbers of
the support. This in turn implies a bound on the convergence
rate for the NN estimator.

The main contribution of this paper is to extend this
problem to arbitrary sequences of samples which is the subject
of Section IV. In this problem, the sequence {X;}J., can
be an arbitrary random process taking values in a totally
bounded metric space, e.g., the sequence can be chosen
deterministically or it can be obtained from a general non-
i.i.d. process. In Section IV-A, we bound the sum of the NN
distances for any sequence of samples. This leads to a result
analogous to the i.i.d. problem showing that the asymptotic
worst case time-averaged risk is equal to twice the associated
Bayes risk. We also show that for any fixed arbitrary sequence
the time-averaged risk is equal to twice the time-average of
the conditional Bayes risks of the sequence. In fact, precise
convergence rates in terms of the covering numbers of the
underlying space are also derived. In Section IV-B we show
that the error rates for i.i.d. sampling as well as for stationary
sampling are recovered in the arbitrary sampling result.

In Section V we prove the consistency of the k,-NN esti-
mator under arbitrary sampling. In particular, a convergence
rate of O (n~%/("+2)) in bounded subsets of R" is obtained
which is the same as the convergence rate for i.i.d. sampling
previously computed [13]. Our proof techniques are not only
more elementary, but the results are more powerful as they
allow arbitrary sampling. In addition, we extend the result in
[13] to stationary sampling.

Our results in Sections III-V are restricted to totally
bounded supports. In Section VI we recover iid. sam-
pling results for probability measures that have unbounded
support using the results from Section IV-A, which further
demonstrates the strength of the arbitrary sampling results.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Estimation Problem and Bayes Risks

The problem to be considered is the estimation of a random
variable Y taking values in ) given a sample X taking values
in X with the goal of minimizing a loss between Y and the
estimate. In this paper we consider squared-error loss and
accordingly are performing regression function estimation. We
assume X is a general separable metric space equipped with
metric p which we denote as the pair (X, p). For simplicity,
let Y = R®, for some positive integer s, equipped with the
usual Euclidean norm induced from the dot product on R®,
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ie., ||yl|2 =y -y for any y € R°. All our results hold for any
Hilbert space with essentially no modifications.

Given X = , then Y is drawn according to a conditional
distribution F(y | X = ). For a given z, an estimator Y(z)
yields a conditional squared-error risk E[||Y — Y (z)||? | X =
z]. If F(y | ) is known then the best estimator is known as
the Bayes estimator. The Bayes estimator Y™ minimizes this

risk resulting in the conditional Bayes risk

= E[lY -Y*@)I* | X = 4]
<E(lY -Y(@)I? | X =4,

(@) ~

It is understood that there is an underlying probability space
(X, F,u), where F is the Borel o-algebra generated by the
open sets of (X,p). If X is drawn according to some fixed
distribution p, the Bayes risk is given by

R, = Er’(X) = /’r*(z),u (dz).

This is the minimum average loss obtained when X is drawn
according to p. We may omit the subscript p if the context
is clear.

If X can be chosen from an arbitrary distribution, we define
the worst case sampling risk as

R¥* =supR},.
7

This is the worst Bayes risk taken over all choices of distribu-
tions. Equivalently, it is the worst possible conditional Bayes
risk over all choices of z € X. Certainly R* < R¥*. Of
course, if the conditional Bayes risk is constant, r*(z) = r*
i.e., independent of z, then R* = R¥*. This can happen if
Y = E[Y | X] + n where the “noise” 7 is independent of X
and has zero mean.
Define the conditional mean of Y given X = z as

m(z) = E[Y | X = z]

and the conditional variance as

o¥(z) = E[[Y]* | X = 2] - lIm(=)||*,

It is easy to show that the Bayes estimator is given by Y*(z) =

m(z), that the conditional Bayes risk is r*(z) = o %(z), and

that the Bayes risk is R* = Eo?(X). Throughout this paper
we impose the following assumption on F(y | z).
Assumption 1 (Lipschitz Type): There exists K1,K3 > 0

and 0 < a < 1 such that for any z;,z; € X

m(z1) = m(z2)|| < VEip(z1,72)*
and

lo?(z1) — 0%(22)| < Kap(z1,82)*
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B. Nearest Neighbor Estimation

The quantities R* and R** are the minimum risks that can
be achieved having complete knowledge of the underlying
conditional distribution F(y | ). If F(y | «) is unknown it
is often assumed that in addition to X one has available pairs
of data {(X;,Y;)}"=!. We impose the following assumption
on {(X;,Y;)} which implies that given X;, the label Y; is
conditionally independent of {(X;,Y;)}i%; and drawn from
F(y | Xu).

Assumption 2: For any measureable set S

Pr(}/z c S | X17"’7XR7Y17"'»Y"i—17Y2+11"'aYn)

=‘Pr(Y,-eS|X,-)=/SF(dy|Xi)

for each z.
In this paper, we consider both the case in which the
sequence X, Xo, - - - is drawn i.i.d. according to some proba-

bility measure y and the case in which the sequence is drawn
from an arbitrary random process. ,

The nearest neighbor estimate of Y,, using knowledge of
{(X;, Y)}2o U X, is defined as follows. Letting

J = argmin p(Xn, X;)

define X!, = X;. Then X}, is the nearest neighbor of X,, from
the set {X1,---, Xn_1}. The NN estimate of Y,, is defined as
Y, =Y;. This is the Y; associated with the NN of X,,. The NN
conditional risk is defined as the expected loss in estimating
Y, by Y, given X,, and its NN X/, that is
Tn(Xan;;) = Tn(Xla o ’Xn)
= E[“Yn - YrI»”2 | Xl, R 7Xn]'
Define the nearest distance at time n as d,, = p(X,, X},). The
following lemma which is a modified restatement of a result
from [3] provides an upper bound on 7,(X,, X)) in terms
of d,. :
Lemma I: Let X;,---, X, be an arbitrary random process
in (X, p) with (X1,Y7),---,(X,,Y,) satisfying Assumption
2. For any F(y | x) satisfying Assumption 1 we have
Ta(Xn, X5) < 20%(X,) + (K71 + Ko)d2®.
Proof: We have that ]
Tn(Xn, X;,) = E[||Yn — Y,i”z | X1, -+, Xal
= E[l[(Ya — m(Xa)) + (m(X») - m(XL))
+(m(X7) = YOI | X1+, Xa).
Assumption 2 implies that given Xi,---,X,, each X; is
conditionally independent of Y; for ¢ # j and that {Y;}
are mutually conditionally independent. This implies that the
expected value of the cross terms is zero. It also implies that
the index of the nearest neighbor is independent of {Y;}.
Hence we get that
rn(Xn, X) = 0%(Xn) + [Im(Xn) = m(X)|? + 0*(X5)
= 20%(Xn) + [m(Xn) — m(X)II?
+[0%(X7) — 0*(Xa)]
< 20%(Xa) + (K1 + K2)p(Xn, X;,)**
from Assumption 1.
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For i.i.d. sampling define the expected loss given X,, as
r2(X5) = E[rn(Xn, X},) | X,], and the expected loss at time
n

R, = Erp(Xn)-

The result in [3] states that for squared-error loss and for
Lipschitz smooth regression functions, we have limy, o Rn =
2R*.
For arbitrary sampling we can naturally extend the definition
of loss at time n given z,, as
Ry =

sup  Tn(Tn,Ty).

’
Tn,xh €X

However, we cannot expect to get bounds on RY under arbi-
trary sampling. One can always construct sequences i, 2, - -
(and hence a corresponding process X, X, ---) which will
incur small loss initially and then inflict large loss to beat any
bound. This is characteristic of arbitrary sampling schemes.
However, we will show that bounds can be derived for the
cumulative loss for arbitrary sampling. The cumulative NN
risk for an arbitrary sequence {Xi,Xs,---,Xn} C & is
defined as
n
Cn(X1,+, Xn) = Y mi(Xi, X7).

=2

(Note that we leave out 71(X;, X}) from the sum since X}
is not defined and we cannot expect a good estimate.) In the
iid. case this gives

Il
'M:

Il
X

E[C. (X1, -, X%)] R;.

2

Thus the cumulative risk C,, can be used as a common criterion
with which to compare the performances of each sampling
scheme. The above relationship motivates the definition of the
time-average NN risk of X1,---, X, as

1
Rn(le" '7Xn) = ‘,"l'Cn(Xl,"',Xn)-

For i.i.d. sampling it can be seen that

lim E[R.(X1,..

n—o0

5, Xy)] = lim R,.
It will be shown that R, plays the same role in arbitrary
sampling as does R, in ii.d. sampling.

_In [3], two types of loss functions—metric loss and squared-
error loss—are considered under i.i.d. sampling. It was shown
that under a metric loss

lim R, < 2R*

n—o0

and under squared error loss

lim R, =2R".

n—o0
As mentioned, we consider only the squared error loss case.
Under i.i.d. sampling, R, is upper-bounded by 2R* plus a term
that goes to zero. We bound this latter term thereby giving a
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bound on the convergence rate. We will also prove that for
any sequence of samples

im sup R,(zy,...
Mt PR

,Tn) = 2RY".
Furthermore, almost surely

, 2.
nll.n;oR"(Xl"“’X") —"h_’nol‘);;‘r (X3)

which is twice the average of the conditional Bayes risks for
the sequence. In fact, we will provide finite sample upper
bounds for R, in terms of the sum of this average of Bayes
risks plus a second term that goes to zero. In the limit R,
equals twice the average of the Bayes risks, so in that sense
that second term again gives a bound on the convergence rate.
It turns out that a similar analysis in the metric loss case leads
to similar finite sample upper bounds for R,, although they
do not lead to convergence rates since we only have an upper
bound on

lim Rn(Xi,---, Xn).
n—oo

C. Covering Numbers and Supports

We now introduce various topological definitions and prop-
erties that will be used in this paper. Define the open ball of
radius € about a point z € X as

B(z,e) = {y € X | p(z,y) < €}.

These balls are also known as e-balls. We next define the
important and well-known notions of covering numbers and
metric entropy which characterize the massiveness of a set.
Following Kolmogorov [15], these quantities have been ex-
tensively studied and used in various applications.

Definition 1: Let A be a subset of metric space (X, p). The
metric covering number N (€) = N (e, A, p) is defined as the
smallest number of open balls of radius ¢ that cover the set
A. That is

k

N(e)=inf{k:3z1,---,2x € ¥ st. AC | B, )}

=1

The logarithm of the metric covering number is often
referred to as the metric entropy or e-entropy. A set A is
said to be totally bounded if N(e,A,p) < oo for all € >
0. In particular, every compact set is totally bounded. All

totally bounded sets are bounded. Bounded sets in R" are

totally bounded. Note that as a function of €, (e, 4, p) is a
nonincreasing, piecewise-constant, and right-continuous func-
tion. Accordingly, there is no well-defined inverse function.
However, we define the following discrete function called
the metric covering radius which can be interpreted as a
“pseudoinverse” of the metric covering number.

Definition 2:  The metric covering radius N~'(k) =
N~1(k, A, p) is defined as the smallest radius such that there
exists k balls of this radius which cover the set A. That is

k
N7 k) =inf{e:3z1,---, 2 € X st AC | B(zi, ).

i=1
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Note that A’~1(-) is a nonincreasing discrete function of k.
In particular, A ~1(1) is the radius of the smallest ball to cover
A and is referred to as the radius of A.

Example 1: [15] For any bounded set A in Euclidean 7-
space, the covering number of A satisfies N'(e, A) < (8/€)"
for all ¢ < B = N71(1, A) and the covering radius satisfies
N-1(n,A) < B/n'/". In addition, if A contains an interior
point in R” then N(e, A) > (B1/e)” for some B, > 0, and
N-Y(n, A) > Bi/nl/".

Note that, in general, the best constants for upper and lower
bounds on N (e, A) and N'~1(n, A) may be hard to find. In this
paper, we are not concerned with finding tight constants and
so a conservative value of 3 = N ~1(1, A) (the radius of the
set) is certainly valid. Throughout this paper, for simplicity we
denote R" to be r-space equipped with the Euclidean metric,
although results hold as well for any equivalent metric (e.g.,
£, induced metrics). All that is required is to have the same
order of growth for the covering numbers, although of course
the precise constants may depend on the particular metric.

The next lemma simply states that the metric covering radius
of a totally bounded set (and hence a compact set) goes to
zero as n — oo. This result will be used in the proofs of
subsequent theorems.

Lemma 2: Let A be a totally bounded subset of (X, p), then

lim N~1(n, 4,p) = 0.

Proof: Assume the statement is false. Then since
N~1(n) is nonincreasing, there exists ¢ > 0 such that
N-Yn) > € for all n. But this implies that N'(¢) > n
for all n, i.e., N'(€) = oo, which contradicts the fact that A is
totally bounded. [ ]

We next define the standard notion of the support of a
measure (e.g., [7]).

Definition 3: The support of the probability measure u
defined on (X, p) is defined as

K(p)={z € X:Ve>0,u(B(z,¢€) > 0}.

III. L1D. SAMPLING

In this section we consider the problem in which the
samples {X;}* , are drawn i.i.d. according to some unknown
probability measure x on (X, p). This is the classical NN
problem for which Cover [3] proved that

lim R, = 2R*.

n—o0
The purpose of this section is to find an upper bound on
the pointwise-finite sample performance in terms of only the
support of u.

The following lemma which is actually a corollary of
Lemma 1 bounds the convergence rate for the expected
squared-error loss in terms of the expected nearest neighbor
distance.

Lemma 3: Let X;,Xs,--+,X, be iid. according to a
probability measure p with K(p) a subset of (X,p) with
(X1, Y1), ++,(Xy,Y,) satisfying Assumption 2. For any
F(y | z) satisfying Assumption 1, we have

Ry < Reo + (Ky + K2)(Ed2)™.



1032

Proof: Taking expected values on the conclusion of
Lemma 1 and using Jensen’s inequality since h(t) = t© is
concave for 0 < « < 1, the statement follows by also noting
that

. H _ 2 _ *
Roo—yllLrgoRn—2E[o (X)] = 2R;,. u
We consider the case in which the support of u, K(u), is
totally bounded. The following theorem provides a bound on
Ed, and Ed?.

Theorem 1: Let X1, X,,---,X, be ii.d. according to a
probability measure p with KC(p) a totally bounded subset of
(X, p). Then ’

3§ NG, ()
n )

=1

Ed, <

and

n—1
B < 33 [N K()
=1 .

Proof: Observe that for any X, € K(u)
Prid, > €| X,] = (1 — w(B(Xn,¢)))" L.

But Pr{X,, € K(u)] = 1. The proof for this is argued in [4]:
the separability of () implies that [IC(p)]¢ is contained in
a countable union of sets of measure zero.

Fix ¢ > 0. Now take an e€/2-covering of K(u),
B1,By,-+,Bar(es2)- Then for X, € K(u), there exists
an % such that B; C B(X,,¢€). Let N = A/(¢/2). Now define

an e/2-partition as follows. For each i = 1,---, N let
i-1
Pi=Bi- | B
k=1
Then P, C B;

B;

1 i

F;

=
C=

1

X

and P;(\P; = 0. Also

N
=1

Then for X,, € K(u) there exists an ¢ such that P; C B; C
B(Xn,¢) and in turn p; = u(P;) < u(B(Xn,¢€)). Hence

w(P;) = 1.

Prid, >e¢| X, € P]<(1—p)""

and
N
Prid, > ¢ <> pi(l—pi)" "

=1

As d, > 0, then

o0
Ed, / dePr{d, > €.
0
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We now bound Pr{d, > €] by bounding
N
Y p(l—p)"t
=1

for all {p;} such that

We now prove that

N
1, n<N
. — p\n—1 ) =
Sat-mrsiy IIN

The case when n < N is obvious. If n > N, then

N N
> pil-p)"t < Zl maxpi(1 ~ pi)"

i=1

N n—1
=> 1 (1 - l)
on n
N
< —.
— 2n
Hence we have that
Pr(d, > €|
N(e/2)
_ 1 n < N(e/2)
(1 —p 1 < {2 =
s ; pi(1—pi) = {N—J-u;nz , n>N(e/2).

Since Pr[d, > €] = 0 for € > 2N ~1(1), we have

o) ZN_I(n)
Edn=/ dePr[dn>e]§/ de
0 0

2N 71 (1)
P[0 )
2N —t(n) n
NTHD)
deN (e).

~1(n)

— A1 1
—on (n)+n/
Since N(€) =i for N=1(3) < e < N71(i — 1) we get

N~H(1) N~(i-1)
/.'V_l (n)

deN (€) = ; /.

=) N - 1) = NTHE)

=2

deN ()
1)

n—1
=NH1) - N n) + DN

i=1
Hence
_ N-YD) 13 0 3,1,
Ed, <N 1(n)+—n-+;§N 1(1)5;;/\/ 1(4).
1)
Similarly

Ed,zl=/ dePr[d,zl>e]=/ dePr[d, > Ve
0 0

W—r))?
=4 mp+ S [ 7 deN ()

nJN-1(n))?
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and together with

NTT))?
/ de N'(VE) =
(NM=1(n))?

WP - nN T ()]

n-1
+ Y INTU@)P
i=1
gives

EdZ < 4[N_1(1)]2

+ % 'i[N‘l(i)]z. @

[ ]
For example, take X(u), a bounded subset of R™ for some
integer » > 1, then

3pr _4
< — /v
Eld,] < —r

where (3 is the radius of (). It is well known that the support
is closed [7], hence supports which are bounded subsets of R"
are in fact compact. Note that the theorem statement can be
tightened by using the bounds in (1) and (2) of the proof.

The following corollary obtains a bound on the finite sample
convergence rate for the expected squared-error loss using the
results from Theorem 1 applied to Lemma 3.

Corollary 1: Let X,,X5,---,X,, be ii.d. according to a
probability measure p with KC(u) a totally bounded subset of
(X, p) with (X1,Y1),---,(Xn,Ys) satisfying Assumption 2.
For any F(y | =) that satisfies Assumption 1 we have

a n—1
R, < Reo + (K1 + Kz)%‘ STIVTHG K ().

For example, if (1) C R™(r > 2a) then
R < Roo + (Ky + K2) (GBS 20
r—2a
where 3 = N1, K(p)).

IV. ARBITRARY SAMPLING

In the previous section, the sequence {X;} was assumed to
be i.i.d. We now consider a formulation in which there are no
restrictions on the sequence of random variables {X;}. That is,
the samples {X;} can be chosen from a completely arbitrary
random process taking values in a general separable metric
space. This includes cases in which {X;} is any nonstationary
or nonergodic process. It also allows completely arbitrary
deterministic sampling strategies. However, as before, As-
sumption 2 must hold which implies that given X, the label
Y: must be conditionally independent of (X;,Y;) for i # j.

Our proof technique is a deterministic sample path analysis.
In fact, our theorems make almost sure (a.s.) statements for
any random process which is equivalent to making arbitrary
deterministic sample path statements.

Recall that

X! = arg x.réin p(Xi, Xy)
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and that d, = p(X,, X,,). In effect, each sequence of points
{X1,-++,X,} induces a sequence of minimum distances
{dz2,ds,--,d,}. Note that d; is obviously not defined. The
next lemma states that under squared-error loss the cumulative
loss bound is in terms of the conditional Bayes risks of the
sequence and the nearest neighbor distances.

Lemma 4: Let Xi,---,X, be an arbitrary random process
in (X, p) with (X,,Y3),---,(Xn,Ys) satisfying Assumption
2. For any F(y | z) satisfying Assumption 1, we have a.s. that

) < 227‘

=2

n

D)+ (K1 + Kp) Y d2e.

=2

Cn(Xh "'a

Furthermore, if

n

1 o _
nli.n;oﬁzd? =0

=2

then a.s. we have

_ 2
i = lim 2 “(X;
Jim B, Xa) = Jim 23 (X)
if the limit exists, and
lim sup Rn(z1,---,Tn) = 2R™™.

n—00 g g

Proof: Fixing X; = z1,--+,X, = Zn, then Lemma 1

and summing terms gives

' Tn) <2ZU z;)

=2

Cn(z1,- - + (K1 +K2)Zd2"

=2

For the second part of the lemma, we have from the proof of
Lemma 1 the following equality:

Baor,,2n) = 3 3 {20%(@:) + Im(a:) - m{)]?
i=2

+[o*(z) = o*(z:)]}-
But by hypothesis

. 1 - 2 . Kl 20
nangoﬁgl|m(xi)—m( zH)||* < lim —Zdi =0

n—oo N 4
and
: 1 - 2 2 20
._E : ) — ki _§ :d =
nllm [0%(z;) — ()]} < nlm

i=2
which imply that

lim R,(z1,-

n—oo

S Zp) = nhm - Z o%(z;)

if the limit exists. Repeating the above computations but taking
sups before the limit gives

sup R,.(z1,---

~+00 Ty, Tn

1)
=]
kel

I

2R"*. m
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A. Bound on Cumulative Distances

Observe that with arbitrary sampling, the samples must be
from a totally bounded subset A of metric space (X,p) to be
able to bound the cumulative nearest neighbor distances. We
require the total boundedness of A to prevent the points from
‘being too “spread out.” In fact, the next theorem quantifies the
clustering of nearest neighbor distances of arbitrarily chosen
points in totally bounded metric spaces. In some sense this is
analogous to the statement that if {X;} is i.i.d., then d,, — 0
a.s. [4].

Theorem 2: Let A be a totally bounded subset of (X, p).
Then for an arbitrary sequence z;,z,---,z, € A and for
any v > 0

[N, A)”

1

n

!

n
> i<
=2

where d; = p(z;,x}). In particular, for bounded subsets of R™
with radius 8 > 0

k3

B frnt=v/r — ),y <y

LS
=2 (26)"[1 +logn],  y=r.

Proof: We prove the result by induction. The inequality
is true for n = 2. Certainly dy < 2A/~1(1, A) which is twice
the radius of A. Now assume it holds for some n > 2, and
fix a sequence {z; ;‘:11. The sequence induces a sequence of
nearest neighbor distances {d;}**}. Let

=2 "

dm = min d,
2<i<nt1
where m = arg min d;. We now show that d,,, < 2N/ ~1(n, A).
First note that
dy = 13:{?2&1 p(ziaa"j)'
Cover A with n balls of radius N'~!(n, A). Then at least one
ball contains two points. Hence d,, < 2N/ ~1(n, A).
Now define the new sequence
Tj, i1=1,---;m—1
a; =
ZTiq1, i = my---,n.
Then {a;}; induces nearest neighbor distances {b;}2,
where

1=2,---,m-1
t=m, -, n.

That is, by removing the mth point we can only increase all the
subsequent nearest neighbor distances. But by the induction
hypothesis

n

Db <

=2

nz_: 2N 1 (i, A)]".
=1
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Hence
n+1 n
4} <Y b7 +dy,
i=2 i=2
n-1
< YN TG AT + 2N (n, A))
i=1

> NG, A).

o
Il

In particular for bounded A C R” we have from Example
1 that N=1(k, A) = B/kY/™ thus

O(logn), ~vy=r

O™, v<r. m

In fact, Theorem 2 can be generalized so that for any
increasing function g such that g(0) = 0 we have

3 0d) < 3 92N G, 4)).
=1 i=

=1

The following lower bound demonstrates that the established
upper bound is tight up to a factor of 2.

Proposition 1: Let A be a totally bounded subset of (X, p).
For every 6 > 0 there exists a sequence ,,Z9,---,7, € A
such that

n—1
> NG, 4) -6

i=1

n
> di2
i=2
Proof: Fix a positive sequence {6;} such that
Sh<s
i=1

for some § > 0. Let ¢; = N'~1(i, A) foreach i = 1, --
Fix z; € A arbitrarily. Choose x5 from

AN [B(.'L'l, €1 — 61)]6.

, M.

Existence is ensured from the definition of A"~!(:). Then
dz2 > € — 6;. Similarly, choosing z,, from

n—1

U B(zi, en-1 ~ 51.‘1)]0

An [
i=1
gives d,, > €,_1 — 6,_1. Hence

n

n—1
Ddi> Y NG, A4) -8

=2 i=1

The next corollary states that arbitrary sampling in a totally
bounded set under squared-error loss has cumulative loss in
terms of the conditional Bayes risks of the sequence and
the metric covering radii. In particular, the asymptotic time-
average of the risk equals twice the time-average of the
conditional Bayes risks of the fixed sequence.
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Corollary 2: Let Xi,---,X, be an arbitrary random
process in a totally bounded subset A of (X,p) with

(X1,Y1),-++, (Xa,Yy) satisfying Assumption 2. For any
F(y | z) satisfying Assumption 1, we have a.s.
Cn(Xla e Xn)
n—1
< 22 (X)) + (K1 + K>) Z [2N 15, A)]*e.
=2
Furthermore
. ] )
Jim (s, Xo) = lim D3 0r (X0 as
if the limit exists, and
lim sup Rn(z1,---,zn) = 2R*™.

N0 gy, Tn

Proof: Fix X1 = z1,---,X, = zn € A. The first
statement follows from Lemma 4 and Theorem 2. The second
statement follows from Lemma 4 as the hypothesis is satisfied
using Theorem 2 and Lemma 2

lim =) d?* < lim = 2¢ _ ),
ngr;onz nmolonsz (2, A)) 0. m

=2

Interestingly, this suggests that to get large nearest neighbor
distances (and hence large cumulative error) it suffices to use
some i.i.d. process rather than a non-i.i.d. sampling technique
or some deterministic method.

B. Recovering and Extending i.i.d. Sampling Results

We have considered NN estimation under i.i.d. sampling
and arbitrary sampling using different techniques. The results
in Section III provide pointwise convergence rates for i.i.d.
sampling in totally bounded sets. The results in Section IV-
A give bounds on the time-averaged risk for an arbitrary
sequence of samples in a totally bounded set. An immediate
consequence of Section IV-A is time-averaged bounds for i.i.d.
sampling. In this section we prove that the results in Section
IV-A imply the traditional pointwise results for i.i.d. sampling
and in fact we extend the traditional results to stationary
sampling.

Lemma 5: Let X1, X5, -+, X, be a stationary process tak-
ing values in (X, p). Then Ed, < Ed; for every 2 <i < n.

Proof: Fix 0 < ¢ < n — 2. Then

Ed,=F m_lél (X, X5,) £ E2+IL'I£JI‘1<np(Xj’X")
=F min p(Xj, Xn_s)

2<j<n—1

= Ed,_;.

The second to last equality follows from the stationary hy-
pothesis. | |
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Theorem 3: Let X1, X3, --,X, be a stationary process
taking values in a totally bounded subset A of (X, p). Then

n—1

Ed<—2— N

&9 1(4, A).

For a bounded subset A of R™ and 3 = N'71(1, A) we have

4ﬂl+logn’ -1
Ed, < n
84n~1/", r> 1

Proof: First note that

Zd

1—2

(n-1)E ldn zn:(dn - di)] <0
=2

by Lemma 5. Hence

1 n
Ed, < n—_—lEZ d;.

=2

But by Theorem 2 we have that for every sequence

X1, -+, Xn € A, as. the induced nearest neighbor distances
satisfy

Zd < 2ZN—1(z A).

1=2
This implies the theorem statement. |

Note that in the case of totally bounded support, this theorem
implies the results in [13] for R" (namely, that apnt/d, — 0
in probability for any sequence a, — 0) and extends the
results to separable metric spaces and to stationary processes.

V. kNN ESTIMATION UNDER ARBITRARY SAMPLING

It is well known that k,-NN estimators are universally
consistent under i.i.d. sampling [19]. The purpose of this
section is to prove the consistency of the kNN estimator
under arbitrary sampling, provide bounds on the convergence
rates, and recover the i.i.d. sampling results. In fact, we will
find an upper bound on the convergence rate that coincides
with known rates for i.i.d. sampling.

The k,-nearest neighbor rule is defined as follows. Let k,
be any nondecreasing sequence of numbers. (Assume kz > 1
for s1mpl101ty) Denote the &, nearest neighbors of X,, from
the set {X;, -+, Xn_1} as xH X[k where X[ i is the
nearest. We denote Y,El] as the 1abel associated with the ith
nearest neighbor. The k,-NN rule estimate is the average of
the k,, NN labels

kn
Pk = ki ZYT?]‘
™ i=1

Let r(k )(X Xn yoo, Xn ffen] ) be the conditional expected
loss in estimating Y;, given X,, and the k,, nearest neighbors of
X,.. We then define Cy(lk“)(Xl, «++,Xp) as the cumulative k-
NN loss and R&k")(Xl, .-+, X,,) as the time-averaged risk of a
given arbitrary sequence. Let d,,(7) be the ith nearest neighbor
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distance of n samples to X,,, ie., d,(i) = p(Xn,X,[f]). The
next lemma, an extension of Lemma 4, gives results for the
kNN rule.

Lemma 6: Let X,---, X, be an arbitrary random process
in (X, p) with (X1,Y1),--,(X,,Y,) satisfying Assumption
2. For any F(y | z) satisfying Assumption 1, we have that
any k,-nearest neighbor rule gives a.s.

O, X,)
< Z (1 + = ) (X)) + (K1 + K2) Y d?*(k:).
=2 =2
Furthermore, if {k,} satisfies
20
nan;o;;d (ki)=0
then we have that a.s.
lim R¢)(Xy,---, X,)
= Jm (14 5 ,}L";;Z_;" X) &

if the limit exists, and

sup R(’c )(.1:1, Zyn) = lim (1 + i)R“"’.
n—oo L1, Tp n—oo k"

@
Proof: Fix X; = z1,---,X, = z,. As in Lemma 4,

under Assumptions 1 and 2 it easy to show that

= 1
Cé,k")(mla e 7mn) = g {(1 + E)oz(wi)
1| & ’
+ 12 [ 22 [mlz) = m(a)]
] j=1
1 & ;
+ 7z [Uz(zzw) - 02(11-)] }
T =1
We see that
n 1 k; ) 2
> 2| 2 ml:) — m(a¥)
i=2 % || j=1
n K k;
< Zk—z BG) < Kr Y de (k)
i=2 % j=1 i=2

A similar computation on the variance term gives the first
statement in the theorem.

From the hypotheses in the second half of the theorem we
can argue as follows. Noting that

ks 2

. 1 1 .
dim =37 || Do miw) - m(z¥)
i=2 i | j=1
2c
_nll»ngon E d;%(k;) =0,

=2
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and a similar computation on the variance terms gives

lim R¥~)(zy, .-, z,)
n—
. = 1\ ,
= Jim ~ ;2 (1 + k—,.)" (2:)
=1l 1+i lim 1 En r*(z;)
- n]—>ngo kn n—oo N t

=2

if the limit exists since 7*(-) is bounded and k, is nonde-
creasing.

By repeating the above computations but with taking the
supremum over all sequences prior to the limit taking, we get

lim sup Rf(zy,---,z,)
Lk 2P
=k su ! En 1+l o?(x;)
= nl»n;o a:l,---I,):L‘n ni= k; i
I~ 1
=R¥"{1+ lim — E -
( + nl»nc}o n i—2 k,l)

since k,, is nondecreasing.

A. Bound on Cumulative Distances

We first consider the following lemma which is an extension
of Theorem 2.

Lemma 7: For any v > 0, forany n > k+1 > 2, and
for any sequence z1,z2,---,Z, in a totally bounded subset

A of (X,p)
n n—1
D G k) <D NN (Li/k), A))
i=k+41 i=k

where dn(i) = p(zn, ).

Proof: The result follows by a modification of Theorem
2 by observing that if we cover A with |n/k] balls of radius
N=Y(|n/k], A), then with n + 1 points at least one ball will
have k + 1 points. This implies that

dm = én"igl di(k) < 2N ~(|n/k], A).

Define a new sequence by omitting z,,. Induction completes
the argument much the same as in the proof of Theorem 2. m

The next theorem shows that if k,, grows slow enough then
the k,-NN rule is consistent in estimation.

Theorem 4: Let Xy, ---, X,, be an arbitrary random process
in a totally bounded subset A of (X,p) with (X;,Y}),---,
(Xn,Yy) satistying Assumption 2. For any F(y | z) satisfying
Assumption 1, we have that any k,-nearest neighbor rule

satisfies a.s.
) (

=2

Ckn) (X, - ) (X)) + (KL + Kz)

oA (L), A

i=kn
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Furthermore, if {k,} satisfies the following two conditions:

(Cl) k,— o0, asn— oo
(C2) %"—»0, as n — oo

then we have that a.s.

.5 1~ .,
lim (X, Xo) = m 25 r (X))

n—00
=2
when the limit exists. Furthermore,

sup 7R£¢k")(xla e 7mn) = R"*. (6)

n—00 gy oz

Proof: The first statement follows using Lemmas 6 and
7. Next, define a nonincreasing function f such that f(i) =
N~1(4) for all positive integers. Then

n—1 2a n

& Y Uk < 4 2 [ e o

i=kn "

FQ2 | ko
n

= " f(z)*da.

<

The limit as n — oo goes to zero using Condition (C2) and
Lemma 2. The hypothesis in Lemma 6 is then satisfied and
the result then follows. [ ]
Corollary 3: Let A be a bounded subset of R”. There exists

a kNN rule satisfying (C1) and (C2) such that for an arbitrary
random process X1, -+, X, € A with (X,Y1),---,(X,,Yn)
satisfying Assumption 2, and for F'(y | z) satisfying Assump-
tion 1, we have the convergence rate O (n‘%), if r > 2a.
Proof: From Example 1, N~1(n, A) < B/n!/" for § =
N~1(1, A). Now compute the second term in the cumulative
bound given in Theorem 4. Let k,, = n® for some ¢ > 0, then

n—1 i
E RN Y (i/ka)]P* < (Qﬂ)hnzm/r Z =2/
i=kn 1=k,

< (28)% ——ni¥3lt-0/,

Hence the finite sample cumulative bound is
o) (nl+(t—1)2a/r + nl-—t) .

The best choice is t = 2§1r. This gives a cumulative bound

as O (n77= ). Hence the convergence rate of the k,-NN rule
is O (n~74%=), n

Note that the rate obtained Corollary 3 for arbitrary sam-
pling is the rate obtained in [13]. sampling with Lipschitz
assumptions on the conditional distribution. In the following
theorem we recover the kNN ii.d. sampling problem and
extend the result to stationary processes and separable metric
spaces.
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Theorem 5: Let X1,X,,---,X, be a stationary process
taking values in a totally bounded subset A of (X, p). Then

1
n—k

3 (i), A)

n |
i=k,

Ed.(k.) <

for any k, > 1 such that k£,/n — 0. In particular, for a
bounded subset A of R™ with 8 = A ~1(1, A), we have

k 1/r
Baa (k) < 85(%2)

Proof: Fix k > 1. As in Lemma 5, it is easy to show
that Ed,(k) < Ed;(k) for all kK + 1 < ¢ < n. By summing
and dividing by n — k we get that

Ed,(k) < Lk > Edi(k).
Ly

The theorem statement follows from Lemma 7. [ ]

Note that the special case of R” in the theorem implies the
results in [13] and extends them to stationary processes. In
addition, Theorem 5 provides new results for separable metric
spaces.

VI. UNBOUNDED SUPPORT

All of our i.i.d. sampling results obtained in the previous
sections explicitly required that the samples be drawn from
a probability measure with totally bounded support. The
convergence rates depended on the metric covering numbers
of the support. We will now consider the case in which the
support is not necessarily totally bounded but is o-compact.
(X is o-compact if X is a countable union of compact sets, i.c.,
if there exists a sequence of compact subsets, {A;, Az, -},
such that X = U; A;.) For example, this condition is always
true whenever (X,p) is a complete separable metric space
(e.g., R™), as it is well known that the support of a probability
measure in such a metric space is o-compact [18, p. 29].

The following theorem states that almost every i.i.d. se-
quence will eventually have a pointwise bound on the expected
NN distance in terms of the covering numbers of sets that
depend on the tail of .

Theorem 6: Let X1, X, - be i.i.d. according to a proba-
bility measure p with (1) a o-compact subset of (X, p). Let
A; C A; C -+- C X be such that the A; are compact

K(n) € U A;
=1
and
o0
S u(4g) < 00
i=1
and let k, > 1 satisfy k,/n — 0. Then for almost every
w = T1,Tq,---, there exists N(w) > 0 such that for all
n > N(w)
n-—1
Ed < “1i/kn], An).
n(kn) S 7 3 N7l ol 40)

i=kn



1038

Proof: As the {A;} are compact, they are in turn totally
bounded. By the Borel-Cantelli lemma, almost surely there
exists Ni(w) > O such that for all n > Ny(w), z, € A,.
As the {A;} are sequentially embedded, z; € A, for all
Ni(w) < 4 £ n. Furthermore, there exists Na(w) > 0 such
that z; € A, for all < Nj(w). Letting

N(w) = max(N; (w), Na(w))

we have that for all n > N(w), z; € A, for all ¢ < n. Hence

n

Ed,(k,) < > Edi(k,)
T ka1
n—1
< (15
e DL (LA
. i=kny
by Theorem 5. ]

For example, take () = X = R". The bound in the
theorem states that for large enough n»

Edp(kn) < eN7HL, An)(kn/n) /7

for some known constant ¢ > 0. However, the sequence {4;}
must grow to satisfy the theorem hypothesis. For example,
for exponentially decaying tails (e.g., Gaussian distributions)
this leads to an additional logarithmic term over the rates
for compact support. For geometric tails, our upper bounds
on the convergence rate have a power law decay which is
strictly slower than that for compact support. In fact, it can be
shown that these upper bounds are fairly tight. This example
illustrates that the expected NN distance depends critically on
the tails of the distribution. The following theorem shows that
this is not the case for convergence in probability. In fact, it is
a recovery of the result in [13] and an extension to separable
metric spaces.

Theorem 7: Let X1,Xs,---,X, be iid. according to a
probability measure p with K(u) a o-compact subset of
(X, p). For any a, — 0, k, > 1 with kn/n — 0, and any
compact {A;} such that

and p(A%) — 0, we have
andn(kn)
n—1
+ X N7U(li/ka), An)
1=kp

-0

in probability.

Proof: Fix € > 0. Let

n—1
6 = % S NIkl An).

i=kn
Next, let the number of X;’s that land in A,, until time n» — 1
be denoted as M,,. Then
Pr(andn(kn)/6n > €)
= Pr(andn(kn)/6, > €| X, € Ap, M, > n/2)
X Pr(X, € An, M, >n/2)
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+Pr(and,(kn)/6, > €| X, € AL or M,, < n/2)
x Pr(X, € A or M, <n/2)
< Pr{andn(kn)/bn > €| X, € Ap, M, > n/2)
+ Pr(A;) +Pr(M, <n/2).
For n large enough so that k,/n < 1/2 and using Markov’s
inequality and Theorem 5 we have
Pr(and,(kn)/6n > €| Xn € Ap, My, > n/2)
< anEld,(k,) | X5 € An, M, > n/2]

- €b,,
4a n/2-1
<=2 “(i/kn], An
< G 2 Nk )
4a.,,

€
Noting that Pr (M,, < n/2) < Pr(A%), we have that

Pr (andn (kn) /b0 > €) < 4“7" +2Pr(AS)—0. m

VII. CONCLUSION

We have provided rates of convergence for nearest neighbor
estimation in two settings. Under i.i.d. sampling in a totally
bounded set of a separable metric space, we showed that the
convergence rate is in terms of the covering numbers of the
underlying sampling set. We then introduced the notion of
arbitrary sampling in a totally bounded set. Although pointwise
bounds on the NN estimator under arbitrary sampling are not
possible, we showed that cumulative bounds are obtainable and
are again in terms of the covering numbers of the sampling
set. We also showed the consistency of the k,NN estimator
under arbitrary sampling and bounded its convergence rate.
Finally, we connect the i.i.d. and arbitrary sampling problems
by proving some classical and new i.i.d. sampling results from
our more general framework.
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