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Weighted Averaging and Stochastic Approximation*

I.-J. Wang,t Edwin K. P. Chong,} and Sanjeev R. Kulkarni§

Abstract. We explore the relationship between weighted averaging and stochas-
tic approximation algorithms, and study their convergence via a sample-path
analysis. We prove that the convergence of a stochastic approximation algorithm
is equivalent to the convergence of the weighted average of the associated noise
sequence. We also present necessary and sufficient noise conditions for conver-
gence of the average of the output of a stochastic approximation algorithm in the
linear case. We show that the averaged stochastic approximation algorithms can
tolerate a larger class of noise sequences than the stand-alone stochastic approx-
imation algorithms.

Key words. Stochastic approximation, Weighted averaging, Convergence, Nec-
essary and sufficient noise conditions, Noise sequences.

1. Introduction

There has been significant recent interest in using averaging to “accelerate” con-
vergence of stochastic approximation algorithms; see, for example, [GW], [KY1],
[KY2], [Lj2], [P]], [SW], [Y], and [YY]. It has been shown that the simple
arithmetic average (1/n) 3_r_, x; of the estimates {x,} obtained from a stochastic
approximation algorithm converges to the desired point x* with optimal rate
[KY1], [PJ]. Under appropriate assumptions, the choice of the step size does
not affect this optimal rate of convergence. Most of the results focus on the asymp-
totic optimality of stochastic approximation algorithms with various averaging
schemes.

The central property of the stochastic approximation procedure is its ability
to deal with noise. Therefore, from both theoretical and practical points of view,
it is important to characterize the set of all possible noise sequences that a
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stochastic approximation algorithm can tolerate. In [WCK], Wang et al. estab-
lish four equivalent necessary and sufficient noise conditions for convergence of
a standard stochastic approximation algorithm, which include the widely applied
condition by Kushner and Clark [KC], [M]. Convergence of the weighted aver-
age of the noise sequence has been used as a sufficient condition for convergence
of stochastic approximation algorithms in [Lj1] and [WZ]. In this paper we
prove that this sufficient condition is equivalent to the four necessary and suffi-
cient conditions studied in [WCK], and hence also necessary for convergence of
stochastic approximation algorithms (see Theorems 3 and 4). Moreover, we estab-
lish necessary and sufficient noise conditions for the convergence of the averaged
output of a stochastic approximation algorithm (see Theorem 5). The established
noise conditions for convergence of the averaged stochastic approximation algo-
rithms are considerably weaker than the conditions for convergence of the stand-
alone stochastic approximation. This result illustrates an important aspect of the
averaging scheme: it allows us to relax conditions on noise sequences for conver-
gence of stochastic approximation algorithms. Our analysis is deterministic—we
study the sample-path behavior of the algorithms. Note that analysis of stochastic
approximation via a deterministic approach has been reported in other work; see,
for example, [S1], [WZ], [KH], and [Ch2].

In Section 2 we define the weighted averaging operator and introduce two im-
portant properties of the operator: regularity and effectiveness. In Section 3 we
establish necessary and sufficient conditions on a sequence for convergence of its
average. In Section 4 we apply the results in the previous sections to the analysis
of stochastic approximation algorithms. In Section 4.1 we establish the conver-
gence of the weighted average of the noise sequence as a necessary and sufficient
condition for convergence of the standard stochastic approximation algorithms.
In Section 4.2 we present a necessary and sufficient noise condition for conver-
gence of the averaged stochastic approximation algorithms in the linear case.
Finally, we state some conclusions and remarks in Section 5.

2. Weighted Averaging

We first define what we mean by “weighted averaging.” Let IH be a real Hilbert
space and let IL = HN be the vector space containing all sequences on H. We
denote the inner product on IH by (:,-) and the corresponding norm by || - ||, and
assume that the index set for elements in IL is N = {1,2,...}. For a sequence
x e L, we write (x), to denote the nth element of the sequence x, and x — ¢ to
mean that x converges to ¢ € H.

Definition 1. The weighted averaging operator with respect to a positive real
sequence a = {a,} is the operator &/,: L — L defined by
arxi if n= 1,
(ox), = (1)

(1 — an)(Aax),_; + anXy otherwise,

for x = {x,} € IL. Given x € IL, we call .«Z,x the weighted average of x.
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We refer to the sequence a in the definition as the averaging sequence of the
corresponding weighted average. It is easy to see that the operator 2/, is linear.
The following lemma gives a useful representation for the weighted average
defined above. Note that this result was established in earlier work; see, for
example, [LPW] and [Pa].

Lemma 1. Given a real sequence a = {a,} satisfying a; =1 and 0 < a, < 1 for
all n > 2; define real sequences {f,} and {y,} by

1, n=1,
Bn n )
H 1 otherwise,
=2 - T Gk
In = anﬂn' (3)
Then
LBy =3kt Vs

2. 5% an = oo if and only if lim, ., = co; and
3. (Aax), = (1/B,) Xokey 7kXk for any x = {x,} € IL.

Example 1. Lemma 1 makes the notion of “weighted averaging” precise by
specifying the “weight” y, placed on the nth term of a sequence as a function of
the averaging sequence {a,}. Consider a class of weighted averaging operator
&, with a, = 1/n* 0 <a < 1. When a = 1, (,x), = (1/n) Y_j_; X is the ordi-
nary arithmetic average. When « < 1, we have y,., > 7, for n = 2. That is, the
weight on each term is always larger than the weight on the previous term. As «
approaches 0, this corresponds to the case where {a,} is a fixed number, and
more and more “weight” is put on the “tail” of the sequence. Nevertheless, for
the case where a > 0, (y,.1)/7, — 1.

In what follows we assume that the averaging sequence satisfies the assump-
tion in Lemma 1 for simplicity of analysis; this assumption is not crucial to the
results. All the results hold as long as there exists N € N such that a, < 1 for all
n > N. Note that (3_;_, 7.)/B, — 1 in this case.

Suppose that x is a sequence of estimates of an unknown parameter x*,
obtained from some algorithm. There are two motivations behind the applica-
tion of weighted averaging to the sequence:

1. If x does not converge to x* but is sufficiently well-behaved, then it may be
possible that a weighted average of x converges to x*.

2. Suppose that x converges to x* slowly. It may be possible to speed up the
convergence by taking the weighted average of x.

In other words, weighted averaging serves as a postfilter for the sequence of esti-
mates x. In this paper we focus on the first issue. Specifically, we provide necessary
and sufficient conditions on x for convergence of its weighted average. We first
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define two important properties of a weighted average and give necessary and suf-
ficient conditions of them to hold.

Definition 2. A weighted average </, is regular if, for any sequence x converg-
ing to x*, o/,x also converges to x*.

Definition 3. A weighted average </, is effective if it is regular and «/,x con-
verges for some nonconvergent sequence x.

Example 2. A simple example of a regular and effective weighted average is
the ordinary arithmetic average, that is, &/, with a, = 1/n. The regularity is
straightforward to establish. The effectiveness can be shown by considering the
nonconvergent sequence {x,} = {(—1)""'}, whose average s/,x converges to 0.

On the other hand, the weighted average with a constant averaging sequence
is regular but not effective. To see this, consider the case where the weighted
averaging sequence is {¢}, 0 < ¢ < 1. Then, for any sequence {x,},

1 _ 1\ _
Xpn=—Fp+ |1 —=)Xu-1,
P €

where {X,} is the weighted average of {x,}. Hence {X,} — x* implies that
{x»} — x*. Therefore the weighted average is not effective.

The regularity of a weighted averaging operator guarantees that the weighted
average of every convergent sequence also converges to the same limit of the
original sequence—the weighted averaging will not impair convergence. In
addition, the effectiveness of a weighted averaging operator makes sure that
some nonconvergent sequence can be made convergent via weighted averaging
—the weighted averaging will extend the domain of convergence. We give neces-
sary and sufficient conditions for regularity and effectiveness of weighted averag-
ing in Propositions 1 and 2 below, respectively.

Proposition 1. A weighted average </, with a = {a,} is regular if and only if
S Ay = 0.

Proof. (=) If 3.°, a, < oo, then, from Lemma 1, > 2,7y, =M < 0. Let
x = {x,} be a sequence on H defined by

. {77 if n=1,
"7 10  otherwise,

with ||7]| = M/2. Then x converges to 0, but [|(,x),|| = B, |17l = (1/M)|ln|| =1
so that .o/, is not regular.

(<) Suppose >, a, = oo and that x = {x,} converges to x*. Given any
e >0, choose N; such that ||x, — x*|| < ¢/2 for n > Ny, and choose N> such
that, for all n> Ny, B, = S0_, 7 = (2/€)|l pt; 7x(xk — x*)||. Then, for all n >
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max{Ny, N2},
1 . 1 ¢ .
— X — X = ||+ Xy — X
'ﬂ" - YiXk ﬂn;yk(k )‘
1] 1 X
e O P DA MR
nll =1 n k=N;+1
& 14 _
< 5-{-5—8,

where the first term in the last inequality arises because of the choice of N, and
the second term arises because of the choice of N;. n

The next proposition gives us a necessary and sufficient condition for the
effectiveness of a weighted average.

Proposition 2. A regular weighted average </, is effective if and only if a has a
subsequence converging to 0.

Proof. (=) Suppose that {a,} does not contain a subsequence that converges
to 0. Then there exist 6 > 0 and N < oo such that a, > for all n > N. Let
x = {x,} € IL be a sequence and suppose that «/,x = {X,} converges to x*. For
n > 1, we have

Xn — in—l -
Xp = ———+ Xp1,
an

so that

1% = %o

[[xn = x*| < + lIXn1 = x| = 0.

n
Hence, whenever {X,} converges we have that {x,} converges, so that </, is not
effective.
(«=) If there is a subsequence of {a,} that converges to 0, we can choose

a sequence nm; such that a, < 1/2% and B, > 48 with g, ;> 1 Let x=
k ny Ng_1 n—1 2
{x,} € L satisfy

]l = {% if n=mn; forsomek,
" 0 otherwise.

Clearly x does not converge. However, (%[ = (1/B,_;)an|lxn| <3 and if
l|%n || < 1/2, then

. 1 _
lMJZb‘%M+m%m
Niet1

ﬂnk
ﬂ”k+l

< (1%, |l + 3 Gn.,
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11 11
SaEtye
1
= 2kt

Therefore, by induction ||, || < 1/2* for all k. Finally, for ny < n < ngy it is easy
to see that ||X,| < ||X,,||. Thus, X, — 0 so that &/, is effective. |

As an example, we now apply Propositions 1 and 2 to a “forgetting factor”
type of averaging that is widely used in the area of parameter estimation.

Example 3. Consider a weighted average operator &/,;:IL — L with a, =
(1—-4)/(1—4",4>0,4# 1. By Lemma 1 we can write the weighted average of
a sequence x = {x,} as (ux), = B Sop_; VkXx With

1-A"
ﬂ’l = n_l b
(1=2)4
Vo= /11‘”.
Note that
(o) = B> e = 2l S kg
at/n nk:1 k 1-/1",(:1

is a “forgetting factor” type of average if A < 1. By Proposition 1, <, is regular if
and only if 1 < 1. However, by Proposition 2 this average is not effective since a
converges to 1 — A > 0 monotonically. Nevertheless, this weighted average may
improve the speed of convergence.

3. Convergence of Weighted Averages

In this section we study conditions on {x,} for the convergence of its weighted
average. Throughout the paper we assume that the associated weighted averaging
is both regular and effective. In other words, the averaging sequence is not sum-
mable and has a subsequence converging to 0. Without loss of generality, we
assume that the desired limit for sequences of interest is 0, that is, x* = 0. For ease
of presentation, we define operators %;: L - L, ®:IL — IL, and O LI as
follows: For a sequence x = {x,} € IL, define

(FaX), =Y axis
k=1

0, n=1,

Xn_1 otherwise;

(©x), - {

(©7'x), = Xps1-
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3.1. First-Order Condition

We now present a necessary and sufficient condition on a sequence for con-
vergence of its weighted average.

Theorem 1. Let x = {x,} be a sequence on H. The weighted average ,x con-
verges to 0 if and only if there exist sequences u = {u,} and v = {va} such that
x =u+ v, lim,_ ou, = 0, and v converges.

Proof. Let o/,x = {X,}, and let {,} and {y,} be sequences defined in (2) and
(3), respectively.
(<) We have

n n n
- —1 1 _
Xn =B, kE 1 Xk = B k§ 1 YUk +ﬂn1 kE 1 Vi Vk-

The first term converges to 0 since %/, is regular. The second term converges to 0
by Kronecker’s lemma [Lo, p. 250].
(=) From (1) we construct desired sequences # and v by

u; =0, U, = Xp—1 for n>2,
X1 Xn — Xp—1
vy = — vy="2—"—" for nx>2.
ala an
Then we have x = u + v, and both u and %,v converge to 0. u

We define the condition stated in Theorem 1 as the first-order decomposition
condition, which we refer to in the subsequent discussion.

Definition 4. Fix a sequence of positive real numbers {a,}. We say a sequence
x € IL satisfies the first-order decomposition condition (or simply the DC, con-
dition) if there exist sequences # = {u,} and v = {v,} such that x=u+v,
lim,—, o, = 0, and &,y converges.

Note that if @ does not have a subsequence converging to 0, the DC, condition
reduces to the convergence of x. This fact is consistent with Proposition 2. In the
subsequent discussion, we may drop the subscript when the associated averaging
sequence does not affect the result.

3.2. Convergence with Zero Upper Density

A notion of convergence considered in [ShW] and [W], called convergence with
zero upper density, is similar in spirit to the DC condition. In particular, Shapiro
and Wardi [ShW] show that, for a class of stochastic optimization problems, a
gradient descent algorithm converges to the minimum with zero upper density. In
addition, they state that the average of the iteration sequence converges to the
minimum. Here, we further explore the relationship between convergence with
zero upper density and weighted averaging. We present a generalization of the
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former notion of convergence and prove the statement made by Shapiro and
Wardi in [ShW] for this generalized notion of convergence.

Definition 5. Let J be a subset of IN. The weighted upper density of J (with
respect to {a,}), denoted as ud,(J), is defined by

ud,(J) = lim sup M ’

n—x ﬂn

where y, and §, are defined as in Lemma 1.

The weighted upper density ud,(J) of a set J is a measure of the (asymptotic)
“density” of the set J as a subset of the positive integers {1,2,3,...}, weighted
according to the weighting sequence {y,}. For example, if a, = 1/n (y, = 1 for all
n) and J is the set of even numbers, then ud,(J) = 1. Note that in the case where
a, = 1/n, the weighted upper density reduces to the upper density considered in
[ShW] and [W]. In this case,

Jn{l,...
=1imsup—————| ity ,n}|’
n—oo n

ud,(J) = lim sup

n—oc

ZkeJn{l,...,n} 1
n

where | - | denotes the cardinality of a set.
Based on the above definition of weighted upper density, we define the notion
of convergence with zero weighted upper density.

Definition 6. A sequence {x,} on H is said to converge with zero weighted
upper density to x* (with respect to {a,}) if there exists a set J < N with
ud,(J) = 0 such that

lim x, = x".
n—oo,né¢J

Now we prove that the weighted averaging of a bounded sequence converges
if the sequence converges with zero weighted upper density.

Proposition 3. Let {x,} be a bounded sequence on H. Assume that {x,} con-
verges with zero weighted upper density to x*. If o4, is regular, then of,x — x*.

Proof. By the definition of convergence with zero weighted upper density, there
exists a subset J of N, with ud,(J) = 0, such that lim,_,, n¢sX» = x*. Define two
sequences # = {u,} and v = {v,} on H by

x* if nel,
U, = )
Xn otherwise;

Uy = Xy — Up.

Since .o/, is regular and u — x*, we have &/u — x*. Now let ||x, — x*|| < M.
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Then we have

1 & . 1
limsup || — yeVk|| = limsup || — Z Yie(xk — x¥)
nco || B k=1 n—oo || B keJr{l,...,n}
< limsup M Zke]r\{l,...,n} Yk
n—oo ﬂn
=0.
Therefore o, x = L + v — X*. ]

Note that convergence with zero weighted upper density for a bounded
sequence is a stronger condition than the convergence of its weighted average.
This fact is illustrated by the example we discussed earlier, where x, = (-1)"*!
has a convergent average but does not converge with zero upper density.

3.3. Second-Order Condition

We now study the situation where a second weighted average is needed to obtain
a convergent sequence. We present a necessary and sufficient condition on the
sequence for convergence of its “second-order weighted average.” To establish the
result, we need the following lemma.

Lemma 2. For a sequence x € 1L, the following identity holds:

Aax = Fox — A (O(Fx)). 4)

Proof. Let x = {x,}, #,x = {%4}, and F,x = {yn}. Then by Lemma 1

n

= —1

Xn =B, E ViXks
k=1

where {#,} and {y,} are defined by (2) and (3). Since x, = (y» — Vn—1)/@n, We

have
n

_ 1 1 Yk
Xp = — + —_ —_ — _
7, g E (Yk — Yk-1)

=2 %
1 n—1
=5 Z(ﬂk — Bes) Vi + Yn
n k=1
1 n

=Yn—75% YeVk-1,
" B k=2
and the desired identity follows. |
We need an additional assumption on the behavior of the averaging sequence

{an} to establish the second-order condition (Theorem 2). We define the notion
of bounded variation of a sequence that will be used to state our assumption.
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Definition 7. A sequence {a,} is said to have bounded variation if
Yoot lans1 — an] < 00.

The set of sequences with bounded variation is a fairly large class of sequences.
For example, any bounded and eventually monotone scalar sequence has
bounded variation. To establish the second-order condition we need the follow-
ing lemmas, Lemmas 3 and 4, which concern the relationship among weighted
averages with different averaging sequences.

Lemma 3. Let a= {a,} and b= {b,} be given sequences. Suppose that the
sequence {a,/b,} has bounded variation. If x satisfies the DC, condition, then it
also satisfies the DC, condition.

Proof. Suppose that x = {x,} satisfies the DC;, condition with decomposition
x = u+v, where u — 0 and #v converges. Let S, = 3,2, bivk, n € N. Since F,v
converges, lim,_, S, = 0. Forn > 1,

a VI an
=3 Si+ ;(bk - bk—l)Sk b, Sny1- (5)
The first term in (5) is a constant. The third term in (5) converges to O since
{an/bn} is bounded and {S,} converges to 0. To show that the second term in (5)
converges, we prove that the corresponding sequence is Cauchy:
Let 37 |ant1/bns1 — an/bn| = M. Given & > 0 there exists N € N such that
ISq|l <&/M for all n > N. For m > n > N, we obtain

m m

ay ay, ay ag—11| €
— =t Sk < —_— | —
kz;n(bk bk—l) ; be b |M

&£

<M—

- M

=e.
Thus &, converges. Therefore x satisfies the DC, condition. |

Since the DC, condition is necessary and sufficient for convergence of .«,x,
Lemma 3 relates the convergence of weighted averages of a sequence with differ-
ent averaging sequences. As a direct corollary of the above lemma, we obtain the
following useful result.

Lemma 4. Suppose the sequence {an.1/a,} has bounded variation. If x € IL sat-
isfies the DC, condition, then Ox also satisfies the DC, condition.



Weighted Averaging and Stochastic Approximation 51

Proof. Replacing sequences {a,} and {b,} in Lemma 3 by {a,;1} and {a,,}
respectively, gives us the result.

Similarly, we can obtain the analogous result for o

Lemma 5. Suppose the sequence {a,/ay,1} has bounded variation. If x € IL sat-
isfies the DC, condition, then O~ 'x also satisfies the DC, condition.

Note that under the same assumption, Lemmas 4 and 5 can be extended to
“nth-order shifts.” For example, Lemma 4 (via induction) implies that ®"x
satisfies the DC, condition if x satisfies the DC, condition.

With the above lemmas, we prove the following theorem that establishes the
necessary and sufficient condition for convergence of the “second-order” average.

Theorem 2. Suppose that the sequence {b,y1/b,} and {a,/b,} have bounded vari-
ation. Then, for x € 1L, the following are equivalent:

1. of,x satisfies the DCy condition.

2. There exist sequences u and v such that x = u+ v, and u and &, satisfy the
DC, condition.

3. Ap(,yx) converges to 0.

Proof. With Theorem 1, (1< 3) follows directly. We prove the equivalence
between conditions 1 and 2 below.

(1= 2) Suppose that o/, x satisfies the DC; condition. Let o/,x = {X,}. By (1)
we have

Xt, n=1,
Xn=1{ 5 _x
Xn — Xn—1 _ .
2 4 Xno otherwise.
an
Define & and v by
u; =0, U, = X,_1 for n>2,
X1 Xn — Xn—1
v =, vp=——"— for n>2.
ap Qan

Then, x = u+ v and u = ©(s/,x). By Lemma 4, u satisfies the DC; condition.
Moreover, %,v = /,x also satisfies the DC; condition.

(1<2) Suppose that x = u+ v where u and &,v satisfy the DC, condition.
Since &, is linear,

A ax = A+ A,y

Since u satisfies the DC}, condition, s/,u converges to 0 by Lemma 3 and Theorem
1. By Lemma 2 we have

Ay = Sy — A (O(Fy)).
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By Lemma 4, Lemma 3, and Theorem 1, «/,(®(¥,»)) converges to 0. Hence
Aox = (At — La(O(Fv))] + Loy,

and [oLu— oA, (O(Fw))] converge to 0. Therefore, ,x satisfies the DCp
condition. |

We state condition 2 on x in Theorem 2 in the next definition for later
reference.

Definition 8. Fix sequences of positive real numbers {a,} and {b,}. We say a
sequence x € IL satisfies the second-order decomposition condition (or simply the
chb‘ condition) if there exist sequences # and v such that x = u +v, and u and
%,v satisfy the DC;, condition.

Again, we may omit the subscripts when the associated averaging sequences
are clear from the context.

In the next section we explore the close relationship between weighted aver-
aging and stochastic approximation, and present a necessary and sufficient noise
condition for convergence of the averaged stochastic approximation for a class
of linear problems.

4. Stochastic Approximation and Averaging

In [WCK], Wang et al. show that the DC condition on the noise sequence is
necessary and sufficient for convergence of a stochastic approximation algorithm
under appropriate assumptions. This result, together with Theorem 1 in the pre-
vious section, establishes a form of equivalence between weighted averaging and
stochastic approximation in terms of convergence. More precisely, we show that
the convergence of weighted average of the noise sequence is necessary and suffi-
cient for convergence of stochastic approximation algorithms (Theorems 3 and
4). Based on this equivalence, we further show that the DC? condition on the
sequence is a necessary and sufficient condition for convergence of the averaged
stochastic approximation algorithm (Theorem 5). These results illustrate an im-
portant aspect of the averaging scheme: it allows us to relax the condition on
noise sequences for convergence of stochastic approximation algorithms. We
prove that, with a weighted averaging, stochastic approximation can tolerate a
larger class of noise.

4.1. Weighted Averaging as a Noise Condition

The close relationship between stochastic approximation and weighted averaging
has been reported in the literature. In [Lj1], Ljung shows that convergence of the
weighted average of the noise sequence, with the step size being the averaging
sequence, is sufficient for convergence of a stochastic approximation algorithm.
Walk and Zsidé prove a similar result for a class of linear problems in [WZ]. In
[K], [R1], and [S1], it is shown that the stochastic approximation algorithm can
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be represented as a weighted average of the noise sequence when it converges. In
the case where the step size a, = c/n, Clark proves in [Cl] that the convergence of
the true average of the noise sequence is necessary and sufficient for convergence
of Robbins—Monro algorithms. Here, we generalize Clark’s result to general step
size sequences by applying results in the last section and [WCK].

In [WCK], Wang et al. show that the DC, condition on the noise sequence
{en} is necessary and sufficient for convergence of the stochastic approximation
algorithm described by

Xnit = Xn — Anf (Xn) + Anen + anby, (6)
where b, € H with b, — 0, and f: H — H satisfies
(A) There exists x* € H such that, for all § > 0, there exists ks > 0 such that
|x — x*|| =6 implies  (f(x),x — x*> > hs||x — x*||.

Assumption (A) is a Lyapunov-type condition. In fact, on a Euclidean space
RR", Assumption (A) implies a condition used in [De] that

max {f(x), VV(x))> > 0

for any compact set C = R"\{x*} with V(x) =1||x — x*||%. Note also that func-
tions satisfying Assumption (A) are not necessarily continuous. For example, the
function defined by

c(x—=x")+h if x> x*,
flx) = . ;
c(x — x*) otherwise,

with ¢ > 0 satisfies Assumption (A) but is not continuous at x*.
The above convergence result, together with Theorem 1, gives us the following
theorem that establishes the desired equivalence.

Theorem 3. Let {a,} satisfy 3 2, a, = oo and a, — 0. Suppose that {x,} is gen-
erated according to the algorithm (6) and {f(x»)} is bounded. Then x, — x* for all
fsatisfying (A) and all x; € H if and only if e — 0.

Theorem 3 not only shows that convergence of the weighted average of the
noise sequence is necessary and sufficient for convergence of a stochastic
approximation algorithm; it also establishes the equivalence between this con-
dition and other noise conditions studied in [WCK], which include the well-
known condition by Kushner and Clark [KC], [M], a modification of Kushner
and Clark’s condition introduced by Chen in [Chl], a deterministic condition
presented recently by Kulkarni and Horn in [KH], and the decomposition
condition.

Note that the boundedness of the sequence { f(x,)} assumed in Theorem 3 can
be guaranteed by either assuming that f is Lipschitz continuous and has linear
growth rate as in [S1], or modifying the algorithm (6) to include projections with
increasing bounds as in [CLG] and [Ch2].
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We now establish the same equivalence for a class of linear problems, without
the assumption that {f(x,)} be bounded. Consider the problem of recursively
estimating the zero of an unknown linear function Ax — b, A:H—H and
b € H, via the following stochastic approximation algorithm:

Xn+l = Xn — anApxn + anbn + anen, (7)

where x; € H is arbitrary; A, and b, are estimates of A and b, respectively; and
{e,} is the noise sequence. We assume that the step size {a,} is a sequence of
nonnegative real number with a; = 1,4, < 1forn > 2,a, — 0,and 37, ay = o0.
Furthermore we assume that 4,: H — H is a sequence of bounded linear oper-
ators, and {b,} and {e,} are sequences on the Hilbert space H. Following Walk
and Zsido [WZ], we assume that A, and b, satisfy the following assumptions
throughout:

(A1) 4 is a bounded linear operator with inf{Re 4: 4 € (4)} > 0, where a(A)
denotes the spectrum of 4.

(A2) limsup, o, (1/B,) 3 oky 7kl Akl < 0.

(A3) 1(1/By) Yt 71k — Al = 0.

(A4) 11(1/By) 2okt 7ibx = bll = 0.

Assumption (A1) guarantees that A is invertible. Assumption (A2) is a technical
condition that will be used in the proof of convergence. Following Walk and
Zsidé [WZ], letting X, = x, — A~'b and b), = b, — A,A™'b, we can rewrite (7) as

/ / / /
Xpi1 = Xy — AnXy, + anb,, + anen.

Assumptions (A3) and (A4) imply that (1/8,) >_i_; ybj, converges to 0. Therefore
we can assume that b =0 without loss of generality. In fact, by Assumption
(A4) and the linearity of </, we can ignore the term b, in (7) in considering the
convergence of the stochastic approximation algorithm. In other words, we can
simply focus on the algorithm described by

Xntl = Xp — AnAnXn + Qnén. (8)

This will be clear when we present our convergence results (Theorem 4 and 5)
later.

In the following we show that convergence of the weighted average of the
noise is necessary and sufficient for convergence of the algorithm described by
(7). The sufficiency is proved by Walk and Zsid6 in [WZ]; we only show the
necessity here.

Theorem 4. Suppose that Assumptions (A1)-(A3) hold. Then {xn} defined by (7)
converges to A~'b if and only if s,e converges to 0.

Proof. We prove the result for (8). Direct applications of Assumption (A4) and
the linearity of .«¢, yield the desired result.
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(<) See [WZ].
(=) Suppose that {x,} converges to 0 for (8). From (8) we obtain

Xn+1 — Xn
=+ A, X,

n
an

Since S"7_; an((Xk+1 — Xk)/@n) = Xn41 — X1 cODVerges, {(xn+1 — Xn)/an} satisfies
the DC, condition. Hence .#,{(xns1 — Xx)/an} — 0 by Theorem 1. Furthermore,
by Assumption (A2) and the convergence of {x.}, we have o#,{Anx,} — 0. There-
fore A {en} = Ao{(Xns1 — Xn)/an} + La{Anxn} — 0. |

The noise condition «/;e — 0 presented in Theorems 3 and 4 is a deterministic
condition. We provide two examples here to illustrate how the condition can be
verified for stochastic noise. We assume that the noise sequence {e,} is a random
process defined on an appropriate probability space in the following two
examples.

Example 4. Consider an independent process {e,}. Suppose that Z,{m,} — 0
and >, aiaﬁ < oo, where m, and o, denote the mean and variance of ey,
respectively. Then the process {3 ;_; ax(ex — mx)} is a martingale (with respect

to the filtration generated by {ey, ..., e,}). Moreover, we have
n 2 o0
E(z a(ex — mk)> < E aiaﬁ < 0.
k=1 k=1

Hence, by the martingale convergence theorem, we have that S ke ak(ex — my)
converges almost surely. Thus, /,{e, —m,} — 0 by Theorem 1. Therefore, we
can conclude that e = o, {e, — m,} + {m,} — 0 almost surely.

Example 5. Suppose that {e,} is stationary and ergodic, and E(e.) = 0. Then,
in the case where a, = 1/n, o/,e — 0 almost surely by the ergodic theorem [Du].
Note that since any stationary mixing process is ergodic, the condition holds for
these processes.

For general weighted average, additional assumptions are needed for /,e — 0
to hold. For example, in [Y] Yin considers a stationary ¢-mixing process {es}
satisfying E(e,) =0 and E|en|2+‘5 < 0 for some 6 > 0. For m > 0, the mixing
measure is defined by

p(m) = sup |P(B|Fn) — P(B)|215)/0149),
Bey’l-*-m
where % =o{ei:k<n} and F"=o{e:k=n}. Assuming that
% ¢4 (m) < oo, Yin shows that Y ;_; k™*e; converges almost surely for
% < o < 1. Therefore, by Theorem 1, o/, — 0 almost surely for a, = n™"

4.2. Averaged Stochastic Approximation

Recently, Polyak and Ruppert independently proposed the idea of speeding up
convergence of stochastic approximation by means of averaging in [Po] and
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[R2], respectively. They show that the average of the output of a stochastic
approximation algorithm, (1/n)) ;_, xx, converges with the optimal rate,
together with the optimal asymptotic covariance matrix. The optimality can be
achieved with a slowly varying step size, and is independent of the design constant
for the step size. Since then, other authors have further explored the benefits of
using averaging for stochastic approximation; see, for example, [GW], [KY1],
[KY2], [PJ], [S2], [SW], [Y], and [YY]. Most of the results focus on the
asymptotic optimality of stochastic approximation algorithms with various aver-
aging schemes. Except for results in [S2] and [SW], a probabilistic approach is
used in the analyses.

In this paper we explore a different aspect of the averaging scheme. We show
that the averaging technique, if properly designed, allows us to relax the noise
condition for convergence of stochastic approximation. Specifically, we establish
a necessary and sufficient noise condition for convergence of an averaged
stochastic approximation algorithm in the linear case. This condition is sub-
stantially weaker than the known necessary and sufficient noise conditions for
convergence of the standard stochastic approximation without averaging. Our
analysis is deterministic.

We consider the algorithm described by

Xnil = Xn — AnAXp + anby + anen, 9)
and study the convergence of the weighted average {X,} of {x,}, where
n = (1 — ay)Xn1 + anxp. (10)

In the following theorem, we present a necessary and sufficient noise condition for
convergence of the weighted average of {x,}. We use #/2x = o/,(/,x) to denote
the second-order weighted averaging of a sequence x with the same averaging
sequence {a,} for both averagings.

Theorem 5. Let {a,} satisfy 5 .-, an = o0 and a, — 0. Suppose that A: H — H
satisfies Assumption (A1), Assumption (A4) holds, and {asi1/an} and {an/ans1}
have bounded variation. Then, for x and {X,} defined by (9) and (10), the following
are equivalent:

1. {%,} = oax converges to A~'b.
2. sf’e converges to 0.
3. {en} satisfies the DC2 condition.

Proof. We already have (2 <> 3) by Theorem 2. Therefore we only need to prove
(1<2).
With the help of Lemma 1, we write a recursion for (#,x),;:

(Hax),yy = (Hax), — a1 A(HaX), + an1 (Aab), + any1(ze),.

Since &/, is regular, dfb:da(dab) — b. Hence ,x — 0 if and only if
A g-1,(Aze) — 0 by Theorem 4. By Lemmas 4 and 5, o/g-1,(#,e) — 0 if and
only if .2/2e converges to 0. This completes the proof. [ ]
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Note that the assumptions on the step size stated in Theorem 5 hold for step
sizes of the form ¢/n*, 0 < a < 1.

In the case where different sequences are used for stochastic approximation
and weighted averaging, a tight result analogous to Theorem 5 is not easy to
obtain. However, with the help of Lemma 3, we can establish a sufficient noise
condition for convergence.

Corollary 1. Let {a,} and {c,} satisfy S an = 0 and an — 0, 37 ¢z = 0,
respectively. Suppose that A: H — H satisfies Assumption (A1), Assumption (A4)
holds, and {a,.1/a,} and {ca/as} have bounded variation. Then, for x defined by
(9), & .x converges to A'b if o2e converges to 0.

Note that the sufficient condition in Corollary 1 might be loose when the step
size {a,} converges to 0 very slowly, that is, when ./, is nearly ineffective. In this
case, the condition &/2e — 0 is almost as strong as the convergence of {e.} to 0.
Note also that Theorem 5 and Corollary 1 does not apply when the step size
{a,} does not have a subsequence converging to 0. A specific case of this sit-
uation is studied by Gyoérfi and Walk in [GW], where a constant step size
(an =€) for stochastic approximation and the ordinary arithmetic averaging
(cn = 1/n) are considered. Gyorfi and Walk show that the averaged output
(1/n) 34—, xx of a stochastic approximation described by

Xp+1 = Xp — e(An+1xn - bn+l)

converges for small ¢ under the assumptions that the sequence {1(A"’ bn)} is sta-
tionary and ergodic with E||4,|| < oo, E||ba|| < oo, and [E(4,)]”" exists, and the
random variable ¢ 3" ||(I — eAn) - - - (I — eA1)(bo — Aoxo)|| is integrable. Note
that the above assumptions imply that Assumptions (A1)—(A4) with a, = 1/n hold
almost surely, and hence imply the convergence of the stochastic approximation
algorithm with the step size a, = 1/n. This result by Gyorfi and Walk illustrates
an interesting phenomenon that the convergence property of the averaged sto-
chastic approximation is “dominated” by the faster averaging when the chosen
step size is not “effective” (the corresponding averaging operator is not effective).

Theorem 5 and Corollary 1 assert that a stochastic approximation algorithm
with averaging can tolerate any noise sequence that satisfies the DC? condition.
Due to the regularity and effectiveness of weighted averaging, it is clear that the
second-order averaging /2 is more “powerful” than the first-order averaging
o4, in the sense that the former can transform a larger class of sequences into
convergent sequences. In fact, it is straightforward to establish the inclusion
relation: DC, = DC2, where we abuse the notation by adopting DC, and DC?
to denote the sets of sequences satisfying the corresponding conditions. Consider
an example where a, = 1/n and x, = (—1)”+1(2n —1). Although the sequence
x oscillates with increasing magnitude, we have /’x — 0. Note that o/,x =
{(=1)"*'} does not converge. Since the DC, condition is necessary and sufficient
for convergence of stochastic approximation, the fact that weighted averaging
relaxes the noise condition is evident by Theorem 5 and Corollary 1.
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We give an example of stochastic noise for which the deterministic noise con-
ditions in Theorem 5 hold almost surely.

Example 6. Consider a stochastic process {e,} defined by

{5, if n=1,
e, =

n(é, —&n1) otherwise,

where {&,} is an independent process with E(¢,) =0 and E(&%) < 0. Suppose
that a, = 1/n. From Example 4, #/,{&,} — 0 almost surely. Since > ket akex = &n,
%e — 0 almost surely by Theorem 2. Note that {e,} has increasing variance and
is neither independent nor stationary.

5. Conclusion

In this paper we study properties of weighted averaging and present necessary and
sufficient conditions on a sequence for convergence of its average. We view
weighted averaging as a means to weaken the noise condition for convergence of
stochastic approximation and present a necessary and sufficient noise condition
for convergence of stochastic approximation with averaging for a special linear
case. Note that all the results concerning convergence of weighted average in Sec-
tions 2 and 3 go through for a Banach space.

Although averaging has been applied to accelerate convergence in [KY1],
[KY2], [Lj2], and [PJ], it is not clear that averaging can always guarantee a
speedup of convergence in the deterministic setting adopted in this paper. Under
a stochastic framework, averaging allows the use of a larger step size and leads
to the best scaling as well as the “smallest” covariance. To some extent, the
accelerating effect of averaging is a consequence of a central limit theorem. In
the deterministic setting, or on each sample path, the situation is quite different.
Consider the case where a, = 1/n and x,,e, € R, if x,/a, = nx, — 0, that is,
xp = o0(a,), and liminf,.|| > k- X[l > O, then X,/x, — co. In other words,
averaging actually slows down convergence in this situation. Another situation
where averaging cannot speed up convergence is when {x,} monotonically
decreases to 0. From the equation

1 n 1 n—-1
—Z Xp =— k(xk — Xk+1) + Xa,
i3 nia

we see that the average {%,} does not converge faster than {x,} since the first
term at the right-hand side is always positive. A similar situation is observed by
Spall and Cristion in [SC], where averaging is applied to a stochastic control
problem, with the intent to improve convergence of a parameter estimate, and
results in inferior performance. Since the sample-path performance is the main
concern in many real-world applications, it is important to evaluate the averaging
scheme under the deterministic framework. A more detailed analysis is needed to
characterize situations where a speedup can be achieved.
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