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from (56) we get
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By taking the limit forR!1 and by using the fact that� � �erg(K),
we obtain thatlimR!1 � = �erg(K) for all K. This shows that the
“all-or-none” INR strategy coupled with JMUD is throughput-wise op-
timal for every finiteK. Finally, by lettingK ! 1 we can achieve
the unfaded single-user upper bound in (55) with equality.

REFERENCES

[1] G. Caire and D. Tuninetti, “ARQ protocols for the Gaussian collision
channel,”IEEE Trans. Inform. Theory, vol. 47, pp. 1971–1988, July
2001.

[2] S. Shamai (Shitz) and S. Verdú, “The impact of frequency-flat fading on
the spectral efficiency of CDMA,”IEEE Trans. Inform. Theory, vol. 47,
pp. 1302–1327, May 2001.

[3] I. Bettesh and S. Shamai (Shitz), “Outages, expected rates and delays in
multiple-users fading channels,” inProc. 2000 Conf. Information Sci-
ence and Systems, vol. I, Princeton, NJ, Mar. 2000.

[4] S. Lin and D. Costello,Error Control Coding: Fundamentals and Ap-
plications. Englewood Cliffs, NJ: Prentice-Hall, 1983.

[5] D. Tse and S. Hanly, “Linear multiuser receivers: Effective interference,
effective bandwidth and capacity,”IEEE Trans. Inform. Theory, vol. 45,
pp. 641–657, Mar. 1999.

[6] S. Verdú and S. Shamai (Shitz), “Spectral efficiency of CDMA with
random spreading,”IEEE Trans. Inform. Theory, vol. 45, pp. 622–640,
Mar. 1999.

[7] E. Biglieri, J. Proakis, and S. Shamai (Shitz), “Fading channels: In-
formation-theoretic and communications aspects,”IEEE Trans. Inform.
Theory, vol. 44, pp. 2619–2692, Oct. 1998.

[8] J. G. Proakis,Digital Communications, 3rd ed. New York: McGraw-
Hill, 1995.

[9] S. Verdú,Multiuser Detection. Cambridge, U.K.: Cambridge Univ.
Press, 1998.

[10] D. Bertsekas and R. Gallager,Data Networks, 2nd ed. Englewood
Cliffs, NJ: Prentice-Hall, 1987.

[11] H. David,Ordered Statistics, 2nd ed. New York: Wiley, 1981.
[12] W. Kaplan, Advanced Calculus. Reading, MA: Addison-Wesley,

1991.
[13] G. R. Grimmet and D. R. Strizaker,Probability and Random Processes,

2nd ed. Oxford, U.K.: Oxford Univ. Press, 1992.

Data-Dependent -NN and Kernel Estimators Consistent
for Arbitrary Processes

Sanjeev R. Kulkarni, Senior Member, IEEE, Steven E. Posner, and
Sathyakama Sandilya

Abstract—Let . . . be an arbitrary random process taking
values in a totally bounded subset of a separable metric space. Asso-
ciated with we observe drawn from an unknown conditional
distribution ( = ) with continuous regression function

( ) = [ = ]. The problem of interest is to estimate
based on and the data ( ) . We construct appropriate
data-dependent nearest neighbor and kernel estimators and show, with
a very elementary proof, that these are consistent forevery process

. . ..

Index Terms—Arbitrary random processes, consistency, data dependent,
kernel estimate, nearest neighbor estimate, nonparametric regression.

I. INTRODUCTION

Let X1; X2; . . . be an arbitrary random process taking values in
a subset of a general separable metric space(X ; �). Special cases
include nonstationary or nonergodic processes and deterministic se-
quences. EachXi = xi has an associated labelYi which is a random
variable drawn from an unknown conditional distributionF (yjXi =
xi) taking values in a Hilbert spaceY . We consider the nonparametric
regression estimation problem of estimatingm(Xn) = E[YnjXn]
givenXn and previous data pairsf(Xi; Yi)g

n�1

i=1
.

Most previous work has considered the case in which the data
pairs f(Xi; Yi)g are independent and identically distributed (i.i.d.),
although some work has also been done for various weakly dependent
data, see [9]–[11], [13], [16], [17]. It is well known that, in this case,
various universally consistent regression estimators exist under only
a finite moment condition onY . For example, see Györfi, Härdle,
Sarda, and Vieu [6], Roussas [14], and the references therein for
results with dependent data. There has been significant interest in
analyzing the performance of nearest neighbor and kernel estimators
and, in particular, establishing consistency results and obtaining rates
of convergence, for instance, see [1]–[3], [5], [7], [18]. Recently,
Kulkarni and Posner [8] considered the case in which the process
X1; X2; . . . takes values in a compact set, but is otherwise completely
arbitrary. For continuous regression functions they have shown that
results analogous to the i.i.d. case can be obtained for several standard
estimators (such askn-nearest neighbor and kernel estimators) using
a cumulative loss criterion. These results are also related to other
work on individual sequences such as [12] on density estimation and
references therein.

In this correspondence, we also impose no restrictions on the random
processfXig except that almost surely the setfX1; X2; . . .g be to-
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tally bounded. As in [8], we require the regression function to be con-
tinuous, and that givenXi, the labelYi is conditionally independent
of f(Xj ; Yj)gi6=j . Although this is a rather general setting, we show,
perhaps surprisingly, that appropriate data-dependent estimators for
m(Xn) can be constructed that are consistent foreverytotally bounded
processX1; X2; . . .. Thus, for the price of continuity of the regres-
sion function, consistent estimators can be constructed with almost
complete generality in the processX1; X2; . . ., and interestingly, the
proofs are very simple. In Section II, we give a precise formulation
of the problem, Sections III and IV consider data-dependent nearest
neighbor and kernel estimators, respectively, that are consistent for
everyX1; X2; . . ..

II. FORMULATION

Consider a sequential estimation problem as follows. LetX1;
X2; . . . be an arbitrary random process taking values in a complete
separable metric space(X ; �) and letY1; Y2; . . . be a corresponding
sequence of random variables taking values in a Hilbert spaceY
equipped with an inner-product-induced normj � j. A concrete example
of spaces satisfying the above conditions would beX = Rk and
Y = R with the usual Euclidean normj � j. Our goal is to sequentially
estimatem(Xn) = E[YnjXn] using only the data

Dn = Xn [ f(Xi; Yi)g
n�1
i=1 :

This problem formulation is quite general and to make useful state-
ments, we require certain assumptions.

We impose the following assumption on the pairs(Xi; Yi) which
implies that givenXi, the labelYi is conditionally independent of
f(Xj; Yj)gj 6=i and drawn according toF (yjXi).

(A0) For eachi and for every measurable setS

Pr(Yi 2 SjX1; . . . ; Xn; Y1; . . . ; Yi�1; Yi+1; Yn)

= Pr(Yi 2 SjXi) =
S

F (dyjXi):

Throughout this correspondence, we also impose the following as-
sumptions on the conditional distributionF (yjx).

(A1) supx2X E[jY j2jX = x] < 1,
(A2) the regression functionm(x) = E[Y jX = x] is a continuous

function.
Recall that a totally bounded subset of a metric space is one that can

be finitely�-covered for each� > 0. We say that a processX1; X2; . . .
is totally boundedif almost surely the setfX1; X2; . . .g is a totally
bounded subset ofX .

III. A D ATA-DEPENDENTNEARESTNEIGHBOR ESTIMATOR

Let X0ni be theith closest sample toXn from X1; . . . ; Xn�1,
and letY 0ni denote theYj associated withXj = X 0

ni (where ties are
broken arbitrarily). Letdn(i;X1; . . . ; Xn) = �(Xn; X

0
ni) denote

the ith nearest neighbor (NN) distance toXn from X1; . . . ; Xn�1.
Thekn-NN estimate ofm(Xn) is defined as

m̂n(Xn) =
1

kn

k

i=1

Y 0ni:

In what follows, we will be interested inkn-NN estimators in which
kn = kn(X1; . . . ; Xn) is chosen in a data-dependent manner.

Theorem 1: Let X1; X2; . . . be an arbitrary random process and
suppose(X1; Y1); (X2; Y2); . . . satisfy (A0)–(A2). If

i) kn(X1; . . . ; Xn) !n!1 1 a.s. and

ii) dn(kn; X1; . . . ; Xn) !n!1 0 a.s.

then the correspondingkn-NN estimator satisfies

lim
n!1

E jm̂n(Xn)�m(Xn)j
2 jX1; . . . ; Xn = 0 a.s.

Proof: Using i), ii), and the fact thatX1; X2; . . . is a
totally bounded process, we have that almost surely a realization
! = (x1; x2; . . .) is a totally bounded set withkn(x1; . . . ; xn)!1
anddn(kn; x1; . . . ; xn) ! 0. Fix such a realization.

SinceX is complete, the closure offx1; x2; . . .g, denoted byA, is
a compact subset ofX (e.g., see [4, Theorem 2.3.1]). Then the conti-
nuity ofm(x) (assumption A2) implies thatm(x) is in fact uniformly
continuous onA (e.g., see [4, Corollary 2.4.6]).

Fix � > 0. Then sincem(x) is uniformly continuous onA, there
exists� such that for anyu; v 2 A we havejm(u)�m(v)j < �=2
whenever�(u; v) < �. LetN1 be such thatkn = kn(x1; . . . ; xn) >
2M=� for alln � N1 whereM = supx2X E[jY j2 jX = x] (which is
finite by assumption A2). LetN2 be such thatdn(kn; x1; . . . ; xn) <
� for all n � N2, and letN = maxfN1; N2g. Then for anyn � N
we have

E jm̂(Xn)�m(Xn)j
2 j
n = !n

= E
1

kn

k

i=1

Y 0ni �m(xn)

2


n = !n

� E
1

kn

k

i=1

Y 0ni �m(x0ni)

2


n = !n

+
1

kn

k

i=1

(m(x0ni)�m(xn))

2

�
M

kn
+ max

1�i�k
m(x0ni)�m(xn)

2

� �=2 + �=2 = �

where the second inequality follows from assumptions (A0) and
(A1), and the third inequality follows from the choice ofN =
maxfN1; N2g. Since� > 0 was arbitrary the result follows.

Theorem 2: For every totally bounded processX1; X2; . . ., if

kn(X1; . . . ; Xn) = argmin
k

1

k
+ dn(k; X1; . . . ; Xn)

then we have

i) kn(X1; . . . ; Xn) !n!1 1 a.s. and

ii) dn(kn; X1; . . . ; Xn) !n!1 0 a.s.

Proof: Let

Jn = min
k

1

k
+ dn(k; X1; . . . ; Xn):

We need only show thatlimn!1 Jn = 0 almost surely. We will do
this by showing that for any� > 0, almost surely we haveJn < � for
sufficiently largen.

Fix � > 0 and a realization! = (x1; x2; . . .). SinceX1; X2; . . . is
a totally bounded process, almost surely there exists a totally bounded
setA (which may depend on the particular realization!) such that
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x1; x2; . . . 2 A. Let B1; . . . ; BN(�=4) denote balls of radius�=4
forming a finite cover ofA. Thenxn 2

N(�=4)
i=1 Bi for all n.

For any fixedk, the number of times anxi falls in some ballBi

with fewer thank previous elements fromx1; . . . ; xi�1 is bounded
by kN(�=4). Hence, there is a finiten0 such that for alln � n0, the
number ofx1; . . . ; xn�1 within �=2 of xn is greater thank. Thus, for
n � n0 we have

Jn �
1

k
+
�

2
:

The result follows by takingk > 2=�.

The next result follows immediately from Theorems 1 and 2.

Corollary 1: Suppose (A0)–(A2) are satisfied. For

kn(X1; . . . ; Xn) = argmin
k

1

k
+ dn(k; X1; . . . ; Xn)

the correspondingkn-NN estimator is consistent for every totally
bounded processX1; . . . ; Xn.

Note here that a consistent estimator can also be obtained by
choosing

kn(X1; . . . ; Xn) = argmin
k

f
1

k
+g(dn(k; X1; . . . ; Xn))

wheref andg are any strictly positive monotonic functions that de-
crease to0 as their arguments approach0.

IV. A D ATA-DEPENDENTKERNEL ESTIMATOR

For an arbitrary processX1; X2; . . . ; define the kernel weights

Wni(
n) =
�(�

�
)

n�1

j=1

�(
�

�
)

wheref�ng is a sequence of positive numbers,�: R+ ! R+ is a
nonnegative kernel function, and�ni = �(Xi; Xn). Note that in the
expression for the weights and in the sequel we treat0=0 as0. The
kernel regression estimate is defined as

m̂n(Xn) =

n�1

i=1

Wni(
n)Yi =

n�1

i=1

�(�
�

)Yi
n�1

j=1

�(
�

�
)

:

For simplicity, we will assume that the kernel� satisfies the fol-
lowing conditions:

• � has compact support andsupt�0 �(t) < 1;

• � is bounded away from zero on[0; 1].

GivenX1; . . . ; Xn and �n, let Ln(�n; X1; . . . ; Xn) denote the
number ofXi for i = 0; . . . ; n� 1 such that�(Xi; Xn) < �n.

Theorem 3: Let X1; X2; . . . be an arbitrary random process and
suppose(X1; Y1); (X2; Y2); . . . satisfy (A0)–(A2). Let�(�) be a
kernel function satisfying the preceding conditions. If

i) �n(X1; . . . ; Xn) > 0 and�n(X1; . . . ; Xn)!n!1 0 a.s. and

ii) Ln(�n; X1; . . . ; Xn) !n!1 1 a.s.

then the corresponding kernel estimator satisfies

lim
n!1

E jm̂n(Xn)�m(Xn)j
2 jX1; . . . ; Xn = 0 a.s.

Proof: First, as before, we have

E jm̂(Xn)�m(Xn)j
2 j
n = !n

= E

n�1

i=1

Wni(
n)Yi �m(xn)

2


n = !n

= E

n�1

i=1

Wni(
n)(Yi �m(xi))

2


n = !n

+

n�1

i=1

Wni(
n)m(xi)�m(xn)

2

=

n�1

i=1

W 2
ni(
n)E[jYi �m(xi)j

2 j
n = !n]

+

n�1

i=1

Wni(!n)m(xi)�m(xn)

2

�M

n�1

i=1

W 2
ni(
n) + max

1�i<n;W >0
jm(xi)�m(xn)j

2:

Also,

n�1

i=1

W 2
ni =

n�1

i=1

�(�
�

)

n�1

j=1

�(
�

�
)

2

=
1

n�1

j=1

�(
�

�
)

2

n�1

i=1

�2
�ni
�n

�
sup�(t)

n�1

i=1

�(�
�

)

:

Now in order to show that for large enoughN , the error will be small
we need to establish that n�1i=1 �(�

�
) diverges. Since� is bounded

away from zero on[0; 1], there existB > 0 such that�(t) > B for all
t 2 [0; 1]. Hence,

n�1

i=1

�
�ni
�n

> BLn(�n; X1; . . . ; Xn)!1

sinceLn(�n; X1; . . . ; Xn) ! 1.
Say� is zero outside the interval[0; K]. As in the proof of The-

orem 1, we have that the setA, which is the closure offxig, is com-
pact and hencem is uniformly continuous onA. Fix � > 0. Now, there
exists� such thatjm(y) �m(x)j2 < �=2 if jy � xj < �. PickN1 so
thatK�n < � for all n > N1. Further, pickN2 so that

BLn >
2M

� sup�(t)
; for all n > N2
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whereM = supx2X E[jY j2jX = x] (which is finite by assumption
A2). LetN = maxfN1; N2g. Thus for alln > N we have

E jm̂(Xn)�m(Xn)j
2j
n = !n � �=2 + �=2 = �:

Theorem 4: For every totally bounded processX1; X2; . . . ; if

�n(X1; . . . ; Xn) = argmin
�

�+
1

Ln(�;X1; . . . ; Xn)

then we have

i) �n(X1; . . . ; Xn) !n!1 0 a.s. and

ii) Ln(�n; X1; . . . ; Xn) !n!1 1 a.s.

Proof: The proof of this result is very similar to that of The-
orem 2. Let

Jn = min
�

�+
1

Ln(�; X1; . . . ; Xn)
:

As before, we need only show thatlimn!1 Jn = 0 almost surely, and
we do this by showing that for any� > 0, almost surely for sufficiently
largen we haveJn < �.

Form a finite�=4-cover as in Theorem 2. Then since the cover is
finite, it is easy to see that in an�=2 neighborhood ofxi, we can have
fewer than2=� points only finitely many times. Hence, almost surely
for sufficiently largen we haveJn � �.

The subsequent result follows immediately from Theorems 3 and 4.

Corollary 2: Suppose (A0)–(A2) are satisfied. Let

�n(X1; . . . ; Xn) = argmin
k

1

k
+ dn(k; X1; . . . ; Xn)

and let

�n(X1; . . . ; Xn) = max f�n(X1; . . . ; Xn); �ng

where �n is any positive sequence (possibly depending on
X1; . . . ; Xn) converging to0 almost surely. Let� be an admis-
sible kernel function. Then the corresponding kernel estimator is
consistent for every totally bounded processX1; X2; . . ..

V. REMARKS

The notion of a totally bounded process considered here is slightly
more general than the condition used in [8] that theXi take values
in some compact setA almost surely. If the processX1; X2; . . . is
totally bounded, then almost surely a realizationx1; x2; . . . is a totally
bounded set, and so is contained in a compact set (namely, the closure of
fx1; x2; . . .g). However, the compact set can depend on the realization
so there may be no single compactA with Xi 2 A almost surely.
It turns out that the consistency results in [8] actually hold for totally
bounded processes, although the results on rates of convergence need
the stronger condition.

To get the consistency results presented here, one needs to choose the
parameterskn or �n in a data-dependent manner. For any data-indepen-
dent choices, one can construct examples of totally bounded processes

X1; X2; . . . for which consistency fails. In contrast, the results of [8]
show that for a time-average criterion anykn-NN or kernel estimator
under the standard conditions works.

One cannot, in general, get rates of convergence, even with a Lips-
chitz assumption on the conditional distributionF (Y jX). To get rates
one would also need to put conditions on the processX1; X2; . . . that
allow getting rates onkn(X; . . . ; Xn) anddn(kn; X1; . . . ; Xn) (or
analogous quantities). However, as shown in [8], one can get rates on
cumulative risk with conditions only onF (Y jX).

One could actually do a similar analysis for the general case of
Stone-type estimators [15], and treat thekn-NN and kernel estimators
as special cases, but the main point is the existence of estimators with
the properties shown and for simplicity we focus on NN and kernel
estimators.
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