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; KR e m2tR)el

1 + ,,LZ::lp(m) 1+ ’7770rg(h')—| + 1—e—%1 . . .
- = © R < %R Sanjeev R. KulkarniSenior Member, IEEESteven E. Posner, and
" * o * Sathyakama Sandilya

— (KY [1—e—n2(0d2 c—n2(ds

L; (2) |: 1—e— %2 + 1—e—?3 :|

+ KR - (63) Abstract—Let X;, X, ... be an arbitrary random process taking

. . . - values in a totally bounded subset of a separable metric space. Asso-
By taking the limit fork? — oo and by using the fact that < ne.s (K),  Giated with X, we observeY; drawn from an unknown conditional

we obtain thatim—c 7 = neg(K') for all K. This shows that the distrioution F(y|X; = ) with continuous regression function
“all-or-none” INR strategy coupled with IMUD is throughput-wise opm (=) = E[Y|X = =]. The problem 1of interest is to estimateY,
timal for every finite K'. Finally, by letting kK’ — oc we can achieve Pased onX.,. and the data {(X;, Yi)};Z;. We construct appropriate

- _ . . : data-dependent nearest neighbor and kernel estimators and show, with
the unfaded single-user upper bound in (55) with equality. a very elementary proof, that these are consistent forevery process
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tally bounded. As in [8], we require the regression function to be con- i) kn(X1, ..., Xn) —n—o oo a@.s. and
tinuous, and}that giver;, the labelY; is conditionally independent iy ¢, (£.: X,, ..., X,) —._~ 0 as.
of {(Xj, Y;)}.»;. Although this is a rather general setting, we show, ' . . .
peftgapjs sij)rpryiésjingly, that appropriate data-dependent estimatorst.'f‘grn the correspondinig, -NN estimator satisfies
m(X,) can be constructed that are consistenef@rytotally bounded .
processX, Xa, .... Thus, for the price of continuity of the regres-  lim_E [, (X,) — m(X) | X, ... Xu] =0 as.
sion function, consistent estimators can be constructed with almost
complete generality in the proce3s, Xo, ..., and interestingly, the Proof: Using i), ii), and the fact thatX,, X.,... is a
proofs are very simple. In Section Il, we give a precise formulatiogtally bounded process, we have that almost surely a realization
of the problem, Sections Ill and IV consider data-dependent neargst (, a,, ...) isatotally bounded setwith, (z1, ..., #,,) — oo
neighbor and kernel estimators, respectively, that are consistent 4@d,, (k,.: =1, ..., x,) — 0. Fix such a realization.
every Xy, Xo, .. .. SinceX’ is complete, the closure @f:1, 2, ...}, denoted by, is
a compact subset of (e.g., see [4, Theorem 2.3.1]). Then the conti-
Il. FORMULATION nuity of m(z) (assumption A2) implies that(x) is in fact uniformly

Consider a sequential estimation problem as follows. Ket ~Continuous oM (e.g., see [4, Corollary 2.4.6]).

X, ... be an arbitrary random process taking values in a complete X ¢ > 0- Then sincem (x) is uniformly continuous om, there
separable metric spa¢&’, p) and letY:, Ya, ... be a corresponding existsé such that for anyz,r'u € A we havelm(u) —m(v)| < €/2
sequence of random variables taking values in a Hilbert space}/vhenevem(u, v) <9 Let ‘W} be such thak,, ik"(f’“'l’ cees ) >

equipped with an inner-product-induced ndrh A concrete example Z_M/eforalln 2 I.M whereMT: sup,ex ElIV]"[ X = 2] (whichis
of spaces satisfying the above conditions wouldbe= R* and finite by assumption A2). LelV; be fuf:h tha‘f“(k"; L1y ) <
Y = R with the usual Euclidean norfn |. Our goal is to sequentially © f0r @ll 7 > N2, and let\' = max{Ny, N> }. Then for any. > N

estimatern(X,,) = E[Y,|X,] using only the data we have

Dy = Xo U{(X,, Vi) N, E [li(Xn) = m(Xn)” 2 = wn]

En 2

. o . 1
This problem formulation is quite general and to make useful state- =F . ZY,; —m(xn)| | =wn
ments, we require certain assumptions. =1

We impose the following assumption on the pdifs;, Y;) which . )
implies that givenX;, the labelY; is conditionally independent of 1 &Ko N _
{(X,, Y;)},2 and drawn according t&'(y|X;). <Ell ;}"' = m(ani)| | = wn

(AO0) For eachi and for every measurable sgt
2

k
1
Pr(Y;ie S|Xi, ..., X, Vi, ..., Vi1, Yip1, V3 +| > (m(wn:) —m(xn))
- =1
= Pr(Y: € 5IX) = [ Flaylxo). , , )
S - - ; ) — - -
< e +1£}%}I:n |77L(<Ln,) 771,(1',1)’
Throughout this correspondence, we also impose the following as- <ef24 /2=

sumptions on the conditional distributidi(y|x).
(Al)sup,cy E[|[Y|X = 2] < o,

(A2) the regression functiom(z) = E[Y|X = «] is a continuous where the second inequality follows from assumptions (AO) and

(A1), and the third inequality follows from the choice &f =

function.
. . AN, ] i i
Recall that a totally bounded subset of a metric space is one that &< Vi- V2}. Sincee > 0 was arbitrary the result follows. [
be ﬁnite'yE-COVered foreach > 0. We say thata proceéél, Xz, . Theorem 2: For every tota”y bounded proce‘g’s" —XZ, - if

is totally boundedf almost surely the sef X, X, ...} is a totally

bounded subset of'. } 1 L

kn(X1, ..., Xn) = argmin T + dn(k; X1, ..., Xu)
k

I1l. A D ATA-DEPENDENTNEARESTNEIGHBOR ESTIMATOR

Let X', be theith closest sample t&, from X, ..., X,_,, thenwe have

and letY;,; denote the; associated withy; = X7, (where ties are 1) k.(Xi1, ..., X)) —=n—o 0o @s.and
broken arbitrarily). Letd,, (i; X1, ..., X») = p(X,, X};) denote i) do(kn: X1, ..., Xn) —n—oe 0as.
the ith nearest neighbor (NN) distance %, from X, ..., X, 1. Prodf' Let
Thek,,-NN estimate ofn(X,,) is defined as ’
ko Jn = m}jn % +do(k; X1,y ooy Xa).

i (Xn) = ki > Yo

o=t

We need only show thdtm,, . JJ, = 0 almost surely. We will do
this by showing that for any > 0, almost surely we havé, < e for
sufficiently largen.
Fixe > 0 and arealization = (1, @2, ...). SinceX, Xy, ...is
Theorem 1: Let X, X5, ... be an arbitrary random process and totally bounded process, almost surely there exists a totally bounded
suppos€ X, Y1), (X2, Y2), ... satisfy (A0)-(A2). If setA (which may depend on the particular realizatioh such that

In what follows, we will be interested ik, -NN estimators in which
k, = k.(X1, ..., X.) is chosen in a data-dependent manner.
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x1, x2, ... € A. Let B, ..., By(.s) denote balls of radius/4
forming a finite cover of4. Thena., ¢ UNC/Y) B, for all n.

For any fixedk, the number of times an; falls in some ballB;
with fewer thank previous elements from;. ..., x;_; is bounded
by kN (e/4). Hence, there is a finite, such that for allh > no, the
number ofry, ..., x,—1 within ¢/2 of x,, is greater thatk. Thus, for
n > no we have

Jn < -+

| =
[N R

The result follows by taking > 2/e. O
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then the corresponding kernel estimator satisfies

lim E [[fn (Xn) = m(: X)) X ... X,] =0 as.
Proof: First, as before, we have

F [|7h(Xn) - m(X,

by = ]

n—1 2

> Wi Q)Yi = m(a,) ‘sz” = wn
=1

The next result follows immediately from Theorems 1 and 2. ne1 2
Corollary 1: Suppose (A0)—(A2) are satisfied. For Zl Wi () (Yi = m(a3))| | = wn
_ _ n—1 2
kn (X1, oo, Xn) = arg min f +da(ks X1, ooy Xan) + Z Wai($2n)m(z:) — m(zy,)
i=1
the corresponding:,-NN estimator is consistent for every totally 4 9
bounded proces¥, ..., X,. = Z W () ENIY: = wn]
Note here that a consistent estimator can also be obtained by
choosing n—1 2
Z Wailwn)m(z;) — m(x,,)
kn(X1, ..., Xn) = argmin f <i>+g(dn(l1 X1, ..., X))
<M Z W2i(Qa) + max () — m(xn)|”.

1<i<n, W, ;>0

where f andg are any strictly positive monotonic functions that de-

crease td as their arguments approagh

IV. A D ATA-DEPENDENTKERNEL ESTIMATOR

For an arbitrary procesk, X, ... , define the kernel weights

Pni
Woi(Q) = (’i(i)
> oo()

7=1

where{e, } is a sequence of positive numbe¢s, R+ — R4 is a
nonnegative kernel function, and,; = p(X;, X,,). Note that in the
expression for the weights and in the sequel we tigatas0. The
kernel regression estimate is defined as

n—1 nol o p(Lni)Y;
P(2)Yi
)= W )Yi= Y —17)
= =LY e()
j=1

M (Xn

€n

For simplicity, we will assume that the kernelsatisfies the fol-
lowing conditions:

* ¢ has compact support arﬂdptZU é(t) < oo;

* ¢ is bounded away from zero g6, 1].

Given X1, ..., X, ande,, let L,(en; X1, ..., X, ) denote the
number ofX; fori =0, ..., n — 1 such thap(X;, X,,) < ¢,.

Theorem 3: Let X1, X, ...
suppose( X1, Y1), (X2, Y2), ... satisfy (A0)—(A2). Leto(-) be a
kernel function satisfying the preceding conditions. If

I) t'n(X]., ey X,,) >0 anden(X1,

i) Ly(en; X1, .00,

9 1\’17,) —n—oo O a.s. and

Xn) —n—oc OO0 A.S.

be an arbitrary random process an

Also,

¥

< ni111p 163 .

> o(%)

b €n
=1

Now in order to show that for Iarge enough the error will be small
we need to establish that "~ ¢(“xt) diverges. Since is bounded
away from zero of0, 1], there eX|sIB > (O such that(¢) > B for all
t € [0, 1]. Hence,

~Yn) — o

n—1
S o <’;) > BL,(en; X1, ...,
i=1 "

sinceL, (¢,; X1, ..., X;,) — oo.
Say ¢ is zero outside the intervd, K]. As in the proof of The-
orem 1, we have that the sdt which is the closure ofz; }, is com-

(Pact and hence is uniformly continuous ont. Fix ¢ > 0. Now, there

m(z)|* < €/21if |y — x| < 6. Pick Ny so
Further, pickV, so that

existsé such thatm(y) —
thatKe, < ¢ foralln > Ny.

2M
BL, > ——, foralln > Ns
e sup o(t)
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whereM = sup,c, E[|Y|*|X = z] (which is finite by assumption X;. X, ..
show that for a time-average criterion aky-NN or kernel estimator

A2). Let N = max{N;, N2}. Thus for alln. > N we have

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 10, OCTOBER 2002

. for which consistency fails. In contrast, the results of [8]

under the standard conditions works.

O

F [|7h(Xn) — m(X,,)|2 Q, = wn] <e€/24¢€/2=c¢.

One cannot, in general, get rates of convergence, even with a Lips-
chitz assumption on the conditional distributifitY’| X'). To get rates

one would also need to put conditions on the procéssXs, ... that

allow getting rates ok, (X, ..., X,) andd, (kn; X1, ...
analogous quantities). However, as shown in [8], one can get rates on

Theorem 4: For every totally bounded proce&s, X, ... ,if

, Xy) (or

cumulative risk with conditions only oA (Y| X).
1 One could actually do a similar analysis for the general case of

yeeey Xyp) =argmin o +

@ Ln((y;‘Y1ﬁ“‘54Y77,)

Stone-type estimators [15], and treat theNN and kernel estimators

as special cases, but the main point is the existence of estimators with
the properties shown and for simplicity we focus on NN and kernel

then we have

) an (X1, ..., Xn) 2n—e 0as. and
i) Ln(an; X1, ..., Xpn) —n—oo 0O AS.
Proof: The proof of this result is very similar to that of The- [l
orem 2. Let
(2]
J, = min o + 1
Je = To(os X100 X)) [3]
As before, we need only show tHat, ... J, = 0 almostsurely, and (4]
we do this by showing that for ary> 0, almost surely for sufficiently 5]
largen we haveJ,, < e.
Form a finitee/4-cover as in Theorem 2. Then since the cover is
finite, it is easy to see that in af2 neighborhood of:;, we can have (6]

fewer than2/e points only finitely many times. Hence, almost surely 7]
for sufficiently largen we have/,, < e. O

The subsequent result follows immediately from Theorems 3 and 4.g]

Corollary 2: Suppose (A0)—(A2) are satisfied. Let

[
an(X1, ..., Xp) = argmin l +dn(k; X1, ..., X3)
k k [10]
[11]
and let
[12]
(X1, ooy Xn) = max{an(X1, ..., Xn), O}
[13]

where 3, is any positive sequence (possibly depending onl14]
X, X,) converging to0 almost surely. Lety be an admis- 15]
sible kernel function. Then the corresponding kernel estimator is

consistent for every totally bounded procéss Xo, .... [16]

ey

V. REMARKS [17]

The notion of a totally bounded process considered here is slightly
more general than the condition used in [8] that fietake values [18]
in some compact sel almost surely. If the proces¥;, X, ... is
totally bounded, then almost surely a realizatiqn =, . .. is a totally
bounded set, and so is contained in a compact set (hamely, the closure of
{x1, x2, ...}). However, the compact set can depend on the realization
so there may be no single compattwith X; € A almost surely.

It turns out that the consistency results in [8] actually hold for totally
bounded processes, although the results on rates of convergence need
the stronger condition.

To get the consistency results presented here, one needs to choose the
parameters,, ore, in a data-dependent manner. For any data-indepen-
dent choices, one can construct examples of totally bounded processes

estimators.
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