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Bandit Problems With Side Observations
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Abstract—An extension of the traditional two-armed bandit
problem is considered, in which the decision maker has access to
some side information before deciding which arm to pull. At each
time , before making a selection, the decision maker is able to
observe a random variable that provides some information
on the rewards to be obtained. The focus is on finding uniformly
good rules (that minimize the growth rate of the inferior sampling
time) and on quantifying how much the additional information
helps. Various settings are considered and for each setting, lower
bounds on the achievable inferior sampling time are developed
and asymptotically optimal adaptive schemes achieving these
lower bounds are constructed.

Index Terms—Adaptive, asymptotic, allocation rule, inferior
sampling time, efficient, side information, two-armed bandit.

I. INTRODUCTION

S INCE THE publication of [1], bandit problems have at-
tracted much attention in various areas of statistics, con-

trol, learning, and economics (e.g., see [2]–[10]). In the clas-
sical two-armed bandit problem, at each time a player selects
one of two arms and receives a reward drawn from a distribu-
tion associated with the arm selected. The essence of the bandit
problem is that the reward distributions are unknown, and so
there is a fundamental tradeoff between gathering information
about the unknown reward distributions and choosing the arm
we currently think is the best. A rich set of problems arises in
trying to find an optimal/reasonable balance between these con-
flicting objectives (also referred to as learning versus control, or
exploration versus exploitation).

We let and denote the sequences of rewards from
arms 1 and 2 in a two-armed bandit machine. In the traditional
parametric setting, the underlying configurations/distributions
of the arms are expressed by a pair of parameters
such that and are independent and identically dis-
tributed (i.i.d.) with distribution , where is a
known family of distributions parametrized by . The goal is to
maximize the sum of the expected rewards. Results on achiev-
able performance have been obtained for a number of varia-
tions and extensions of the basic problem defined in [9] (e.g.,
see [11]–[17]).

In this paper, we consider an extension of the classical two-
armed bandit where we have access to side information before
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making our decision about which arm to pull. Suppose at time
, in addition to the history of previous decisions, outcomes,

and observations, we have access to a side observation to
help us make our current decision. The extent to which this side
observation can help depends on the relationship of to the
reward distributions of and .

Previous work on bandit problems with side observations
includes [18]–[22]. Woodroofe [21] considered a one-armed
bandit in a Bayesian setting, and constructed a simple criterion
for asymptotically optimal rules. Sarkar [20] extended the side
information model of [21] to the exponential family. In [19],
Kulkarni considered classes of reward distributions and their
effects on performance using results from learning theory. Most
of the previous work with side observations is on one-armed
bandit problems, which can be viewed as a special case of the
two-armed setting by letting arm 2 always return zero.

In contrast with this previous work, we consider various
general settings of side information for a two-armed bandit
problem. Our focus is on providing both lower bounds and
bound-achieving algorithms for the various settings. The results
and proofs are very much along the lines of [8] and subsequent
works as in [11]–[15].

We now describe the settings considered in this paper.

1) Direct Information: In this case, provides infor-
mation directly about the underlying configuration

, which allows a type of separation
between the learning and control. This has a dra-
matic effect on the achievable inferior sampling time.
Specifically, estimating by observing ,
and using the estimate to make the decision,
results in bounded expected inferior sampling time.

If the distribution of is not a function of , we are
not able to learn through . However, different values
of the side observation will result in different conditional
distributions of the rewards . By exploiting this new structure
(observing in advance), we can hope to do better than the
case without any side observation.

An interpretation of the aforementioned scenario (constant
distribution on ) is that a two-armed bandit with the side
observations drawn from a finite set can be
viewed as a set of different two-armed sub-bandit machines
indexed from to . The player does not know the order of
sub-machines he is going to play, which is determined by rolling
a die with faces. However, by observing , the player knows
which machine (out of the different ones) he is facing now
before selecting which arm to play. The connection between
these sub-machines is that they share the same common con-
figuration pair , so that the rewards observed from one
machine provide information on the common , which
can then be applied to all of the others (different values of ).
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This is the key aspect that makes this setup distinct from simply
having many independent bandit problems with random access
opportunity.

We consider the following three cases of different relation-
ships among the most rewarding arm, , and .

2) For all possible , the best arm is a function of
: That is, such that at time ,

arm 1 yields higher expected reward conditioned on
while arm 2 is preferred when .

Surprisingly, we exhibit an algorithm that achieves
bounded expected inferior sampling time in this case.
Woodroofe’s result [21] can then be viewed as a spe-
cial case of this scenario.

3) For all possible , the best arm is not a function
of : In this case, for all configurations , one
of the arms is always preferred regardless of the value
of . Since the conditional reward distributions are
functions of , the intuition is that we can postpone
our learning until it is most advantageous to us. We
show that, asymptotically, our performance will be
governed by the most “informative” bandit (among
the different values taken on by ).

4) Mixed Case: This is a general case that combines the
previous two, and contains the main contribution of
this paper. For some possible configurations, one arm
may always be preferred (for all ), while for other
possible configurations, the preferred arm is a function
of . We exhibit an algorithm that achieves the best
possible in either case. That is, if the best arm is a
function of , it achieves bounded expected inferior
sampling time as in case 2), while if the underlying
configuration is such that one arm is always preferred,
then we get the results of case 3).

This paper is organized as follows. In Section II, we intro-
duce the general formulation. In Section III, we provide back-
ground on the asymptotic analysis of traditional bandit prob-
lems (without side observations). In Sections IV through VII,
we consider the previous four cases respectively. The results are
included in each section, while details of the proofs are provided
in the Appendix.

II. GENERAL FORMULATION

Consider the two-armed bandit problem defined as follows.
Suppose we have two sequences of (real-valued) random vari-
ables (r.v.’s), , and an i.i.d. side observation sequence

, taking values in . denotes the reward se-
quence of arm while is the side information observed at
time before making the decision. The formal parametric set-
ting is as follows. For each configuration pair and
each , the sequence of vectors is i.i.d. with joint distri-
bution , where the families and

are known to the player, but the true value of the
corresponding index must be learned through experiments.
For notational simplicity, we further assume that the parameter
set is a set of real numbers.

Note that the concept of the i.i.d. bandit is now extended to the
assumption that the vector sequence is i.i.d. The

unconditioned marginal sequence remains i.i.d. However,
rather than the unconditional marginals, the player is now facing
the conditional distribution of , which is a function of the
observed side information (and is not identically distributed
given different ).

The goal is to find an adaptive allocation rule to maxi-
mize the growth rate of the expected reward

E E

or, equivalently, to minimize the growth rate of the expected
inferior sampling time,1 namely E . To be more ex-
plicit, at any time takes a value in and depends only
on the past rewards and the current side observation .

We define a uniformly good rule as follows.
Definition 1 (Uniformly Good Rules): An allocation rule

is uniformly good if for all E
.

In what follows, we consider only uniformly good rules and
regard other rules as uninteresting. Necessary notation and sev-
eral quantities of interest are defined in Table I. We assume that
all the given expectations exist and are finite.

III. TRADITIONAL BANDITS

Under the general formulation provided in Section II, the tra-
ditional non-Bayesian, parametric, infinite horizon, two-armed
bandit is simply a degenerate case, i.e., the traditional bandit
problem is equivalent to having only one element in (say

). This formulation of traditional bandit problems is iden-
tical to the two-armed case of [14], [8], and [9]. For simplicity,
the argument can be omitted in this traditional setting, i.e.,

,
etc.

The main contribution of [14], [8], and [9] is the asymptotic
analysis stated via the following two theorems.

Theorem 1 ( Lower Bound): For any uniformly good
rule, satisfies

P

and
E

1In the literature of bandit problems, the term “regret” is more typically used
rather than the inferior sampling time. For traditional two-armed bandits, the
regret is defined as

regret := t �max � ; � �E fW (t)g

the difference between the best possible reward and that of the strategy of in-
terest f� g. The relationship between the regret and T (t) is as follows:

regret = � � � � E fT (t)g:

For greater simplicity in the discussion of bandit problems with side observa-
tions, we consider T (t) rather than the regret.
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TABLE I
GLOSSARY

where is a constant depending on . If , then
and is defined2 as follows:

(1)

The expression for for the case in which can be
obtained by symmetry.

Theorem 2 (Asymptotic Tightness): Under certain regularity
conditions,3 the aforementioned lower bound is asymptotically
tight. Formally stated, given the distribution family , there
exists a decision rule such that for all

E

where is the same as in Theorem 1.
The intuition behind the lower bound is as follows. Sup-

pose and consider another configuration
such that . It can be shown that if under configuration

E is less than the lower bound,
E must be greater than for some , which
contradicts the assumption that is uniformly good.

IV. DIRECT INFORMATION

A. Formulation

In this setting, the side observation directly reveals infor-
mation about the underlying configuration pair
in the following way.

Dependence: iff .
As a result, observing the empirical distribution of gives
us useful information about the underlying parameter pair .
Thus, this is a type of identifiability condition.

2Throughout this paper, we will adopt the conventions that the infimum of the
null set is1, and (1=1) = 0.

3If the parameter set is finite, Theorem 2 always holds. If� is the set of reals,
the required regularity conditions are on the unboundedness and the continuity
of � w.r.t. � and on the continuity of I(� ; �) w.r.t. � .

Examples:

• and

P
if
otherwise

• and . is beta distributed
with parameters .

B. Scheme With Bounded E

Consider the following condition.
Condition 1: For any fixed

where denotes the Prohorov metric4 on the space of distribu-
tions. Two examples satisfying Condition 1 are as follows.

• Example 1: is finite, and is contin-
uous with respect to (w.r.t.) .

• Example 2: is a Gaussian distri-
bution with mean and variance 1.

Under this condition, we obtain the following result.
Theorem 3 (Bounded E ): If Condition 1 is

satisfied, then there exists an allocation rule , such that
E and a.s.

• Note: The information directly revealed by helps
the sequential control scheme surpass the lower
bound stated in Theorem 1. This significant improve-
ment (bounded expected inferior sampling time) is due
to the fact that the dilemma between learning and con-
trol no longer exists in the direct information case.

We provide a scheme achieving bounded E as in
Algorithm 1

of which a detailed analysis is given in Appendix II.

V. BEST ARM AS A FUNCTION OF

For all of the following sections (Sections V–VII), we con-
sider only the case in which observing will not reveal any
information about , but only reveals information about the
upcoming reward , that is

• does not depend on the value of ; we use
as shorthand notation.

Three further refinements regarding the relationship between
and will be discussed separately (each in one section).

4A definition of the Prohorov metric is stated in Appendix I.
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Fig. 1. Best arm at time t always depends on the side observation X . That
is, for any possible pair (� ; � ) the two curves, � (x) and � (x), (w.r.t. x)
always intersect each other.

A. Formulation

In this section, we assume that for all possible , the side
observation is always able to change the preference order as
shown in Fig. 1. That is

• for all , there exist and such that
and .

The needed regularity conditions are as follows.

1) is a finite set and P for all .
2) is strictly positive and finite.
3) is continuous w.r.t. .

The first condition embodies the idea of treating as the index
of several different bandit machines, which also simplifies our
proof. The second condition is to ensure that all these different
bandit problems are nontrivial, with nonidentical pairs of arms.

Example:

• , and the conditional re-
ward distribution .

B. Scheme With Bounded E

Theorem 4 (Bounded E ): If the aforementioned
conditions are satisfied, there exists an allocation rule such
that

E

Such a rule is obviously uniformly good.

• Note: Although the side observation does not
reveal any information about in this setting, the
alternation of the best arm as the i.i.d. takes on
different values makes it possible to always perform
the control part , and simultaneously
sample both arms often enough. Since the information
about both arms will be implicitly revealed [through the
alternation of ], the dilemma of learning and
control no longer exists, and a significant improvement

E is obtained over the
lower bound in Theorem 1.

We construct an allocation rule with bounded E
given as Algorithm 2.

The intuition as to why the proposed scheme has bounded
E is as follows. The forced sampling

ensures there are enough samples on both arms, which
implies good enough estimates of . Based on the good
enough estimates, the myopic action of sampling the seemingly
better arm will result in very few inferior
samplings. Unlike the traditional two-armed bandits, in this
scenario, the best arm varies from one outcome of

to the other. Therefore, the myopic action and the even
appearances of the i.i.d. will eventually make both
and grow linearly with the elapsed time , and the forced
sampling should occur only rarely. This situation differs signif-
icantly from the traditional bandits, where the forced sampling
will inevitably make the of the order of , which is an
undesired result.

A detailed proof of the boundedness of E for this
scheme is provided in Appendix III.

VI. BEST ARM IS NOT A FUNCTION OF

A. Formulation

Besides the assumption of constant , in this section, we con-
sider the case in which for all is not a function
of , and we thus can use as shorthand notation.
Fig. 2 illustrates this situation.

The needed regularity conditions are similar to those in
Section V.
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Fig. 2. Best arm at time t never depends on the side observation X . That
is, for any possible pair (� ; � ), the two curves � (x) and � (x) do not
intersect each other. However, in this case, we can postpone our sampling to the
most informative time instants.

1) is a finite set and P for all .
2) is strictly positive and finite.
In this case, one arm is always better than the other no matter

what value of occurs. The conflict between learning and con-
trol still exists. As expected, the growth rate of the expected in-
ferior sampling time is again lower bounded by , but with
the additional help of we can see improvements over the tra-
ditional bandit problems.

To greatly simplify the notation, we also assume that

4) for all , the conditional expected reward is
strictly increasing w.r.t. .

This condition gives us the notational convenience that the order
of is simply the same as the order of .

Example:

• , and the conditional re-
ward distribution .

B. Lower Bound

Theorem 5 ( Lower Bound): Under the previou assump-
tions, for any uniformly good rule satisfies

P

and
E

(2)

where is a constant depending on . If , then
. The constant can be expressed as follows:

(3)

The expression for for the case in which can be
obtained by symmetry.

Note 1: If the decision maker is not able to access the side ob-
servation , the player will then face the unconditional reward

distribution rather than . Let
denote the Kullback–Leibler information between

the unconditional reward distributions. By the convexity of the
Kullback–Leibler information, we have

This shows that the new constant in front of , in (3), is no
larger than the corresponding constant in (1), and the additional
side information generally improves the decision made in
the bandit problem. As we would expect, Theorem 5 collapses
to Theorem 1 when .

Note 2: This situation is like having several related bandit
machines, whose reward distributions are all determined by the
common configuration pair . The information obtained
from one machine is also applicable to the other machines. If
arm 2 is always better than arm 1, we wish to sample arm 2 most
of the time (the control part), and force sample arm 1 once in a
while (the learning part). With the help of the side information

, we can postpone our forced sampling (learning) to the most
informative machine . As a result, the constant in the

lower bound in Theorem 1 has been further reduced to this
new .

A detailed proof of Theorem 5 is provided in Appendix IV.

C. Scheme Achieving the Lower Bound

Consider the additional conditions as follows.

1) is finite.
2) A saddle point for exists; that is, for all

With these conditions, we construct a -lower-bound-
achieving scheme , which is inspired by [12]. The fol-
lowing notation and quantities are necessary in the expression
of .

• Denote . Instead of the traditional
representation, we use . Based on this

representation, we are able to derive the following
useful notation:

For instance, if ; arm
represents arm 1; is the reward of arm 2;

and .
• Choose an such that

where is the Prohorov metric. The whole system is
well-sampled if there exists a unique estimate

, such that the empirical measure falls
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into the -neighborhood of , for all
and . That is

• For any estimate , define the most infor-
mative bandit according to as

and to be the conditional likelihood ratio be-
tween the seemingly inferior arm and the com-
peting parameter

where denotes the time instant of the th pull
of arm when the side observation .

• Set a total number of counters, in-
cluding counters, named “ ;” counters,
named “ ” for all possible ; and
counters, named “ ” for all possible and .
Initially, all counters are set to zero.

Theorem 6 (Asymptotic Tightness): With the previous condi-
tions, the scheme described in Algorithm 3

achieves the lower bound (2), so that this is uniformly
good and asymptotically optimal.

Fig. 3. If (� ; � ) = (� ; � ), the best arm depends on x, i.e., � (x) and
� (x) intersect each other as in Section V. If (� ; � ) = (� ; � ), the best arm
does not depend on x, i.e., � (x) and � (x) do not intersect each other as in
Section VI.

A complete analysis is provided in Appendix V.

VII. MIXED CASE

The main difference between Sections V and VI is that in
one case, for all possible always changes the preference
order, while in the other, for all possible never changes
the order. A more general case is a mixture of these two. In this
section, we consider this mixed case, which is the main result
of this paper.

A. Formulation

Besides the assumption of constant , in this section, we con-
sider the case in which for some is not a
function of . For the remaining , there exist and s.t.

and . For future reference, when the
configuration pair satisfies the latter case, we say the con-
figuration pair is implicitly revealing. Fig. 3 illustrates this
situation.

However, without knowledge of the authentic underlying
configuration , we do not know whether is implicitly
revealing or not. In view of the results of Sections V and VI,
we would like to find a single scheme that is able to achieve
bounded E when being applied to an implicitly
revealing , and on the other hand to achieve the lower
bound when being applied to those which are not implicitly
revealing.

The needed regularity conditions are the same as those in
Sections V and VI.

1) is a finite set and P for all .
2) is strictly positive and finite.
To simplify the notation and the following proof, we define a

partial ordering as iff , and is
defined similarly. Note that for a configuration , it
can be the case that neither nor .
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Example:

• and the conditional reward
distribution . Then,

is implicitly revealing, but
is not.

B. Lower Bound

Theorem 7 ( Lower Bound): Under the previous as-
sumptions, for any uniformly good rule , if is not
implicitly revealing, satisfies

P

and

(4)

where is a constant depending on . If
, and the constant can be expressed as

follows:

The expression for for the case in which can be
obtained by symmetry.

The only difference between the lower bounds (2) and (4) is
that, in (4), has been changed from taking the infimum
over to a larger set,

. The reason for this is that under
this case, consider a for which there exists such that

. If the authentic configuration is
rather than , a linear order of incorrect sampling will be
introduced, which violates the uniformly good-rule assumption.
As a result, a broader class of competing distributions

must be considered, i.e., we must consider a different
set of configurations, over which the infimum is taken.

A detailed proof is contained in Appendix VI.

C. Scheme Achieving the Lower Bound

Consider the same two additional conditions as those in Sec-
tion VI.

1) is finite.
2) A saddle point for exists; that is, for all

A proposed scheme is described in Algorithm 4

which is similar to the scheme in Section VI-C. The only differ-
ences are the insertion of Cond2.5, Lines 7 and 8; the modifica-
tion of Cond2, Lines 5 and 6; and the modification of Cond3b,
Line 14.

Notes:

1) When the estimate is not implicitly
revealing, an ordering between and exists. As a
result, all notation regarding , etc., remains
valid.

2) The definition of is slightly different. For any
estimate that is not implicitly revealing,
we can define the most informative bandit according to

as

(5)

and to be the conditional likelihood ratio be-
tween the seemingly inferior arm and the com-
peting parameter . That is

where denotes the time instant of the th pull
of arm when the side observation .
[The difference between this new and the
previous one in Algorithm 3 is that we have a new

defined in (5).]
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TABLE II
SUMMARY OF THE BENEFIT OF THE SIDE OBSERVATIONS AND THE REQUIRED REGULARITY CONDITIONS.

Theorem 8 (Asymptotic Tightness): With the aforementioned
conditions, the scheme described in Algorithm 4 has bounded

E , or achieves the lower bound (4), de-
pending on whether the underlying configuration pair is im-
plicitly revealing or not.

A detailed analysis is given in Appendix VI.

VIII. CONCLUSION

We have shown that observing additional side informa-
tion can significantly improve sequential decisions in bandit
problems. If the side observation itself directly provides infor-
mation about the underlying configuration, then it resolves the
dilemma of forced sampling and optimal control. The expected
inferior sampling time will be bounded, as has been shown in
Section IV. If the side observation does not provide information
on the underlying configuration , but always affects
the preference order (implicitly revealing), then the myopic
approach of sampling the seemingly-best arm will automati-
cally sample both arms enough. The expected inferior sampling
time is bounded, as shown in Section V. If the side observation
does not affect the preference order at all, the dilemma still
exists. However, by postponing our forced sampling to the most
informative time instants, we can reduce the constant in the

lower bound, as shown in Section VI. In Section VII, we
have combined the settings of Sections V and VI, and have ob-
tained a general result. When the underlying configuration
is implicitly revealing (such that will change the preference
order), we have obtained bounded expected inferior sampling
time as in Section V. Even if is not implicitly revealing (in
that does not change the preference order), the new
lower bound can be achieved as in Section VI. Our results are
summarized in Table II.

APPENDIX I
SANOV’S THEOREM AND THE PROHOROV METRIC

For two distributions and on the reals, the Prohorov
metric is defined as follows.

Definition 2 (The Prohorov Metric): For any closed set
and , define , the -flattening of , as

The Prohorov metric is then defined as follows.

for all closed

The Prohorov metric generates the topology corresponding
to convergence in distribution. Throughout this paper, the
open/closed sets on the space of distributions are thus defined
accordingly.

Theorem 9 (Sanov’s Theorem): Let denote the
empirical measure of the real-valued i.i.d. random variables

. Suppose is of distribution and consider
any open set and closed set from the topological space of
distributions, generated by the Prohorov metric. We have

P

P

Further discussion of the Prohorov metric and Sanov’s theorem
can be found in [23] and [24].

APPENDIX II
PROOF OF THEOREM 3

Proof: For any underlying configuration pair
, define the error set as follows:

(6)
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Let denote the closure of . By Condition 1, . For
any , we can write

P P

P

P

P

Let , which is
strictly positive by Condition 1, and consider sufficiently large

. If , then by the definition of
. By the triangle inequality,

and . As a result

is a closed set. By Sanov’s theorem, the probability of is
exponentially upper bounded w.r.t. , and so is P .
As a result, we have

E P

By the monotone convergence theorem, the expectation of
is finite, which implies that is

finite a.s.

APPENDIX III
PROOF OF THEOREM 4

Similarly, we define as that in (6). We need the following
lemma to complete the analysis.

Lemma 1: With the regularity conditions specified in
Section V, such that P

.
Proof of Lemma 1: By the continuity of w.r.t. and

the assumption of finite , it can be shown that .5

Therefore, there exists a neighborhood of
, such that .

Define a strictly positive as follows:

We would like to prove that for sufficiently large

Suppose for both . By the
definition of , we have

(7)

5
�C denotes the complement of �C .

However, for those , by the definition of , for some
, we have

(8)

which contradicts the definition of since (7) and (8) imply
. As a result, for sufficiently large

, we have

(9)

By Sanov’s theorem, the probability of each term in the union of
the right-hand side of (9) is exponentially bounded w.r.t. .
As a result, the probability of this finite union is bounded by

for some .
Analysis of the Scheme: We first use induction to show that

. This statement is true for . Suppose

. If , by the monotonicity of
w.r.t. , we have . If ,

by the forced sampling mechanism,
.

We consider the event of the inferior sampling at time

(10)

Since , we have and
. By Lemma 1, we have P

and, hence, P .
For P , we can write

(11)

where and correspond to
, respectively. The first equality follows from the fact

that since . The first
subset sign follows from the fact that im-
plies the decision rule is in the stage of forced sampling.



WANG et al.: BANDIT PROBLEMS WITH SIDE OBSERVATIONS 347

The second equality follows by combining both the inequalities:
and and the fact that

both and are integers.
The reasoning behind the second subset inequality is as fol-

lows. By again using the fact that and substituting
for , we have and thus have

, which guarantees that arm has not been sampled from
time to .

By the symmetry between and , we can consider
only , for example. We have

P

P

P

P (12)

The first inequality follows from the definition of which
implies that if , the forced sampling mech-
anism is not active during the time interval . So
implies . The second inequality
follows from the assumption of i.i.d. , which implies that

is independent of and for all . Since at least one
will make , each term in the product is then

upper bounded by P . It is worth noting
that by the regularity assumption on P
is strictly less than 1.

Then, from (11), (12), and the union bound, we obtain
P P P
for some . Hence, P . From (10),
we conclude that

E

P P

which completes the proof.

APPENDIX IV
PROOF OF THEOREM 5

Proof: The proof is inspired by [14]. Without loss of
generality, we assume , which immediately im-
plies . Fix a with , and define

. Let denote the log likelihood ratio between
and based on the first observed rewards of arm 1. That is

where is a random variable corresponding to the time
index of the th pull of arm 1.

By conditioning on the sequence is a sum of
independent r.v.’s. Let , and sup-
pose there exists such that

with positive probability. Then with positive probability, there
exists an such that the average of the subsequence for which

, will be larger than . This, however, con-
tradicts the strong law of large numbers since the subsequence
is i.i.d. and with marginal expectation . Thus, we
obtain

P (13)

Inequality (13) is equivalent to the statement that with proba-
bility one, there are finitely many such that

for some . Since , this in turn implies there are
at most finitely manly such that

. As a result, we have

and

P (14)

Henceforth, we proceed using contradiction. Suppose

P

Using and as shorthand to denote events
and

, and by (14), we have

P (15)

The quantity E can be rewritten as follows:

E

E

E

P

P

P

(16)

The equality marked follows from and fol-
lows from the fact that . and follow
from elementary probability inequalities. follows from the
change-of-measure formula and the definition of in which

. follows from simple
arithmetic and (15).
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Inequality (16) contradicts the assumption that is uni-
formly good for both and and, thus,
we have

P

By choosing the in with the minimizing config-
uration , we complete the proof of the
first statement of Theorem 5. The second statement in Theorem
5 can be obtained by simply applying Markov’s inequality and
the first statement.

APPENDIX V
PROOF OF THEOREM 6

We prove Theorem 6 by decomposing the inferior sampling
time instants into disjoint subsequences, each of which will
be discussed in separate lemmas respectively. For simplicity,
throughout this proof, we use Cond1 as shorthand for

Cond1 is satisfied at time ,6 and use to denote
the -neighborhood of the distribution on the space
of distributions.

Suppose . To prove that for the
in Algorithm 3, E

, we first note the following:

Cond0

Cond1

Cond2

Cond3

Cond3

Cond3

Cond3

Cond3 (17)

6“At time t” means after observing X but before the final decision � is
made. It is basically the moment when we are performing the � -deciding al-
gorithm.

These eight terms of the right-hand side of (17) will be treated
separately in Lemmas 2–8.

Lemma 2: Suppose , i.e., .7 Then

E Cond0

E Cond0

Proof: Let Cond0 . By the monotone
convergence theorem, it is equivalent to prove that E

for all . By the definition of Cond0, we have

P

P and

P P

P

By directly computing the expectation, we obtain E
.
Lemma 3: Suppose , i.e., . Then

E Cond1

E Cond1

Proof: We define Cond1 as the empirical distri-
bution of at those time instants for which Cond1 is
satisfied. We then have

Cond1

Cond1 Cond1

Cond1 Cond1

(18)

By Sanov’s theorem on finite alphabets (see [24]), each term in
the second sum is exponentially upper bounded w.r.t. , which
implies the bounded expectation of the second sum. For the first
sum, we have

Cond1 Cond1

and

Cond1

Cond1 (19)

7There is no need to consider the case � = � , since in that case, all alloca-
tion rules are optimal.
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P

(20)

The first inequality follows from extending the finite sum to the
infinite sum and the definition of Cond1. The second inequality
follows from the union bound. The third inequality follows
from the following three steps. First, we change the summation
index from the time variable to , which specifies that it is
the th time that the condition in (19) is satisfied. (Note: By
definition, .) Second, by Cond1 ,
there must be at least P time instants that

, which guarantees we have enough access to
the bandit machine . Finally, by the definition of Cond1 in
Algorithm 3, at the th time of satisfaction, the sample size

must be greater than P .
By slightly abusing the notation with , where
represents the sample size rather than the current time
, we obtain the third inequality.

Remark: This change-of-index transformation will be used
extensively throughout the proofs in this section.

By Sanov’s theorem on (Theorem 9), the probability of
each term in (20) is exponentially upper bounded w.r.t. , which
implies that the summation has bounded expectation. By (18),
the proof of Lemma 3 is then complete.

Lemma 4: Suppose , i.e., . Then

E Cond2

Proof: By the assumption , we have

Cond2

By Sanov’s theorem on finite alphabets, each term in the second
sum is exponentially upper bounded w.r.t. , which implies the
bounded expectation of the second sum. For the first sum, we
have

P

By extending the finite sum to the infinite sum, we obtain
the first inequality. By the definition of Cond2 in Algorithm 3
and using exactly the same reasoning used in going from (19) to
(20), we obtain the second inequality. By Sanov’s theorem, each
term in the above sum is exponentially upper bounded w.r.t. .
Thus it follows that the expectation of the first sum is also finite,
which completes the proof.

Lemma 5: Suppose , i.e., . Then

E

Cond3

E

Cond3

Proof: We have

Cond3

Cond3

Cond3a

Cond3a

Cond3a

The first equality follows from conditioning on the event
that the exact value of the estimate is some configuration
pair . The first inequality follows from the definition of
Cond3a in Algorithm 3, where double the number of time
instants with odd will be larger than the total number of
times that Cond3 is satisfied. The second equality follows from
conditioning on the value of . The second inequality follows
from the condition that the second coordinate of the estimate,

, and then extending the finite sum to the infinite sum.
The third inequality follows from the definition of Cond3a
and changing the time index to , similar to the reasoning
in (19)–(20). By Sanov’s theorem, each term is exponentially
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upper bounded w.r.t. , and thus the entire sum has bounded
expectation. The proof is thus complete.

Corollary 1: By the symmetry of , we have

E

Cond3

Lemma 6: Suppose , i.e., . Then

E

Cond3

Proof: We have (21) and (22), as shown at the bottom of
the page.

The second equality follows from the fact that the scheme
samples the inferior arm only when either Cond3b1a1 or
Cond3b1a2 is satisfied. For the first inequality, we condition
on and extend to the infinite sum. For the last inequality,
we change the time index to , which specifies the th
satisfaction of Cond3b1a1, so that we can upper bound the
first sum of (21). The reason we have a multiplication factor

in front of the indicator function is
in order to upper bound the second sum of (21), concerning
Cond3b1a2, simultaneously.

To obtain this result, we note that between the consecutive
times and , at which Cond3b1a1 is satisfied and arm 1
is pulled, the number of times that Cond3b1a2 is satisfied and
arm 1 is pulled cannot exceed , which
is because of the algorithm involving in Line 16.
Multiplying the factor , we simultaneously
bound these two sums.

By Sanov’s theorem, the expectation of the indicator in (22)
is exponentially upper bounded w.r.t. . As a result, the entire
sum will have bounded expectation, which in turn completes the
proof.

Lemma 7: Suppose , i.e., . Then

E

Cond3

Proof: We have

Cond3

Cond3

Cond3

Cond3b

#

Cond3b

#

Cond3b Cond3b

Cond3b Cond3b (23)

The first inequality follows from Line 11 in Algorithm 3,
where Cond3b is satisfied once after two times of Cond3 sat-
isfaction. The last two equalities follow from conditioning on

Cond3

Cond3

Cond3b1a1 Cond3b1a2

Cond3b1a1

Cond3b1a2 (21)

(22)
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and Cond3b . By Sanov’s theorem on finite alpha-
bets, the terms of the second sum in (23) are exponentially upper
bounded and the entire sum thus has bounded expectation. For
the first sum, we have

Cond3b Cond3b

P

Cond3b1 (24)

This inequality follows from the fact that once falls into
the , the total number of time instants can be upper
bounded by the number of instants when , over
P . To show

E

Cond3b1

we further decompose the expectand into

Cond3b1

Cond3b1a

Cond3b1b

(25)

For the first sum in (25), under the assumption , we
can write

Cond3b1a

Cond3b1a1

Cond3b1a2

Cond3b1a2

(26)

The first inequality follows from conditioning on the sub-con-
ditions Cond3b1a1 and Cond3b1a2, and extending to the infi-
nite sums. Let SQ denote the set of perfectly squared integers
in . The second inequality is from the definition of
Cond3b1a1 in Algorithm 3 and the fact that SQ is
no larger than SQ . The third inequality fol-
lows from the fact that by definition, under Cond3b1a2

, and changing the time index to , the number of satisfac-
tion times. By Sanov’s theorem on , the above has bounded
expectation.

For the second sum of (25), with the condition

Cond3b1b

where is the reward of arm 2 at the -th time that
and . The first inequality follows from fo-

cusing only on the condition in Cond3b1b and
then shifting the time index . The second inequality follows
by replacing the minimum achieving with . The third in-
equality follows from expressing using its definition. The
fourth inequality follows from the set relationship, where is

, the number of time instants that the side informa-
tion and , for .

We first note that

is a positive martingale with expectation 1, when being consid-
ered under distribution . By Doob’s maximal
inequality, we have

P

and, thus, the expectation is bounded, i.e.,

E Cond3b1b

(27)

By (23)–(27), Lemma 7 is proved.



352 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 3, MARCH 2005

Lemma 8: Suppose , i.e., . Then

E

Cond3

Proof: By the definition of , especially of
Cond3b1a, we have

E

Cond3

E Cond3b1a

E

E

E

E

where denotes the reward of the th time that arm 1 of
the sub-bandit machine is pulled. The first in-
equality follows because, by definition, only when Cond3b1a
is satisfied can , given . The second in-
equality is obtained by focusing on the sub-condition
in Cond3b1a, and letting be the number of
time instants when arm 1 is pulled and . The third
inequality follows from extending the upper bound of from

to . The equalities follow from rearranging the max and

min operators and elementary implications. By applying [12,
Lemma 4.3], quoted as Lemma 9 later, we have

E

E

where the equalities come from the existence-of-saddle-points
assumption. By noting that , this completes
the proof of Lemma 8.

By (17) and Lemmas 2–8, it has been proved that for the
described in Algorithm 3

E

Lemma 4.3 of [12] is quoted as follows.
Lemma 9 ([12, Lemma 4.3]): Suppose are i.i.d.

r.v.’s taking values in a finite set , with marginal mass function
. Let be such that E

, where is a finite set. Define
, and . Then

E
E

(28)

Note: By incorporating Cramér’s theorem during the proof
of this lemma in [12], it can be extended to continuous r.v.’s

, provided E and E are finite
for all .

APPENDIX VI
PROOF OF THEOREMS 7 AND 8

Proof of Theorem 7 ( Lower Bound): This proof is
basically a variation of that for Theorem 5, with the major dif-
ference being that the competing configuration is
now from a different set: . We can
first follow line by line in the proof of Theorem 5, and replace
(16) with the following inequality:

E

E

E
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E

E

P

P

P

where the first inequality follows from dropping the other half
of the events where . The second
inequality follows from dropping the condition .
With P , recalling that satisfies
that , such that , we obtain . – follow
from the same reasoning as discussed in connection with (16).
From the contradiction of the uniformly good rule assumption,
we have

P

By choosing the in with the minimizing config-
uration , the proof of
the first statement in Theorem 7 follows. The second statement
in Theorem 7 can be obtained by simply applying Markov’s in-
equality and the first statement.

Proof of Theorem 8 (Bound-Achieving
Scheme): Following the same path as in the proof of
Theorem 6, we first decompose the inferior sampling time
instants into disjoint subsequences, each of which will be
discussed separately

Cond0

Cond1

Cond2

Cond2.5

Cond3

Cond3

Cond3

Cond3

Cond3

(29)

By exactly the same analysis as in Lemmas 2 and 3, the
first two sums in (29), concerning Cond0 and Cond1, have
bounded expectations. Let denote the configuration satisfying

. For the sum concerning Cond2
Cond2 implies it is either or

, where . Both of the previous
cases are discussed in Lemma 4 and are proved to have finite
expectations.

For future reference, we denote the five different sums
concerning Cond3 as term3a term3b term3c term3d, and
term3e, in order. By Lemma 5 and Corollary 1, both term3a
and term3b have bounded expectations.

If the underlying is not implicitly revealing, by Lemmas 6
and 7, term3c and term3d have bounded expectation. And by
Lemma 8, E term3e .

If the underlying is implicitly revealing, term3e . For
term3c and term3d, we have

Cond3

Cond3

Cond3

Cond3

Cond3

Cond3 (30)

which is obtained by replacing the condition
with either or . By Lemma 6, both the
first and the fourth sums in (30) have bounded expectations.
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By Lemma 7, both the second and the third sums in (30) also
have bounded expectations.

Note: In the proofs of Lemmas 6–8, there are summations
or minima taken on the set . All those sets could be
replaced by and the rest of the
proofs still follow.

We have discussed all sub-sums in (29) except the sum re-
garding Cond2.5. It remains to show that the sum concerning
Cond2.5 has bounded expectation, which is addressed in the
following lemma.

Lemma 10: Consider the described in Algorithm 4. For
all possible , we have

E Cond2.5

Proof:

Cond2.5

Cond2.5

Cond2.5

Cond2.5

Cond2.5

Cond2.5 (31)

By Sanov’s theorem on finite alphabets, each term in the second
sum is exponentially upper bounded w.r.t. , which implies that
the second sum has finite expectation. For the first sum, we have

Cond2.5

Cond2.5

Cond2.5

Cond2.5

Cond2.5

Cond2.5 (32)

which is obtained by considering whether or ,
recalling that . Since these two sums are symmetric,
henceforth we show only the finite expectation of the first sum
in (32). The finite expectation of the second sum then follows
by symmetry

Cond2.5

Cond2.5

Cond2.5 Cond2.5

P

(33)

The first inequality follows from the definition of Cond2.5:
since is implicitly revealing, there must be an
s.t. . And since the estimate , for that specific

, the distance between and must be greater than .
The second inequality follows from changing the time index to

, the time instants at which and Cond2.5 is satisfied,
and extending the summation to infinity. [This change of the
time index is similar to the one described in (19) and (20)].

Thus, by Sanov’s theorem on , the expectation of each term
in (33) is exponentially upper bounded w.r.t. , which implies
finite expectation of the entire sum in (33). By the discussions
on (31)–(33), Lemma 10 is proved.

From the aforementioned discussion of the sub-sums in (29),
we conclude that the modified scheme, in Algorithm 4,
has bounded E if the underlying is implicitly re-
vealing. If is not implicitly revealing, the in Algorithm
4 achieves the new lower bound (4).
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