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1. Introduction For at least the last 20 years, there has been an interest in stochastic search algorithms for
global optimization based on non-homogeneous Markov chains. The prime example issimulated annealing, first
suggested for optimization by Kirkpatrick et al. [12] based on techniques of Metropolis et al. [14]. An early
application to image processing was described by Geman and Geman [9]. The basic procedure in simulated
annealing is to explore the search space by setting up a graph over the space and jumping from point (vertex)
to point in this graph according to a non-homogeneous Markov chain. The non-homogeneity arises from the
gradually decreasing probability of jumping from one point to a “worse” point in the course of the search (but such
a jump also cannot be precluded, because of the need to “climb out” of “cups” around local minimizers). The speed
at which this decrease in the transition probabilities occurs depends on a sequence called the “cooling schedule”
(described in more detail in Section 3).

In a seminal paper, Hajek [11] provides a detailed treatment of the behavior of the Markov chain associated with
the simulated annealing algorithm. Specifically, he provides a necessary and sufficient condition on the cooling
schedule for convergence in probability of the algorithm to the set of global minimizers. Tsitsiklis [17] proves
essentially the same result, but using different techniques. Around the same time, Connors and Kumar [3] also
study simulated annealing type Markov chains, providing yet a different view of such processes.

In the last 15 years, the literature on the analysis of simulated annealing has grown significantly. In particular,
there have been several generalizations of simulated annealing. For example, Gelfand and Mitter [8] and Tsallis
and Stariolo [16] consider a continuous-space version of simulated annealing, and Morai and Miclo [5], Cot and
Catoni [4], and Trouve [15] consider an even further generalization of the Markov process in standard simulated
annealing. The analysis of these generalizations of simulated annealing involve relatively sophisticated tools.

In this paper, we study a non-homogeneous Markov chain that is also a generalization of simulated annealing.
Our generalization is different from those of the above papers—ours is much closer to the original simulating
annealing framework of Hajek [11]. For convenience, in this paper we refer to our generalization simply as
generalized simulated annealing(even though this same term is used also for other generalizations). The main
reason for introducing our generalization is to facilitate the analysis ofrelative frequenciesin non-homogeneous
Markov chains arising in simulated annealing and other stochastic search algorithms.

Our focus on relative frequencies in our non-homogeneous Markov chain sharply differentiates our study from
previous studies in the literature. At the same time, our approach offers several advantages. First, we use only
elementary first principles—our tools consist essentially of applications of Kolmogorov’s three-series theorem and
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coupling. In contrast, the paper of Hajek [11], which was also based on first principles, requires relatively complex
arguments. Second, our generalization, while simple, allows studying rather disparate search algorithms within a
single unified framework. We illustrate this claim by considering two other search algorithms (besides standard
simulated annealing)—these two other algorithms have not previously been recognized to be sufficiently akin to
simulated annealing to have a common analytical “ancestry.” Third, our approach provides what we believe to be
the strongestsample-pathcharacterizations of simulated annealing type Markov chains to date. We establish not
only the convergence to zero of the relative frequencies of all non-global-minimizers, but also therate at which
these relative frequencies vanish.

There is significant appeal in characterizing convergence and rates in purely sample-path terms. Our com-
mitment to this program of study is evident in our previous work on sample-path analyses of various stochastic
algorithms; see Kulkarni and Horn [13], Wang et al. [18], Wang et al. [19], Wang and Chong [20], and Chong et
al. [2]. The typical conclusion we find is that although these purely sample-path analyses involve only elementary
tools, the results are surprisingly strong—the results in this paper corroborate this conclusion. We contrast this with
the probabilistic analysis of Hajek [11]: although his analysis provides the strongest possible condition for conver-
gence based on first principles, rates of convergence do not fall out easily. In our analysis of relative frequencies,
on the other hand, rate estimates follow relatively easily and naturally. From first principles it is extremely difficult
to obtain the kind of “sharp” estimates needed in Hajek’s probabilistic analysis to characterize rates in addition
to convergence. Since Hajek’s paper, there have certainly been results on convergence rates ofprobabilities in
simulated annealing and its generalizations; however, more sophisticated machinery than Hajek’s first-principles
approach has to be brought to bear (e.g., see Catoni [1], who uses results from Freidlin and Wentzell [7]). This
paper and our previous work along similar lines suggest that the same is not the case in a purely sample-path
setting.

The rest of this paper is organized as follows. We begin below with some notation and terminology we will
need, and a brief discussion of relative frequencies. In Section 2 we define our generalized simulated annealing
process and state our main results. In Section 3 we discuss three examples to show how our generalized simulated
annealing framework applies to specific stochastic search algorithms. For convenience and ease of presentation,
the proofs of our results are relegated to Section 4. We end with some final remarks in Section 5

Some notation and terminology We first introduce some notation used throughout this paper. For two posi-
tive sequences{an} and{bn}, we write:

• an ∼ bn if an/bn → 1;

• an
O= bn if lim sup an/bn < ∞, andlim sup bn/an < ∞; and

• an
O

≈ bn if (log an − log bn)/ log n → 0.

The difference betweenan
O= bn andan

O

≈ bn is that while “
O=” implies that the two sequences are of the same

“order,” the weaker “
O

≈” allows their order to differ by a slowly varying function, e.g., a power oflog n.

Given a sequencex = {xn} = {x1, x2, . . .} and a setA, we define the notation

I(xi ∈ A) =
{

1 if xi ∈ A
0 otherwise.

The notationI(xi ∈ A) represents an “indicator” of the conditionxi ∈ A. We define therelative frequency of
visits toA up to timen as

Fn(x ∈ A) =
1
n

n∑
i=1

I(xi ∈ A).

If A is the singleton{v}, we writeFn(x = v). Similarly, we use the notationFn(x 6= v) = Fn(x 6∈ {v}).

If xi ∈ A for an infinite number ofi, then we say thatA is visited infinitely often. Otherwise, we say thatA is
visited finitely often.

When considering random sequences, we use capital letters:X = {X1, X2, . . .}, Fn(X = x∗), etc.

Relative frequencies of random sequencesOur results are stated in terms of convergence (a.s.) of relative
frequencies. In general, a (discrete state-space) random sequenceX = {X1, X2, . . .} that convergesin probability
to x∗ may or may not also have convergent relative frequencies of the formFn(X = x∗). If the sequence is
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independent, then convergence in probability is stronger than its relative frequency counterpart, as illustrated in the
simple lemma below. The proof of this lemma is of interest because it employs a technique we will use repeatedly
in the proof of our main results (we elaborate on this below).

LEMMA 1.1 LetX = {X1, X2, . . .} be an independent, discrete state-space, random sequence that converges to
x∗ in probability. Then,Fn(X = x∗) → 1 a.s.

PROOF. Suppose thatX converges tox∗ in probability; i.e.,P (Xn 6= x∗) → 0. Fix ε > 0. Then,P (Xn 6=
x∗) ≤ ε eventually (for sufficiently largen). Let {Un} be an i.i.d. sequence with uniform distribution on[0, 1],
independent ofX. Define the Bernoulli sequenceB = {Bn} by

Bn = I(Xn 6= x∗) + I(Xn = x∗)I
(

Un ≤
ε− P (Xn 6= x∗)

P (Xn = x∗)

)
(if P (Xn = x∗) = 0, then take the second term to be0; this issue disappears whenn is sufficiently large). It is
clear that{Bn} is an independent sequence, andP (Bn = 1) = ε for sufficiently largen. Moreover, ifXn 6= x∗

thenBn = 1 (a.s.), which implies thatFn(X 6= x∗) ≤ Fn(B = 1). By the strong law of large numbers,
Fn(B = 1) → ε a.s. Therefore,lim supn→∞ Fn(X 6= x∗) ≤ ε a.s. Because this argument holds for allε > 0,
we conclude thatFn(X 6= x∗) → 0 a.s., as required. �

We provide the proof above not because we believe the result to be original, but to illustrate a method of proof
that we will use repeatedly in proving our main results:coupling. This method involves considering a sequence
that is related to another sequence such that some property involving sample paths of both sequences holds a.s.
In the above proof, we explicitly constructed the sequenceB from X—we say that the sequenceB is coupled
with X. The properties ofB of interest to us here are thatP (Bn = 1) = ε and if Xn 6= x∗ thenBn = 1 (a.s.).
This coupling property ofB allows us to bound the relative frequencyFn(X 6= x∗) by Fn(B = 1), a quantity
that is much easier to characterize. We use such coupling arguments repeatedly in proving our main results (see
Section 4).

We should point out that in the independent case, convergence in probability isstrictly stronger than its relative
frequency counterpart, because there are instances whereFn(X = x∗) → 1 a.s. but the sequence does not
converge tox∗ in probability. To see this, consider the sequenceX = {X1, X2, . . .} on the state-space{0, 1},
whereXn = 1 a.s. for alln except for thosen of the formn = 2k, k = 1, 2, . . . , in which caseXn = 0 a.s. It is
clear thatP (Xn = 1) does not converge to1, butFn(X = 1) → 1 a.s.

In our generalized simulated annealing framework, the sequences are non-homogeneous Markov chains. In
these cases, it is not cleara priori whether convergence in probability is weaker or stronger than its relative
frequency counterpart. It will turn out that in fact they areequivalent.

2. Generalized Simulated Annealing In this section we present our generalized simulated annealing frame-
work and our main results. The proofs of these results will be provided in Section 4, after we give three example
applications of our framework in Section 3.

Consider a finite, directed, connected graphG = (V, E), whereV is a set of vertices andE a set of directed
edges. Assume that each vertexv ∈ V is assigned a valuef(v). Our goal is to find the minimum of the function
f ; i.e., we wish to findvmin ∈ V such thatf(vmin) ≤ f(v) for all v ∈ V.

We assume that all values off(v), v ∈ V, are distinct. We make this assumption to simplify the presentation. In
particular, under this assumption,vmin = arg minv∈V f(v) is unique. However, all our results remain valid with
appropriate adjustments if we remove this assumption. We elaborate on this in our final remarks (Section 5).

Now define a non-homogeneous Markov process{Xn} on the graphG, as follows. Associate with each edge
uv ∈ E , u 6= v, two valuesgr(u, v) ≥ 0 andgc(u, v) > 0. The transition probabilities of the process{Xn} satisfy,
for u 6= v,

P (Xn = v|Xn−1 = u)

{
∼ gc(u, v)n−gr(u,v) if uv ∈ E
= 0 otherwise,

and, as usual,

P (Xn = u|Xn−1 = u) = 1−
∑
v 6=u

P (Xn = v|Xn−1 = u).



4 Hannig, Chong, Kulkarni: Generalized Simulated Annealing
Mathematics of Operations Research xx(x), pp. xxx–xxx,c©200x INFORMS

Thus, the asymptotic behavior of the transition probabilities is determined by the values ofgr(u, v) andgc(u, v).
We will call {Xn} a generalized simulated annealingprocess. As we will see in Section 3, generalized simulated
annealing reduces not only to the familiar simulated annealing process, but also processes associated with other
stochastic search algorithms.

For convenience, define for each vertexu ∈ V two neighborhoods:Nout(u) = {v 6= u : uv ∈ E} and
Nin(u) = {v 6= u : vu ∈ E}. With this notation, we see that because probabilities must be bounded above by1,
for all u, ∑

v∈Nout(u): gr(u,v)=0

gc(u, v) ≤ 1.

We now describe an assumption that links the functionf(v) with the transition probabilities of{Xn}. As usual,
we say thatp = {u1, u2, u3, . . . , uk−1, uk} is a path from u to v if u1 = u, uk = v, andui+1 ∈ Nout(ui),
i = 1, . . . , k − 1. For a pathp = {u, u2, u3, . . . , uk−1, v} we define itsheightby

h(p) = max{f(u) + gr(u, u2), f(u2) + gr(u2, u3), . . . , f(uk−1) + gr(uk−1, v)}.

(This definition is motivated by the notion of “height” in Hajek [11] for simulated annealing.) For any two vertices
u andv, we then define

h(u, v) = min {h(p) : p is a path fromu to v} . (1)

Next, we introduce two definitions involving the notion of heights:weak reversibilityandheight normalization.
These are needed in the statements of our main results. Our notion of weak reversibility reduces to that of Ha-
jek’s [11] similarly named property for the special case of simulated annealing. Height normalization plays a key
role in convergence.

DEFINITION 2.1 We say that the generalized simulated annealing process isweakly reversibleif, for any two
verticesu andv, h(u, v) = h(v, u).

DEFINITION 2.2 We say that the generalized simulated annealing process isheight-normalizedif, for any vertex
v 6= vmin, h(v, vmin)− f(v) ≤ 1.

Note that height normalization implies that the graph is connected. We are ready to give our main convergence
result, which essentially states that height normalization is necessary and sufficient for global convergence of
the process (i.e., a.s. convergence to a global minimizer regardless of initial condition) in the sense of relative
frequencies.

THEOREM 2.1 Consider a weakly reversible generalized simulated annealing processX = {X1, X2, . . .}. If the
process is height-normalized, thenFn(X = vmin) → 1 a.s. regardless of the starting point.

On the other hand, suppose that the process is not height-normalized. Then, there is a vertexv 6= vmin

such thath(v, vmin) − f(v) > 1, and if X1 = v, then P (Fn(X = v) → 1) > 0 (which implies that
P (Fn(X = vmin) → 1) < 1).

Our next result characterizes therateof convergence in terms of relative frequencies.

THEOREM 2.2 Consider a weakly reversible, height-normalized generalized simulated annealing processX =
{X1, X2, . . .}. Supposev is a vertex such that

h(vmin, v)− f(vmin) < 1. (2)

Then,Fn(X = v) O= n−(f(v)−f(vmin)) a.s. regardless of the starting point.

Otherwise, if (2) is not satisfied but

h(vmin, v)− f(vmin) = 1, (3)

thenFn(X = v)
O

≈ n−(f(v)−f(vmin)) a.s. regardless of the starting point.

Finally, if for somev neither (2) nor (3) is satisfied, thenv is visited finitely often a.s. regardless of the starting
point, in which case eitherFn(X = v) = 0 or Fn(X = v) O= n−1 a.s.
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REMARK 2.1 Suppose in the definition of the transition probabilities we replacegc(u, v)n−gr(u,v) by

gc(u, v)a−gr(u,v)
n . If an/n → 0, then convergence to the global minimizer holds, but at a slower rate. On the

other hand, ifan/n → ∞, then the same conclusion as the converse to Theorem 2.1 holds—the process may not
converge to the global minimizer.

Recall that “
O=” is stronger than “

O

≈.” Thus, for simplicity, we can summarize the essence of Theorem 2.2 as

follows: If v is visited infinitely often a.s., thenFn(X = v)
O

≈ n−(f(v)−f(vmin)) a.s. regardless of the starting
point. In Section 3, we will use this simplified version of Theorem 2.2 in applying our framework to specific
examples. The only thing missing from this simplified statement of the theorem is that in certain cases we have the

stronger result with “
O=” instead of “

O

≈.”

The proofs of Theorems 2.1 and 2.2 are relegated to Section 4. In the next section, we describe three examples of
stochastic search processes for which we can apply our results to characterize convergence and rates of convergence
of relative frequencies.

3. Applications In this section we show that generalized simulated annealing provides a unifying framework
to study various stochastic optimization algorithms. In particular, we show that the classical simulated annealing
algorithm, the “stochastic ruler” algorithm of Yan and Mukai [21], and the “stochastic comparison” algorithm of
Gong et al. [10] are all special cases of generalized simulated annealing. In doing so, our convergence results can
be brought to bear in the analysis of these algorithms. We show that our analysis in fact yields stronger results
than are available for these algorithms. For the case of simulated annealing, a necessary and sufficient condition
for convergence in probability is already available in Hajek [11], though as far as we know, rates on the relative
frequencies have not been previously obtained.

A stochastic optimization algorithm aims to minimize a functionl(v) defined on a discrete setV via a stochastic
search process. The search process gives rise to a non-homogeneous Markov chain of the kind that we will
show fits within our framework. When showing that a particular stochastic optimization algorithm is a special
case of generalized simulated annealing, we first relate the functionsgr(u, v) and gc(u, v) with the transition
probabilities of the stochastic algorithm. We then show how to define a functionf(v) that makes the process
weakly reversible. It is tempting at first glance to treat the objective functionl(v) as the functionf(v). However,
in general, we cannot usel(v) directly in place off(v) because the functionf(v) contains information about the
rate of convergence, whilel(v) might not. Some modification tol(v) is needed to link it to the underlying graph.
The needed modification tol(v) to obtainf(v) should become apparent in our discussion of the three examples in
this section.

3.1 Simulated Annealing Consider the problem of minimizingl(v) with v ∈ V. In simulated annealing, we
begin with a graphG = (V, E) and define a non-homogeneous Markov chain{Xn} with transition probability

P (Xn = v|Xn−1 = u) = R(u, v) exp(−[l(v)− l(u)]+/Tn),

where[x]+ = max{x, 0}, andR(u, v) is a transition probability such that

R(u, v)

{
> 0 if v ∈ Nout(u),
= 0 otherwise,

and
∑

v∈Nout(u) R(u, v) = 1. The sequence{Tn} is a positive sequence called thecooling schedule. We focus
our attention on cooling schedules of the formTn = d/ log n, popularized by Geman and Geman [9]. In [11],
Hajek shows that{Xn} converges in probability to the global minimizer if and only ifd ≥ d∗, whered∗ is a
quantity Hajek calls the “depth of the second deepest cup,” a parameter we define precisely below. Our goal here
is to show that, based on our main results, the same condition as Hajek’s (involvingd∗ above) is also necessary
and sufficient for convergence in the relative-frequency sense. Moreover, we provide a characterization of the rate
of convergence of the relative frequencies.

To begin, consider a cooling schedule satisfyingTn ∼ d/ log n, with d > 0 fixed. Then, the simulated annealing
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algorithm above is readily seen to be an instance of generalized simulated annealing with

f(v) =
l(v)
d

,

gr(u, v) =
[l(v)− l(u)]+

d
,

gc(u, v) = R(u, v).

It remains to see when the height-normalization condition holds. To this end, denote the set of all paths fromu
to v byP(u, v). Then define

d∗ = max
v 6=vmin

min
p∈P(v,vmin)

max
u∈p

{l(u)− l(v)}.

Here,u ∈ p means that the vertexu is part of the pathp.

To understand the connection betweend∗ and height normalization, first observe that by the definitions off ,
gr, andgc given above, the quantityh(v, vmin) (defined by (1) in Section 2) simplifies to

h(v, vmin) =
1
d

min
p∈P(v,vmin)

max
u∈p

l(u).

From this, it is easy to see thatd∗ can be rewritten as

d∗ = d

(
max

v 6=vmin
{h(v, vmin)− f(v)}

)
.

We conclude that the process is height-normalized if and only ifd ≥ d∗.

Combining the above with Theorems 2.1 and 2.2 gives the following convergence theorem for simulated an-
nealing. Note that weak reversibility in simulated annealing (in the Hajek sense) implies that the corresponding
generalized simulated annealing process is weakly reversible also.

THEOREM 3.1 For a weakly reversible simulated annealing process with cooling scheduleTn ∼ d/ log n,
Fn(X = vmin) → 1 a.s. regardless of the starting point if and only ifd ≥ d∗. Moreover, assumingd ≥ d∗,

if v 6= vmin is visited infinitely often, thenFn(X = v)
O

≈ n−(l(v)−l(vmin))/d a.s. regardless of the starting point.

The first part of Theorem 3.1 exactly parallels that of Hajek’s (the necessary and sufficient condition for conver-
gence is identical to that of Hajek [11]). This shows that convergence in probability (Hajek’s result) isequivalentto
a.s. convergence of the relative frequency. The second part of Theorem 3.1 characterizes the rate of convergence in
terms of relative frequencies. As noted before, we can sharpen the rate result toFn(X = v) O= n−(l(v)−l(vmin))/d

for thosev such thath(vmin, v) − f(vmin) < 1. As far as we know, these results on relative frequencies for
simulated annealing have not previously been available.

The convergence result in Hajek [11] goes beyond the case whereTn ∼ d/ log n. In particular, he also shows
that if Tn log n → 0 then simulated annealing might converge to a “local” rather than global minimizer, and
if Tn log n → ∞ then the algorithm converges to the global minimizer. Our framework addresses the case of
Tn log n → 0 as one can show that the algorithm might converge to a local minimizer, using a coupling argument
involving a generalized simulated annealing process that does not satisfy the conditions of Theorem 2.1. On the
other hand, we do not directly recover the case ofTn log n →∞. However, in this case a coupling argument with
a generalized simulated annealing process shows that the rate of convergence is slower then any power; i.e., for all

v, we haveFn(X = v)
O

≈ 1, suggesting that a cooling schedule for whichTn log n →∞ should not be used.

3.2 Stochastic Ruler Algorithm Yan and Mukai [21] consider the problem of minimizing an objective func-
tion l(v), v ∈ V, that is assumed to be of the forml(v) = EH(v), whereH(v) is random with finite variance. They
assume we do not actually have access tol(v); instead, we can only observe independent samples (realizations) of
H(v). They convert the problem to one of maximizing

p(v, a, b) = P (H(v) ≤ Θ(a, b)),

whereΘ(a, b) is a random variable uniformly distributed on(a, b) (and independent ofH(v)). They prove that for
a small enough andb large enough, anyu that maximizesp(u, a, b) also minimizesl(v). (We assume henceforth
thata andb are chosen such that this conclusion holds.)
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To find the maximizer ofp(u, a, b) they set up a non-homogeneous Markov chainXn satisfying

P (Xn = v|Xn−1 = u) = R(u, v)(p(v, a, b))Mn ,

whereMn → ∞ is called the “testing sequence.” (It is useful to think of the testing sequence as the reciprocal
of a cooling schedule.) As in simulated annealing, the probabilitiesR(u, v) satisfyR(u, v) > 0 if and only if
v ∈ Nout(u). Yan and Mukai [21] impose the additional restriction that the graph has “symmetric neighborhoods,”
i.e.,v ∈ Nout(u) if and only if u ∈ Nout(v). We adopt this assumption in the remainder of this section.

Yan and Mukai [21] consider the specific testing sequence

Mn = blog(n + n0 + 1)/dc,
wherebxc is the integer part ofx, andn0 andd > 0 are fixed constants. They show how to implement the
search algorithm using only samples ofH: suppose that at thenth iteration the process is in stateu, and a random
candidate next-statev is generated according toR(u, v). Then, generateblog(n+n0 +1)/dc independent samples
(realizations) ofH(v) andΘ(a, b), and transition tov if and only if H(v) ≤ Θ(a, b) for all the samples. It is
convenient to call the above algorithm thestochastic ruleralgorithm, because the samples ofH(v) are compared
to a “stochastic ruler”Θ(a, b).

The main convergence result in Yan and Mukai [21] is that with the above testing sequence, provided some
technical assumptions hold (which we elaborate below),{Xn} converges in probability to the global minimizer.
Below, we show that the stochastic ruler algorithm falls within the framework of generalized simulated annealing,
and hence our relative-frequency convergence results apply, including a characterization of the convergence rates
of the relative frequencies. Moreover, as we will see below, the technical assumptions in Yan and Mukai [21] can
be weakened—we provide a necessary and sufficient condition for convergence.

In our analysis, we consider the slightly more general case where the testing sequence{Mn} satisfies

Mn ∼
log n

d
.

In this case, we see that forv 6= u,

P (Xn = v|Xn−1 = u) = R(u, v)(p(v, a, b))Mn ∼ R(u, v)n(log p(v,a,b))/d.

The transition probabilities of this non-homogeneous Markov chain suggest the following specialization of gener-
alized simulated annealing:

f(v) =
− log p(v, a, b)

d
,

gr(u, v) =
− log p(v, a, b)

d
,

gc(u, v) = R(u, v).

Notice thatf(v) ≥ 0, and maximizingp(v, a, b) is equivalent to minimizingf(v). Moreover, the symmetric-
neighborhood assumption is sufficient for the above particular choice off(v) to guarantee weak reversibility of
the resulting process.

As before, denote the set of all paths fromu to v byP(u, v). Then define

d∗ = max
v 6=vmin

min
p∈P(v,vmin)

max
uu′∈p

{log p(v, a, b)− log p(u, a, b)− log p(u′, a, b)}. (4)

Here,uu′ ∈ p means that the linkuu′ is part of the pathp. This value ofd∗ is analogous to Hajek’s notion of the
“depth of the second deepest cup” for simulated annealing Hajek [11]. It will turn out thatd∗ characterizes a nec-
essary and sufficient condition for convergence of the stochastic ruler algorithm (see below). Therefore, although
Yan and Mukai [21] are careful to point out that their approach is “different from the technique of simulated anneal-
ing,” the analysis of simulated annealing actually bears on the analysis of the stochastic ruler algorithm, through
our generalized simulated annealing framework.

To see whyd∗ plays the same role here as in simulated annealing, note that by the above definitions off and
gr, we can once again writed∗ in the form

d∗ = d

(
max

v 6=vmin
{h(v, vmin)− f(v)}

)
.

and hence conclude that the process is height-normalized if and only ifd ≥ d∗.

Applying Theorems 2.1 and 2.2 to the stochastic ruler algorithm, we obtain the following convergence result.
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THEOREM 3.2 For the stochastic ruler algorithm with testing sequenceMn ∼ (log n)/d applied to a symmetric-
neighborhood graph,Fn(X = vmin) → 1 a.s. regardless of the starting point if and only ifd ≥ d∗. Moreover,

assumingd ≥ d∗, if v 6= vmin is visited infinitely often, thenFn(X = v)
O

≈ n−(log p(v,a,b)−log p(vmin,a,b))/d a.s.
regardless of the starting point.

We end with a brief discussion of some technical assumptions used in the analysis of Yan and Mukai [21]. First,
some notation. Letµ(a, b) = mins p(s, a, b), and letr be the “radius” of the graph, i.e.,r = mins maxs′ d(s, s′),
whered(s, s′) is the number of edges in the shortest path froms to s′. Yan and Mukai use a particular choice of
d in their convergence analysis:d = (log σ)/c, wherec ≤ 1/r andσ ≥ 1/µ(a, b). It is straightforward to show
that this choice ofd in fact satisfies the conditiond ≥ d∗ of Theorem 3.2. Hence, our analysis shows that the
assumptions of Yan and Mukai can be weakened.

We note one more side benefit of our approach, besides improving the conditions under which the algorithm
provably converges and giving us the rate of convergence of the relative frequencies: our approach gives us for free
a direct generalization of this algorithm to non-symmetric neighborhood graphs that still imply a weakly reversible
generalized simulated annealing process.

3.3 Stochastic Comparison Algorithm Gong et al. [10] consider a set up that is similar to that of Yan and
Mukai [21], except that their Markov chain{Xn} satisfies, forv 6= u,

P (Xn = v|Xn−1 = u) = R(u, v)(P (H(v) < H(u)))Mn .

So, unlike in Yan and Mukai [21], the transition probability fromu to v here involves comparingH(u) with
H(v) (instead of with an independent “ruler”). For this reason, Gong et al. [10] call their algorithm thestochastic
comparisonalgorithm. Moreover, the graph in Gong et al. [10] satisfies, for allu ∈ V, Nout(u) = {v ∈ V :
v 6= u}. In other words, they assume a complete graph—any two vertices are connected with an edge (in both
directions). We adopt this assumption in our analysis.

Gong et al. [10] analyze the convergence of their stochastic comparison algorithm using tools that are much
the same as those of Yan and Mukai [21]. Specifically, they first assume thatH(v) = l(v) + W , whereW has
zero mean, finite variance, and a symmetric density that does not depend onv. Then, under certain technical
assumptions, they show that{Xn} converges in probability to the global minimizer. Below, we show that the
stochastic comparison algorithm also falls within the framework of generalized simulated annealing. As was the
case in our analysis of the stochastic ruler algorithm, the technical assumptions in Gong et al. [10] can be weak-
ened considerably—we provide a necessary and sufficient condition for convergence of the stochastic comparison
algorithm. Our analysis also reveals significant differences between the stochastic comparison algorithm and the
stochastic ruler algorithm.

Once again, we consider the slightly more general case whereMn ∼ log n/d. To simplify the notation, letF be
the distribution function ofW1 −W2, whereW1 andW2 are independent random variables with the same density
asW defined above. Then,P (H(v) < H(u)) = F (l(u)− l(v)). In this case, we see that forv 6= u,

P (Xn = v|Xn−1 = u) = R(u, v)F (l(u)− l(v))Mn ∼ R(u, v)n(log F (l(u)−l(v)))/d.

The transition probabilities of this non-homogeneous Markov chain suggest the following correspondence with
generalized simulated annealing:

gr(u, v) =
− log F (l(u)− l(v))

d
and gc(u, v) = R(u, v).

The definition off to satisfy weak reversibility involves a little more work. First, order the vertices in ascending
order according to their values of the objective functionl; denote the ordered vertices byv(1), . . . , v(N). Note that
v(1) = vmin is the global minimizer. Then setf(v(1)) = 0 and

f(v(j)) = min
i∈{1,...,j−1}

{
f(v(i)) + gr(v(i), v(j))

}
− gr(v(j), v(1)).

Note thatgr(v(j), v(1)) ≤ gr(v(j), v) for all v (it is easier to go fromv(j) to v(1), the global minimizer, than to
any otherv). This implies that the path of lowest height fromv(j) to v(1) is the single-edge path. Therefore, by
definition,h(v(j), v(1)) = f(v(j)) + gr(v(j), v(1)) for all j = 1, . . . , n. On the other hand, depending onF , the
path of lowest height fromv(1) to v(j) may involve multiple edges. However, by induction onj, we can show that
h(v(1), v(j)) = f(v(j)) + gr(v(j), v(1)), which implies thath(v(j), v(1)) = h(v(1), v(j)) for all j = 1, . . . , n.
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To show that the resulting process is weakly reversible, consider two verticesu andv. Consider a pathp =
{u, v(1), . . . , v} where{v(1), . . . , v} is a “minimal-height” path fromv(1) to v (i.e., a path whose height is equal
to h(v(1), v)). We see that

h(u, v) ≤ h(p) = max
{
h(u, v(1)), h(v(1), v)

}
.

On the other hand, consider a minimal-height path fromu to v: p′ = {u, w, . . . , v}. The fact thatgr(u, v(1)) ≤
gr(u, w) implies that

h(u, v) = h(p′) ≥ h(u, v(1)).

Now consider a minimal-height path fromv(1) to u: q = {v(1), . . . , u}. Combiningq with p′, we get a path
q′ = {v(1), . . . , u, w, . . . , v}. Thus

h(v(1), v) ≤ h(q′) = h(p′) = h(u, v).

Combining the above, we get

h(u, v) = max
{
h(v(1), u), h(v(1), v)

}
and weak reversibility follows by symmetry.

Finally, define

d∗ = − log F (l(v(2))− l(v(1))).

As before,d∗ characterizes a necessary and sufficient condition for convergence of the stochastic comparison
algorithm. To elaborate, first note that for any nodev, the path that goes directly fromv to v(1) is a minimal-height
path fromv to v(1). Next, among allv 6= v(1), the height of this minimal-height path tov(1) is maximized for
v = v(2) (becausev(2) is the node with the lowest probability to transition tov(1)). Hence, just as in the two
previous examples, our choice off andgr allows us to write

d∗ = d

(
max

v 6=vmin
{h(v, vmin)− f(v)}

)
.

from which we conclude once again that the process is height-normalized if and only ifd ≥ d∗. Hence, by applying
Theorems 2.1 and 2.2, we obtain the following result.

THEOREM 3.3 For the stochastic comparison algorithm with testing sequenceMn ∼ (log n)/d applied to a
complete graph,Fn(X = vmin) → 1 a.s. regardless of the starting point if and only ifd ≥ d∗. Moreover,

assumingd ≥ d∗, if v 6= vmin is visited infinitely often, thenFn(X = v)
O

≈ n−f(v) a.s. regardless of the starting
point.

In their convergence analysis, Gong et al. follow Yan and Mukai in settingd = (log σ)/c, where0 < c < 1
andσ ≥ 1/µ. Here,µ = minu 6=v P (H(v) < H(u)). (It is silently assumed in Gong et al. [10] that0 < µ < 1.)
Clearly, in this case,

d =
log σ

c
> − log µ ≥ − log F (l(v(2))− l(v(1))) = d∗,

which shows that the choice ofd in Gong et al. [10] satisfies the conditiond ≥ d∗ of Theorem 3.3.

It is interesting to note that even though the original graph of Gong et al. is complete, the resulting general-
ized simulated annealing process is only weakly reversible. Moreover, the minimal-height path between any two
vertices always goes through the global minimizer. Thus, we can generalize our result to graphs that are not com-
plete but where every node is a neighbor of the global minimizer. In this case, as in the complete-graph case, the
global minimizer ofl is still the global minimizer off . However, the functionf might no longer be a monotone
transformation ofl, in contrast to the case of a complete graph. This has implications on rates. Specifically, if the
transformation froml to f is monotone, then a (non-global minimizing) pointv that has smallerl(v) value also has
a slower rate of decay of its relative frequency. However, if the transformation froml to f is not monotone, this
natural monotone relationship betweenl(v) and the rate of decay of the relative frequency ofv no longer holds.
This shows that generalization of this algorithm to graphs that are not complete might be non-trivial.

We also remark that we did not need any assumptions on the distribution functionF , rendering the assump-
tion 3.1 of Gong et al. [10] unnecessary.
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4. Proofs This section is devoted entirely to the proofs of our main results, Theorems 2.1 and 2.2. To facilitate
our presentation, we first state and prove several technical lemmas.

LEMMA 4.1 Let 0 < ∆ ≤ 1 and letA1, A2, . . . be independent events such thatP (An) = pn ∼ dn−∆. Then,
a.s.,

1
n

n∑
i=1

IAi ∼

{
d

1−∆ n−∆ if 0 < ∆ < 1;
d(log n)n−1 if ∆ = 1.

(5)

PROOF. Set

cn =
1
n

n∑
i=1

pi, Yi = IAi
− pi, and Sn =

n∑
i=1

Yi

ici
.

We first consider the case where0 < ∆ < 1. Definep′n = dn−∆. By the integral approximation,

c′n =
1
n

n∑
i=1

p′i ∼
d

1−∆
n−∆.

In general, ifpn ∼ d n−∆ then for all0 < ε < 1 small enough,

(1− ε)p′n < pn < (1 + ε)p′n eventually

and
(1− ε)c′n < cn < (1 + ε)c′n eventually.

Thuscn ∼ d(1−∆)−1n−∆.

We now show that{Sn} converges a.s. To do this, we verify the conditions of a special case of Kolmogorov’s
three-series theorem(see Durrett [6], Chapter 1, Theorem 8.3, p. 63).

Notice thatEYi/ci = 0. There is a constantC such that

Var
(

Yi

ici

)
=

pi(1− pi)
i2c2

i

≤ C

i2−∆
eventually.

Thus,
∑∞

i=1 Var(Yi/(ici)) < ∞, and the almost sure convergence of{Sn} follows. Finally, Kronecker’s lemma
implies that(

∑n
i=1 Yi)/(ncn) → 0 a.s. and

1
ncn

n∑
i=1

IAi =
1

ncn

n∑
i=1

Yi +
1

ncn

n∑
i=1

pi → 1 a.s.,

verifying the first part of (5).

To complete the proof, we have to consider the case where∆ = 1. The only changes in this case arec′n ∼
d(log n)n−1 and

Var
(

Yi

ici

)
≤ C

i(log i)2
eventually.

As this remains summable, the rest of the proof is unchanged. �

LEMMA 4.2 Let ∆ ≥ 0 and let G1, G2, . . . be independent geometric random variables with parameters
p1, p2, . . . , respectively. Ifpn ∼ dn−∆, then, a.s.,

n∑
i=1

Gi ∼
n1+∆

d(1 + ∆)
. (6)

PROOF. The proof is almost identical to that of Lemma 4.1. Set

cn =
n∑

i=1

1
pi

, Yi = Gi −
1
pi

, and Sn =
n∑

i=1

Yi

ci
.

Definep′n = dn−∆. By the integral approximation,

c′n =
n∑

i=1

1
p′i
∼ n1+∆

d(1 + ∆)
.
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In general, ifpn ∼ dn−∆, then for all0 < ε < 1 small enough,

(1− ε)p′n < pn < (1 + ε)p′n eventually

and
c′n

1 + ε
< cn <

c′n
1− ε

eventually.

We now show that{Sn} converges a.s. To do this, once again we verify the conditions of the special case of
Kolmogorov’s three-series theorem (again, see Durrett [6], Theorem 8.3).

Notice thatEYi/ci = 0. There is a constantC such that

Var
(

Yi

ci

)
=

(1− pi)
p2

i c
2
i

≤ C

i2
eventually.

Thus,
∑∞

i=1 Var(Yi/ci) < ∞, and the almost sure convergence of{Sn} follows. Finally, Kronecker’s lemma
implies that(

∑n
i=1 Yi)/cn → 0 a.s., and

1
cn

n∑
i=1

Gi =
1
cn

n∑
i=1

Yi +
1
cn

n∑
i=1

1
pi
→ 1 a.s.,

verifying (6). �

REMARK 4.1 Let ∆ > 0 and let G1, G2, . . . be independent geometric random variables with parameters
p1, p2, . . . , respectively. Ifpn = de−∆n, then again Kolmogorov’s three-series theorem implies that for allε > 0,

n∑
i=1

Gi ≤ e(1+ε)∆n eventually a.s.

To obtain a similar lower bound notice that for allε > 0,

P (Gn < e(1−ε)∆n) = 1− (1− de−∆n)e(1−ε)∆n

.

Now, for sufficiently largen,

log(1− de−∆n)e(1−ε)∆n

= e(1−ε)∆n log(1− de−∆n) ≥ −e(1−ε)∆n2de−∆n = −2de−ε∆n

Hence, for sufficiently largen,

P (Gn < e(1−ε)∆n) ≤ 1− e−2de−ε∆n

≤ 2de−ε∆n,

which is summable. The Borel-Cantelli lemma then implies that

n∑
i=1

Gi ≥ e(1−ε)∆n eventually a.s.

Of course, if∆ = 0, then we have
∑n

i=1 Gi ∼ n/d a.s. by the strong law of large numbers.

The following lemma is the main technical instrument used in our proofs. It addresses the situation of a graph
with two vertices.

LEMMA 4.3 Let {Xn} be a non-homogeneous Markov chain with state-space{1, 2} and transition probabilities
satisfying

P (Xn = 2|Xn−1 = 1) ∼ d1n
−∆1 and P (Xn = 1|Xn−1 = 2) ∼ d2n

−∆2 .

Assume thatd1, d2 > 0 and0 ≤ ∆2 < ∆1 ≤ 1.

If ∆1 < 1, thenFn(X = 2) O= n−(∆1−∆2) a.s.

If ∆1 = 1, thenFn(X = 2)
O

≈ n−(∆1−∆2) a.s.
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PROOF. Let τ21
k denote the time when the process{Xn} transitions from state2 to state1 for thekth time,

with the convention thatX0 = 2. Next, letτ12
k denote the time of thekth transition from state1 to state2. By

definition,1 ≤ τ21
1 < τ12

1 < τ21
2 < τ12

2 < · · · . For example, if{Xn, n ≥ 1} = {1, 1, 2, . . .}, thenτ21
1 = 1 and

τ12
1 = 3. For notational convenience, setτ12

0 = 1.

To simplify our notation, let

p12,n = P (Xn = 2|Xn−1 = 1) and p21,n = P (Xn = 1|Xn−1 = 2).

The assumptions on the asymptotic behavior ofp12,n andp21,n imply thatp12,n < p21,n eventually. Because our
argument relies only on asymptotic properties, we can assume for convenience and without loss of generality that
p12,n < p21,n for all n.

Our first task is to estimate the asymptotic behavior ofτ21
k . To this end, let{Un} be an i.i.d. sequence with

uniform distribution on[0, 1], independent of{Xn}. Next, define a sequence of Bernoulli random variables{Bn},
coupled with{Xn}, as follows:B1 = 1, and forn ≥ 2,

Bn = I(Xn−1 = 1, Xn = 2) + I(Xn−1 = 2, Xn = 1)I(Un ≤ p12,n/p21,n). (7)

Let Vk denote thekth time whenBn = 1. The sequence{Bn} satisfies the following properties:

(i) {Bn} is an independent sequence;

(ii) P (Bn = 1) ∼ d1n
−∆1 ; and

(iii) Vk ≤ τ21
k ≤ V2k a.s.

Property (i) follows easily from the Markov property of{Xn}. Property (ii) follows from the fact thatP (Bn =
1) = p12,n, which is also easy to verify.

We now show that property (iii) holds. To getτ21
k ≥ Vk, it suffices to show thatτ12

k−1 ≥ Vk (recall that
τ21
k > τ12

k−1 by definition). To see this, notice that ifXn makes a transition from1 to 2 (Xn−1 = 1 andXn = 2),
thenBn = 1. Hence, by timeτ12

k−1, the number of times thatBn = 1 had already occurred is at leastk (recall that
B1 = 1). This implies thatτ12

k−1 ≥ Vk, as desired.

To show thatτ21
k ≤ V2k, notice that ifBn = 1, thenXn had to make a transition: eitherXn−1 = 1 andXn = 2,

or Xn−1 = 2 andXn = 1. Therefore, by timeV2k, the process{Xn} had to undergo at least2k transitions, and
hence at leastk transitions from state2 to state1. This implies thatτ21

k ≤ V2k, as desired.

Having established bounds forτ21
k based onVk (lower bound) andV2k (upper bound), we can characterize the

asymptotic behavior ofτ21
k by characterizing the behavior ofVk.

We first consider the case where0 < ∆1 < 1. After inverting the result of Lemma 4.1, we get

Vk ∼
(

1−∆1

d1
k

) 1
1−∆1

a.s. (8)

Choose a non-decreasing sequence of random variables{kn} satisfyingτ21
kn

≤ n < τ21
kn+1. The lower bound

τ21
k ≥ Vk and Lemma 4.1 imply that for allε > 0,

kn ≤
d1(1 + ε)
1−∆1

n1−∆1 eventually a.s. (9)

The upper boundτ21
k ≤ V2k implies that for allε > 0,

kn ≥
d1(1− ε)
2(1−∆1)

n1−∆1 eventually a.s. (10)

We now can estimate the relative frequencyFn(X = 2). Notice that

Fn(X = 2) =
time spent in2

n
.

Thus, all we need to do is to bound the time spent in2, i.e.,
∑k

i=1(τ
21
i − τ12

i−1) (recallτ12
0 = 1), from above and

from below.

To bound
∑k

i=1(τ
21
i − τ12

i−1) from above, first fix a small0 < ε < 1. Fork = 1, 2, . . . , set

p̃k =
d2

1 + ε

(
(1− ε)d1

2(1−∆1)

) ∆2
1−∆1

k−
∆2

1−∆1 .



Hannig, Chong, Kulkarni: Generalized Simulated Annealing
Mathematics of Operations Research xx(x), pp. xxx–xxx,c©200x INFORMS 13

Note that forn = τ12
k−1 +1, . . . , τ21

k , we havep12,n < p̃k < p21,n for sufficiently largek (a.s.), by the upper bound
τ21
k ≤ V2k and (8). We now construct a sequence{G̃k}, coupled with{Xn}, such that:

(i) {G̃k} is an independent sequence;

(ii) G̃k has geometric distribution with parameterp̃k; and

(iii) τ21
k − τ12

k−1 ≤ G̃k eventually a.s.

To defineG̃k (for a given sufficiently largek), let {Uk
n} be an i.i.d. sequence with uniform distribution on[0, 1],

independent of{Xn} (and independent acrossk). Then define the Bernoulli sequence{Ck
n} as follows. For

n = τ12
k−1 + 1, . . . , τ21

k , set

Ck
n = I(Xn−1 = 2, Xn = 1)I(Un ≤ p̃k/p21,n) + I(Xn−1 = 1, Xn = 2)

+ I(Xn−1 = 1, Xn = 1)I
(

Un ≤
p̃k − p12,n

1− p12,n

)
.

For all othern, setCk
n = I(Un ≤ p̃k). Note that{Ck

n} is an independent sequence (by the strong Markov
property), andP (Ck

n = 1) = p̃k. Now defineG̃k = min{n ≥ τ12
k−1 + 1 : Ck

n = 1} − τ12
k−1. By the strong Markov

property,{G̃k} is an independent sequence (property (i)), andG̃k has geometric distribution with parameterp̃k

(property (ii)). To show that property (iii) holds, note that for anyn = τ12
k−1 + 1, . . . , τ21

k − 1, if Xn−1 = 2 and
Xn = 2, thenCk

n = 0 (by definition). This implies that̃Gk ≥ τ21
k − τ12

k−1, as desired.

Recall the sequence{kn} introduced above, satisfyingτ21
kn
≤ n < τ21

kn+1. Using Lemma 4.2 and equations (8),
(9), and (10), we get

Fn(X = 2) ≤
C̃ +

∑kn

i=1 G̃i

n

O= n−(∆1−∆2) a.s., (11)

whereC̃ is a random constant.

To bound
∑k

i=1(τ
21
i − τ12

i−1) from below, define a sequence{p̄k} (analogous to{p̃k} above) as follows:

p̄k =
d2

1− ε

(
(1 + ε)d1

1−∆1

) ∆2
1−∆1

k−
∆2

1−∆1 .

As before, the lower boundVk ≤ τ21
k and (8) imply that forn = τ12

k−1 + 1, . . . , τ21
k , we havep̄k > p21,n for

sufficiently largek (a.s.). Therefore, we can use a construction similar to the one before to define an indepen-
dent sequence{Ḡk}, coupled with{Xn}, such thatτ21

k − τ12
k−1 ≥ Ḡk eventually (a.s.), and̄Gk has geometric

distribution with parameter̄pk. Again using Lemma 4.2 and equations (8), (9), and (10), we get

Fn(X = 2) ≥
C̄ +

∑kn

i=1 Ḡi

n

O= n−(∆1−∆2) a.s., (12)

whereC̄ is another random constant.

Combining (11) and (12), we get the statement of the lemma for the case where0 < ∆1 < 1.

Consider now the case where∆1 = 1. Because we now have an exponential growth, we can no longer invert
the result of Lemma 4.1, nor does the upper boundτ21

k ≤ V2k yield a sharp enough estimate. However, in this case
we can use the lower boundVk ≤ τ21

k and the estimates provided in Remark 4.1 to get, for allε > 0,

e
k

(1+ε)d1 ≤ τ21
k ≤ e

k
(1−ε)d1 eventually a.s.

Therefore, we can replace (9) and (10) by

(1− ε)d1 log n ≤ kn ≤ (1 + ε)d1 log n eventually a.s.,

and define
p̃k = e

−∆2
k

(1−ε)d1 , p̄k = e
−∆2

k−1
(1+ε)d1

The rest of the proof can be done in the same fashion as before, replacing the use of Lemma 4.2 with Remark 4.1.
�

REMARK 4.2 If 0 ≤ ∆2 ≤ 1 < ∆1, then the Borel-Cantelli lemma implies that the processX = {Xn} will
eventually move to state 1 and stay there forever. In this case,Fn(X = 2) O= n−1.
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We are now ready to prove Theorem 2.1.

PROOF OFTHEOREM 2.1. Denotevmax = arg maxv∈V f(v). We first prove thatFn(X = vmax) → 0 with
a power-law decay. Then, we remove vertexvmax from the graph, and reconnect neighbors ofvmax, resulting in a
new process (a subsequence of the original process) on{vmax}{ = V \{vmax}. We then show that the new process
satisfies the conditions of Theorem 2.1, and that the properties of the relative frequencies are unchanged by this
procedure. The statement of the theorem will then follow by mathematical induction.

To show thatFn(X = vmax) → 0, we will construct a two-state Markov chainY = {Yn} with state-
space{1, 2}, coupled withX, such that ifXn = vmax thenYn = 2. This coupling property ofY ensures that
Fn(X = vmax) ≤ Fn(Y = 2), so that it suffices to analyze the convergence ofFn(Y = 2).

To construct the processY , first define

ur = arg min
u∈Nin(vmax)

gr(u, vmax), uc = arg max
u∈Nin(vmax)

gc(u, vmax).

and
vr = arg min

v∈Nout(vmax)

gr(vmax, v), vc = arg min
v∈Nout(vmax)

gc(vmax, v). (13)

By the assumption of the theorem, we have0 ≤ gr(vmax, vr) ≤ 1. Becausef(v) ≤ f(vmax) for all the neighbors
v of vmax, we conclude by weak reversibility thatgr(vmax, vr) < gr(ur, vmax).

For convenience, letpX
vmax,n = P (Xn 6= vmax|Xn−1 = vmax) andpX

v,n = P (Xn = vmax|Xn−1 = v). Define
the sequences{pY

12,n} and{pY
21,n} such that

pY
12,n ∼ gc(uc, vmax)n−gr(ur,vmax) and pY

21,n ∼ gc(vmax, vc)n−gr(vmax,vr).

Since the conditions above are only asymptotic, we can choose{pY
12,n} and{pY

21,n} so that the following is true
not only asymptotically but for alln:

pY
21,n ≤ pX

vmax,n,

pY
12,n ≥ pX

v,n for all v 6= vmax, and

pY
21,n ≤ 1−

∑
v 6=vmax

pX
v,n.

Next, let{Un} be an i.i.d. sequence with uniform distribution on[0, 1], independent ofX. Define the Bernoulli
sequences{Bn} and{Cn} as follows:

Bn = I(Xn−1 = vmax)I(Un ≤ pY
12,n)

+
∑

v 6=vmax

[
I(Xn−1 = v,Xn = vmax) + I(Xn−1 = v,Xn 6= vmax)I

(
Un ≤

pY
12,n − pX

v,n

1− pX
v,n

)]
and

Cn = I(Xn−1 = vmax, Xn 6= vmax)I(Un ≤ pY
21,n/pX

vmax,n)

+
∑

v 6=vmax

I(Xn−1 = v,Xn 6= vmax)I

(
Un ≤

pY
21,n

1− pX
v,n

)
.

A simple calculation using the Markov property of{Xn} shows that the sequence of vectors{(Bn, Cn)} is inde-
pendent. Moreover, it is easy to verify thatP (Bn = 1) = pY

12,n andP (Cn = 1) = pY
21,n.

We are now ready to define the Markov chain{Yn} (with state-space{1, 2}), using{Bn} and{Cn}. First
setY1 = 2 if and only if X1 = vmax. If Yn−1 = 1, then setYn = 2 if and only if Bn = 1. Similarly, if
Yn−1 = 2, then setYn = 1 if and only if Cn = 1. Hence, by construction,P (Yn = 2|Yn−1 = 1) = pY

12,n and
P (Yn = 1|Yn−1 = 2) = pY

21,n.

The process{Yn} constructed above has the property that ifXn = vmax thenYn = 2, as desired. We show this
by induction onn. Forn = 1, the property holds by definition ofY1. Assume the property holds forn−1. We now
show that ifXn = vmax thenYn = 2. So suppose thatXn = vmax. There are three cases to consider, depending
on the values ofXn−1 andYn−1; in each case, we show thatYn = 2. Case 1:Xn−1 6= vmax andYn−1 = 1. In
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this case, we haveBn = 1, and henceYn = 2. Case 2:Xn−1 = vmax andYn−1 = 2. Here, we haveCn = 0, and
henceYn = 2. Case 3:Xn−1 6= vmax andn− 1n = 2. Here, again we haveCn = 0, and henceYn = 2. (The
fourth case whereXn−1 = vmax andYn−1 = 1 is precluded based on the induction hypothesis.) So the desired
property now follows by induction.

Having constructedY = {Yn} such thatFn(X = vmax) ≤ Fn(Y = 2), we are now ready to show that
Fn(X = vmax) → 0. By construction, the transition probabilities of{Yn} satisfy

P (Yn = 2|Yn−1 = 1) ∼ gc(uc, vmax)n−gr(ur,vmax)

and
P (Yn = 1|Yn−1 = 2) ∼ gc(vmax, vc)n−gr(vmax,vr).

If gr(ur, vmax) ≤ 1, then Lemma 4.3 implies that

Fn(X = vmax) ≤ Fn(Y = 2)
O

≈ n−(gr(ur,vmax)−gr(vmax,vr)) a.s.

On the other hand, ifgr(ur, vmax) > 1, Remark 4.2 gives

Fn(X = vmax) ≤ Fn(Y = 2) O= n−1 a.s.

In either case,
Fn

(
X ∈ {vmax}{

)
→ 1 a.s. (14)

Let us now defineηn as thenth time the processX is in {vmax}{. Clearly,ηn ≥ n, and (14) implies that
ηn ∼ n. SetX ′

n = Xηn
. The new process{X ′

n} is a Markov chain on the graph withvmax removed and with
edges added between all the neighbors ofvmax. Note that becauseηn ∼ n, we haveFn(X ′ = v) ∼ Fn(X = v)
for all v 6= vmax.

We now turn our attention to the transition probabilities of this new Markov chain{X ′
n} (we use “primes”

for the notation here; e.g.,g′c(u, v) andh′(u, v)). If there is a vertex fromu to v and eitheru /∈ Nin(vmax) or
v /∈ Nout(vmax), then the transition probability fromu to v remains unchanged, i.e.,g′r(u, v) = gr(u, v) and
g′c(u, v) = gc(u, v).

Now consideru ∈ Nin(vmax) andv ∈ Nout(vmax), u 6= v, and assume first that there is no direct edge between
u andv. Then, a.s.,

P (X ′
n = v|X ′

n−1 = u)

∼ gc(u, vmax)n−gr(u,vmax) gc(vmax, v)n−gr(vmax,v)∑
w∈Nout(vmax) gc(vmax, w)n−gr(vmax,w)

∼ g′c(u, v)n−g′r(u,v),

(15)

whereg′r(u, v) = gr(u, vmax) + gr(vmax, v) − gr(vmax, vr) (vr was defined in (13)), and the a.s. set on which
(15) holds is the same as in (14). The value ofg′c(u, v) is determined by (15), though the exact formula could be
complicated. If there is already an existing link fromu to v, then we have to add its associated transition probability
with the one in (15), in which case

g′r(u, v) = min {gr(u, v), gr(u, vmax) + gr(vmax, v)− gr(vmax, vr)} . (16)

We now prove that for any two verticesu andv that are not the vertex we removed, we haveh(u, v) = h′(u, v).
Since the only change to the functiongr is in the neighborhood ofvmax, it is enough to considerh′(u, v) for
u ∈ Nin(vmax) andv ∈ Nout(vmax).

First notice that equation (16) implies that

g′r(u, vr) = gr(u, vmax).

Then use the weak reversibility of the original process and the definition ofvr to conclude that the minimal-height
path fromvr back tovmax must have heightf(vmax)+ gr(vmax, vr). Suppose that this path is{vr, . . . , ūr, vmax},
i.e., this path entersvmax from the vertex̄ur. By weak reversibility and the definition ofvr, we havef(vmax) +
gr(vmax, vr) = f(ūr) + gr(ūr, vmax), and (16) gives

f(ūr) + g′r(ūr, v) = f(vmax) + gr(vmax, v).
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Finally, we see that again weak reversibility and the definition ofvr implies that

f(u) + g(u, vmax) ≥ f(vmax) + gr(vmax, vr).

Thus, we conclude that
h({u, vmax, v}) = h′({u, vr, . . . , ūr, v}).

The fact thath(u, v) = h′(u, v) now follows.

The first part of Theorem 2.1 now follows by repeating the above argument until there is only one vertex left.

To prove the second part of Theorem 2.1, suppose that the process is not height-normalized. We can remove ver-
tices from the graph until we get a graph with a maximal vertexvmax for which1 < gr(vmax, vr) < gr(ur, vmax).
Then the Borel-Cantelli lemma implies that we get trapped atvmax with positive probability. The second part of
the theorem then follows withv being this particularvmax. �

We now turn to the proof of Theorem 2.2.

PROOF OF THEOREM 2.2. Fix a vertexv. Recall the proof of Theorem 2.1. There, we used an iterative
procedure to remove the maximal vertex at each iteration, consisting of two steps. First, we showed that the
relative frequency of the maximal vertex goes to zero; then, we showed that the graph with the maximal vertex
removed still satisfies our assumptions.

The reason for removing the maximal vertex and not another vertex is to facilitate the first step. However, once
we know that Theorem 2.1 holds, we can remove anyu 6= vmin using the same argument as in the second part of
the proof of Theorem 2.1. In particular, we can remove vertices in such a way that the last two remaining vertices
arevmin andv. The transition probabilities on the remaining graph will satisfy

P (X ′
n = v|X ′

n−1 = vmin) ∼ d1n
−∆1 and P (X ′

n = vmin|X ′
n−1 = v) ∼ d2n

−∆2 ,

where
∆1 = min {h(p)− f(vmin) : p is a path fromvmin to v}

and
∆2 = min {h(p)− f(v) : p is a path fromv to vmin} .

The statement of Theorem 2.2 now follows from Lemma 4.3 and Remark 4.2. �

5. Final Remarks We have shown that it is possible to use elementary arguments to analyze the convergence
of relative frequencies in a class of generalized simulated annealing processes. Our analysis characterizes not only
when the relative frequencies converge, but also at what rate. The class of processes that fall under our framework
include the classical simulated annealing algorithm, and two other stochastic search algorithms not previously
connected closely to simulated annealing: the stochastic ruler algorithm and the stochastic comparison algorithm.
In particular, our results provide necessary and sufficient conditions for convergence, and a characterization of the
convergence rates, for the relative frequencies in these algorithms.

In our analysis, we have assumed, for convenience, that the objective function values on the given graph are
distinct. However, as pointed out before, the non-distinct case can be handled in much the same way. Specifically,
a careful look at the proof of Theorem 2.1 shows that if the values off(v), v ∈ V, are not distinct, we get
the convergence result in Theorem 2.1? below. We need the following generalization of the notion of height
normalization.

DEFINITION 2.2?. Denote the set of global minimizers byVmin = arg minv∈V f(v). We say that the generalized
simulated annealing process isheight-normalizedif, for any vertexv /∈ Vmin, there is avmin ∈ Vmin such that
h(v, vmin)− f(v) ≤ 1.

Note that unlike Definition 2.2, this generalization to the notion of height normalization no longer guarantees
a connected graph. However, even in an unconnected case, height normalization implies that each connected
subgraph contains a global minimizer.

THEOREM 2.1? Consider a weakly reversible generalized simulated annealing processX = {X1, X2, . . .}. If the
process is height-normalized, thenFn(X ∈ Vmin) → 1 a.s. regardless of the starting point.
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On the other hand, suppose that the process is not height-normalized. Then, there is a vertexv /∈ Vmin such
that h(v, vmin) − f(v) > 1 for all vmin ∈ Vmin, and if X1 = v, thenP (Fn(X = v) → 1) > 0 (which implies
thatP (Fn(X ∈ Vmin) → 1) < 1).

The main idea here is the fact that multiple global minimizers will only cause us to stop the pruning of the graph
described in the proof of Theorem 2.1 sooner, and the theorem will then follow by coupling with a process that
lumps all the global minimizers together.

Another technical difficulty arises when at some iteration the set of global maximizersVmax =
arg maxv∈V f(v) has more then one element, as it might not be clear which point to prune out first. In this
case, we can consider a coupling with a process that perturbs the values off on Vmax in such a way that for
vmax ∈ Vmax, the values off(vmax) are distinct, and forv /∈ Vmax, f(vmax) > f(v). We also adjust the values
of gr in such a way that the heights of all links remain the same. One can do this perturbation in such a way that it
is harder for the new process to escapeVmax than it was for the original process. This coupling will establish that
Fn(X ∈ Vmax) → 0, and we can then prune the elements ofVmax in the usual fashion.

The generalization of Theorem 2.2 to the non-distinct case is more complicated. This is caused by the fact that
some of the global maximizers might be visited only finitely many times. To state the generalization we need the
following definition.

DEFINITION 5.1 A collection of verticesB is called a basin if: (1) there isvmin ∈ Vmin such that for anyv ∈ V
satisfyingh(vmin, v) ≤ 1, v ∈ B; and (2) for anyu, v ∈ B, h(u, v) ≤ 1.

Notice that every basin contains at least one global minimizer, becauseh(vmin, vmin) = 0. Moreover, no subset
or superset ofB satisfies conditions (1) and (2) above. Thus, the set of verticesV decomposes into one or more
basins around the global minimizers plus vertices that are not included in any basin. The Borel-Cantelli lemma
implies that we will eventually enter one of the basinsB and never leave it a.s. The probability that a particular
basin will “trap” the process depends on the starting point. If we remove all the vertices that are not part ofB,
then the analysis of Theorem 2.2 will apply with minor modifications. Specifically, ifB contains only one global
minimizer, the proof of Theorem 2.2 applies as is. IfB contains multiple global minimizers (denote them by
V ′min = Vmin ∩ B), we need to couple the processX with two different processes, described next.

For a fixedv ∈ B we will prune the graph using Theorem 2.1? until we are left only withv andV ′min. Then we
first couple our processX with a processX ′ living on a two-vertex graph with all ofV ′min collapsed into a single
vertex. This can be done so thatX ′ spends less time inv than the processX does, which leads to

Fn(X = v) ≥ Fn(X ′ = v).
Second we can consider a coupling with a processX ′′ that increases all but one of the values off onV ′min in such
a way that forvmin ∈ V ′min, the value off(vmin) is unique, andf(vmin) < f(v). We also adjust the values ofgr

in such a way that the heights of all links remain the same. One can do this perturbation in such a way that it is
easier for the new process to escapeVmin than it was for the original process. Thus processX ′′ spends more time
in v than the processX does, which leads to

Fn(X = v) ≤ Fn(X ′′ = v).
Notice thatX ′ andX ′′ have distinctf values so we can apply Theorem 2.2. This leads to the following general-
ization of Theorem 2.2.

THEOREM 2.2? Consider a weakly reversible, height-normalized generalized simulated annealing processX =
{X1, X2, . . .}. Then, a.s., there is a basinB in which the process is eventually trapped. This basinB satisfies the
following.

If v ∈ B andminvmin∈V′min
{h(vmin, v)− f(vmin)} < 1 then,Fn(X = v) O= n−(f(v)−f(vmin)).

If v ∈ B andminvmin∈V′min
{h(vmin, v)− f(vmin)} = 1, thenFn(X = v)

O

≈ n−(f(v)−f(vmin)).

Finally, if v 6∈ B, thenv is visited finitely often, in which case eitherFn(X = v) = 0 or Fn(X = v) O= n−1.

It is worth pointing out that if the conditions of Theorem 2.2? are satisfied and there are multiple basins, then we
get a generalized simulated annealing process that is convergent but in general not ergodic. For example, consider
the case of a connected graph with multiple basins. If the process is height-normalized, then for each basin there
is a positive probability of being trapped in that basin.



18 Hannig, Chong, Kulkarni: Generalized Simulated Annealing
Mathematics of Operations Research xx(x), pp. xxx–xxx,c©200x INFORMS

Acknowledgments. The work of Hannig was supported in part by an IBM Faculty Award and by the National
Science Foundation under grant DMS-0504737. The work of Chong was supported in part by the National Science
Foundation under grants 0098089-ECS, 0099137-ANI, and ANI-0207892. The work of Kulkarni was supported
in part by the Army Research Office under grant DAAD19-00-1-0466, Draper Laboratory under IR&D 6002 grant
DL-H-546263, and the National Science Foundation under grant CCR-0312413.

References

[1] O. Catoni,Rough large deviation estimates for simulated annealing: application to exponential schedules,
Ann. Probab.20 (1992), no. 3, 1109–1146. MR 93j:60092

[2] E. K. P. Chong, I-J. Wang, and S. R. Kulkarni,Noise conditions for prespecified convergence rates of stochas-
tic approximation algorithms, IEEE Trans. Inform. Theory45 (1999), no. 2, 810–814. MR 99m:62125

[3] D. P. Connors and P. R. Kumar,Simulated annealing type Markov chains and their order balance equations,
SIAM J. Control Optim.27 (1989), no. 6, 1440–1461. MR 91k:60076

[4] C. Cot and O. Catoni,Piecewise constant triangular cooling schedules for generalized simulated annealing
algorithms, Ann. Appl. Probab.8 (1998), no. 2, 375–396. MR 99f:65011

[5] P. Del Moral and L. Miclo,On the convergence and applications of generalized simulated annealing, SIAM
J. Control Optim.37 (1999), no. 4, 1222–1250 (electronic). MR 2000d:90125

[6] R. Durrett, Probability: theory and examples, second ed., Duxbury Press, Belmont, CA, 1996. MR
98m:60001

[7] M. I. Freidlin and A. D. Wentzell,Random perturbations of dynamical systems, Grundlehren der Mathema-
tischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 260, Springer-Verlag, New
York, 1984, Translated from the Russian by Joseph Szücs. MR 85a:60064
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Math.315(1992), no. 11, 1197–1202. MR 93j:60032

[16] C. Tsallis and D. A. Stariolo,Generalized simulated annealing, Phys. A (1996), 395.

[17] J. N. Tsitsiklis,Markov chains with rare transitions and simulated annealing, Math. Oper. Res.14 (1989),
no. 1, 70–90. MR 90f:60123

[18] I-J. Wang, E. K. P. Chong, and S. R. Kulkarni,Equivalent necessary and sufficient conditions on noise
sequences for stochastic approximation algorithms, Adv. in Appl. Probab.28 (1996), no. 3, 784–801. MR
97k:62176

[19] I-J. Wang, E. K. P. Chong, and S. R. Kulkarni,Weighted averaging and stochastic approximation, Math.
Control Signals Systems10 (1997), no. 1, 41–60. MR 99c:62233

[20] I-J. Wang and E. K. P. Chong,A deterministic analysis of stochastic approximation with randomized direc-
tions, IEEE Trans. Automat. Control43 (1998), no. 12, 1745–1749. MR 1 658 728

[21] D. Yan and H. Mukai,Stochastic discrete optimization, SIAM J. Control Optim.30 (1992), no. 3, 594–612.
MR 93j:90072


