Relative Frequencies of Generalized Simulated Annealing

Jan Hannig
Department of Statistics, Colorado State University, Fort Collins, CO 80523-1877.

email:/ Jan.Hannig@ColoState.edu

Edwin K. P. Chong
Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523-1373.

email:) EChong@Engr.ColoState.edu

Sanjeev R. Kulkarni
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544.

email: Kulkarni@EE.Princeton.edu.

We consider a class of non-homogeneous Markov chains arising in simulated annealing and related stochastic search algorithms.
Using only elementary first principles, we analyze the convergence and rate of convergence of the relative frequencies of visits
to states in the Markov chain. We describe in detail three examples, including the standard simulated annealing algorithm, to
show how our framework applies to specific stochastic search algorithms—these examples have not previously been recognized
to be sufficiently similar to share common analytical grounds. Our analysis, though elementary, provides the strongest sample-
path convergence results to date for simulated annealing type Markov chains. Our results serve to illustrate that by taking a
purely sample-path view, surprisingly strong statements can be made using only relatively elementary tools.
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1. Introduction For at least the last 20 years, there has been an interest in stochastic search algorithms for
global optimization based on non-homogeneous Markov chains. The prime exarsipheliated annealingfirst
suggested for optimization by Kirkpatrick et &l. [12] based on techniques of Metropolis et lal. [14]. An early
application to image processing was described by Geman and Géman [9]. The basic procedure in simulated
annealing is to explore the search space by setting up a graph over the space and jumping from point (vertex)
to point in this graph according to a non-homogeneous Markov chain. The non-homogeneity arises from the
gradually decreasing probability of jumping from one point to a “worse” point in the course of the search (but such
a jump also cannot be precluded, because of the need to “climb out” of “cups” around local minimizers). The speed
at which this decrease in the transition probabilities occurs depends on a sequence called the “cooling schedule”
(described in more detail in Sectiph 3).

In a seminal paper, Hajek [L1] provides a detailed treatment of the behavior of the Markov chain associated with
the simulated annealing algorithm. Specifically, he provides a necessary and sufficient condition on the cooling
schedule for convergence in probability of the algorithm to the set of global minimizers. TsitsiKlis [17] proves
essentially the same result, but using different techniques. Around the same time, Connors and Kumar [3] also
study simulated annealing type Markov chains, providing yet a different view of such processes.

In the last 15 years, the literature on the analysis of simulated annealing has grown significantly. In particular,
there have been several generalizations of simulated annealing. For example, Gelfand and|Mitter [8] and Tsallis
and Stariolo[[16] consider a continuous-space version of simulated annealing, and Morai and Miclo [5], Cot and
Catoni [4], and Trouve [15] consider an even further generalization of the Markov process in standard simulated
annealing. The analysis of these generalizations of simulated annealing involve relatively sophisticated tools.

In this paper, we study a non-homogeneous Markov chain that is also a generalization of simulated annealing.
Our generalization is different from those of the above papers—ours is much closer to the original simulating
annealing framework of Hajek [11]. For convenience, in this paper we refer to our generalization simply as
generalized simulated annealirfgven though this same term is used also for other generalizations). The main
reason for introducing our generalization is to facilitate the analysislafive frequenciegh non-homogeneous
Markov chains arising in simulated annealing and other stochastic search algorithms.

Our focus on relative frequencies in our non-homogeneous Markov chain sharply differentiates our study from
previous studies in the literature. At the same time, our approach offers several advantages. First, we use only
elementary first principles—our tools consist essentially of applications of Kolmogorov's three-series theorem and


mailto:Jan.Hannig@ColoState.edu
mailto:Jan.Hannig@ColoState.edu
mailto:EChong@Engr.ColoState.edu
mailto:EChong@Engr.ColoState.edu
mailto:Kulkarni@EE.Princeton.edu.
mailto:Kulkarni@EE.Princeton.edu.

2 Hannig, Chong, Kulkarni: Generalized Simulated Annealing
Mathematics of Operations Research xx(x), pp. Xxxx—X8200x INFORMS

coupling. In contrast, the paper of Hajék[11], which was also based on first principles, requires relatively complex
arguments. Second, our generalization, while simple, allows studying rather disparate search algorithms within a
single unified framework. We illustrate this claim by considering two other search algorithms (besides standard
simulated annealing)—these two other algorithms have not previously been recognized to be sufficiently akin to
simulated annealing to have a common analytical “ancestry.” Third, our approach provides what we believe to be
the strongessample-paticharacterizations of simulated annealing type Markov chains to date. We establish not
only the convergence to zero of the relative frequencies of all non-global-minimizers, but atsdethewhich

these relative frequencies vanish.

There is significant appeal in characterizing convergence and rates in purely sample-path terms. Our com-
mitment to this program of study is evident in our previous work on sample-path analyses of various stochastic
algorithms; see Kulkarni and Horn [13], Wang et al.][18], Wang et al. [19], Wang and Chang [20], and Chong et
al. [2]. The typical conclusion we find is that although these purely sample-path analyses involve only elementary
tools, the results are surprisingly strong—the results in this paper corroborate this conclusion. We contrast this with
the probabilistic analysis of Hajek [11]: although his analysis provides the strongest possible condition for conver-
gence based on first principles, rates of convergence do not fall out easily. In our analysis of relative frequencies,
on the other hand, rate estimates follow relatively easily and naturally. From first principles it is extremely difficult
to obtain the kind of “sharp” estimates needed in Hajek’s probabilistic analysis to characterize rates in addition
to convergence. Since Hajek’s paper, there have certainly been results on convergencepratesbditiesin
simulated annealing and its generalizations; however, more sophisticated machinery than Hajek’s first-principles
approach has to be brought to bear (e.g., see Catbni [1], who uses results from Freidlin and Wentzell [7]). This
paper and our previous work along similar lines suggest that the same is not the case in a purely sample-path
setting.

The rest of this paper is organized as follows. We begin below with some notation and terminology we will
need, and a brief discussion of relative frequencies. In Section 2 we define our generalized simulated annealing
process and state our main results. In Se¢tjon 3 we discuss three examples to show how our generalized simulated
annealing framework applies to specific stochastic search algorithms. For convenience and ease of presentation,
the proofs of our results are relegated to Sedtjon 4. We end with some final remarks in Section 5

Some notation and terminology We first introduce some notation used throughout this paper. For two posi-
tive sequences$a,, } and{b,, }, we write:

e a, ~by,ifa,/b, — 1;
e a, 2 b, if limsup ap /by < 00, andlim sup b, /a,, < co; and
° a, 2 by, if (loga, —logb,)/logn — 0.

«On

The difference betweem, = b,, anda,, = b, is that while =" implies that the two sequences are of the same
“order,” the weaker £” allows their order to differ by a slowly varying function, e.g., a powetafn.

Given a sequence = {x, } = {x1,x2,...} and a setd, we define the notation

1 ifxg; €A
I(w; € 4) = { 0 otherwise.

The notation/ (xz; € A) represents an “indicator” of the conditian € A. We define theelative frequency of
visits toA up to timen as

1 n
Fo(x e A) = ;ZI(%‘ € A).
i=1

If Ais the singleto{v}, we write F,,(x = v). Similarly, we use the notatiaf,, (x # v) = F,(x & {v}).

If z; € A for an infinite number of, then we say thatl is visited infinitely oftenOtherwise, we say that is
visited finitely often

When considering random sequences, we use capital leXers:{ X1, Xo,...}, F,(X = z*), etc.
Relative frequencies of random sequencesOur results are stated in terms of convergence (a.s.) of relative

frequencies. In general, a (discrete state-space) random seq¥ieacgX;, Xo, . ..} that convergem probability
to z* may or may not also have convergent relative frequencies of the foraX = z*). If the sequence is
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independenthen convergence in probability is stronger than its relative frequency counterpart, as illustrated in the
simple lemma below. The proof of this lemma is of interest because it employs a technique we will use repeatedly
in the proof of our main results (we elaborate on this below).

LeEmmA 1.1 Let X = {X;, Xo,...} be an independent, discrete state-space, random sequence that converges to
x* in probability. Then,F,,(X = z*) — 1 a.s.

PROOF Suppose thaX converges ta:* in probability; i.e.,P(X,, # z*) — 0. Fixe > 0. Then,P(X,, #
z*) < e eventually (for sufficiently large). Let {U,,} be an i.i.d. sequence with uniform distribution @n1],
independent ofX . Define the Bernoulli sequend® = {B,,} by

e — P(X,, # a*)

B, =I(X, - I(X, = ") nS THro o

(w2 0+ 106, =01 (0, < 572 ) )

(if P(X, = z*) = 0, then take the second term to bethis issue disappears whenis sufficiently large). It is

clear that{ B,, } is an independent sequence, dd3,, = 1) = ¢ for sufficiently largen. Moreover, ifX,, # z*

then B,, = 1 (a.s.), which implies tha#,, (X # z*) < F,(B = 1). By the strong law of large numbers,
Fn(B = 1) — e a.s. Thereforelimsup,,_,., Fn(X # z*) < € a.s. Because this argument holds forsait 0,
we conclude thaf,, (X # z*) — 0 a.s., as required. O

We provide the proof above not because we believe the result to be original, but to illustrate a method of proof
that we will use repeatedly in proving our main resultsupling This method involves considering a sequence
that is related to another sequence such that some property involving sample paths of both sequences holds a.s.
In the above proof, we explicitly constructed the sequeBckom X —we say that the sequend® is coupled
with X. The properties oB3 of interest to us here are th&(B,, = 1) = ¢ and if X,, # z* thenB,, = 1 (a.s.).
This coupling property o3 allows us to bound the relative frequengy (X # «*) by F,,(B = 1), a quantity
that is much easier to characterize. We use such coupling arguments repeatedly in proving our main results (see

Sectior #).

We should point out that in the independent case, convergence in probahsliticity stronger than its relative
frequency counterpart, because there are instances Wheg® = z*) — 1 a.s. but the sequence does not
converge tar* in probability. To see this, consider the sequefe= { X, X,...} on the state-spacg, 1},
whereX,, = 1 a.s. for alln except for those: of the formn = 2¢, k = 1,2,..., in which caseX,, = 0 a.s. Itis
clear thatP(X,, = 1) does not converge th but7,,(X =1) — 1 a.s.

In our generalized simulated annealing framework, the sequences are non-homogeneous Markov chains. In
these cases, it is not clearpriori whether convergence in probability is weaker or stronger than its relative
frequency counterpart. It will turn out that in fact they acivalent

2. Generalized Simulated Annealing In this section we present our generalized simulated annealing frame-
work and our main results. The proofs of these results will be provided in S¢¢tion 4, after we give three example
applications of our framework in Sectiph 3.

Consider a finite, directed, connected graph= (V, ), whereV is a set of vertices anél a set of directed
edges. Assume that each veriex V is assigned a valug(v). Our goal is to find the minimum of the function
f;1.e., we wish to findv,i, € V such thatf (vin) < f(v) forallv € V.

We assume that all values ¢fv), v € V, are distinct. We make this assumption to simplify the presentation. In
particular, under this assumption,, = arg min,y, f(v) is unique. However, all our results remain valid with
appropriate adjustments if we remove this assumption. We elaborate on this in our final remarks [($ection 5).

Now define a non-homogeneous Markov procgXs } on the grapty, as follows. Associate with each edge
wv € &, u # v, two values, (u,v) > 0andg.(u,v) > 0. The transition probabilities of the procesk,, } satisfy,
foru # v,
~ ge(u,v)n= 9"V if v € £

P(Xn = Uan,1 = u) .
=0 otherwise,

and, as usual,
P(Xp=ulXp_1=u)=1-Y P(X,=0[X,_1=u).
v#U
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Thus, the asymptotic behavior of the transition probabilities is determined by the valygs:.0f) andg.(u, v).

We will call {X,,} ageneralized simulated annealipgocess. As we will see in Sectiph 3, generalized simulated
annealing reduces not only to the familiar simulated annealing process, but also processes associated with other
stochastic search algorithms.

For convenience, define for each vertexc V two neighborhoods Ny (u) = {v # u : wv € £} and
NMin(u) = {v # u : vu € £}. With this notation, we see that because probabilities must be bounded abbye by

for all u,
Z ge(u,v) < 1.
vENGut (u): gr(u,v)=0

We now describe an assumption that links the funcfitw) with the transition probabilities dfX,, }. As usual,
we say thap = {uy,us,us3,...,up_1,ur} is apathfromu to v if u1 = w, ux, = v, andu;y; € Nout(w;),
i=1,...,k—1. Forapathy = {u, us, us, ..., ux_1,v} we define itsheightby

h(p) = max{f(u) + gT(U/? u2)7 f(U‘Q) + gr(’LLQ, u3)7 ERE) f(ukfl) + gr(ukfh U)}

(This definition is motivated by the notion of “height” in Hajek [11] for simulated annealing.) For any two vertices
u andv, we then define
h(u,v) = min{h(p) : pisapath fromutov}. @)

Next, we introduce two definitions involving the notion of height&ak reversibilityandheight normalization
These are needed in the statements of our main results. Our notion of weak reversibility reduces to that of Ha-
jek’s [11] similarly named property for the special case of simulated annealing. Height normalization plays a key
role in convergence.

DEFINITION 2.1 We say that the generalized simulated annealing procesgékly reversibldf, for any two
verticesu andv, h(u,v) = h(v,u).

DEFINITION 2.2 We say that the generalized simulated annealing procdssight-normalizedf, for any vertex
v 7& Umin, h(UaUmin> - f(U) S 1.

Note that height normalization implies that the graph is connected. We are ready to give our main convergence
result, which essentially states that height normalization is necessary and sufficient for global convergence of
the process (i.e., a.s. convergence to a global minimizer regardless of initial condition) in the sense of relative
frequencies.

THEOREM 2.1 Consider a weakly reversible generalized simulated annealing pro¥ess{ X1, X5, ...}. If the
process is height-normalized, théh (X = vmin) — 1 a.s. regardless of the starting point.

On the other hand, suppose that the process is not height-normalized. Then, there is avveértex,;,
such thath(v,vmin) — f(v) > 1, and if X; = v, then P(F,(X =v) — 1) > 0 (which implies that
P (Fp(X =vmim) — 1) < 1).

Our next result characterizes trage of convergence in terms of relative frequencies.

THEOREM 2.2 Consider a weakly reversible, height-normalized generalized simulated annealing pXcess
{X1, Xs,...}. Suppose is a vertex such that

h(vmin, v) = f(Vmin) < 1. (2)
Then,F,, (X = v) £ n~f()~f(v=in)) g s, regardless of the starting point.
Otherwise, if[(R) is not satisfied but
h(Vmin, v) = f(Vmin) = 1, (3)
thenZ, (X = v) ~ n~U(®)=/(min)) a s regardless of the starting point.

Finally, if for somev neither [2) nor[(B) is satisfied, thenis visited finitely often a.s. regardless of the starting
point, in which case eithef,, (X = v) = 0or F,(X =v) Zn ! as.
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REMARK 2.1 Suppose in the definition of the transition probabilities we replagéu,v)n =9 (%) by
gc(u,v)a;gT(u’U). If a,,/n — 0, then convergence to the global minimizer holds, but at a slower rate. On the
other hand, ifa,,/n — oo, then the same conclusion as the converse to Thm 2.1 holds—the process may not
converge to the global minimizer.

Recall that £” is stronger than £ Thus, for simplicity, we can summarize the essence of The 2.2 as

follows: If v is visited infinitely often a.s., theff, (X = v) ~ n~(F()=f(mi)) a.s. regardless of the starting
point. In Sectiorj B, we will use this simplified version of Theorenj 2.2 in applying our framework to specific
examples. The only thing missing from this simplified statement of the theorem is that in certain cases we have the

stronger result with£” instead of iR

The proofs of Theorenjs 3.1 ahd .2 are relegated to S¢gtion 4. In the next section, we describe three examples of
stochastic search processes for which we can apply our results to characterize convergence and rates of convergence
of relative frequencies.

3. Applications In this section we show that generalized simulated annealing provides a unifying framework
to study various stochastic optimization algorithms. In particular, we show that the classical simulated annealing
algorithm, the “stochastic ruler” algorithm of Yan and Mukail[21], and the “stochastic comparison” algorithm of
Gong et al.[[10] are all special cases of generalized simulated annealing. In doing so, our convergence results can
be brought to bear in the analysis of these algorithms. We show that our analysis in fact yields stronger results
than are available for these algorithms. For the case of simulated annealing, a necessary and sufficient condition
for convergence in probability is already available in HajeK [11], though as far as we know, rates on the relative
frequencies have not been previously obtained.

A stochastic optimization algorithm aims to minimize a function defined on a discrete sBtvia a stochastic
search process. The search process gives rise to a non-homogeneous Markov chain of the kind that we will
show fits within our framework. When showing that a particular stochastic optimization algorithm is a special
case of generalized simulated annealing, we first relate the fungfidasv) and g.(u, v) with the transition
probabilities of the stochastic algorithm. We then show how to define a fun¢tionthat makes the process
weakly reversible. It is tempting at first glance to treat the objective funétionas the functiory (v). However,
in general, we cannot ugév) directly in place off(v) because the functiofi(v) contains information about the
rate of convergence, whilgv) might not. Some modification ti§v) is needed to link it to the underlying graph.
The needed modification #dv) to obtainf(v) should become apparent in our discussion of the three examples in
this section.

3.1 Simulated Annealing Consider the problem of minimizingv) with v € V. In simulated annealing, we
begin with a grapt§y = (V, £) and define a non-homogeneous Markov cHaif, } with transition probability

P(Xp = v[Xn1 = u) = R(u,v) exp(=[l(v) = l(w)]4/T),

where[z]; = max{z, 0}, andR(u, v) is a transition probability such that

Rl v) >0 if ve Now(u),
’ =0 otherwise,

and Z%Nm(u) R(u,v) = 1. The sequencéT,,} is a positive sequence called tbeoling schedule We focus

our attention on cooling schedules of the foiftp = d/logn, popularized by Geman and Geman [9]. [Inl[11],
Hajek shows tha{ X,,} converges in probability to the global minimizer if and onlydif> d*, whered* is a

guantity Hajek calls the “depth of the second deepest cup,” a parameter we define precisely below. Our goal here
is to show that, based on our main results, the same condition as Hajek’s (invdivatzpve) is also necessary

and sulfficient for convergence in the relative-frequency sense. Moreover, we provide a characterization of the rate
of convergence of the relative frequencies.

To begin, consider a cooling schedule satisfyliyg~ d/ log n, with d > 0 fixed. Then, the simulated annealing
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algorithm above is readily seen to be an instance of generalized simulated annealing with

flo) =",

d
gr(u7v) — [Z(U) _ l(u)br

d )
gc(u,v) = R(u,v).
It remains to see when the height-normalization condition holds. To this end, denote the set of all paths from
to v by P(u,v). Then define
d" = i l(u) —1l(v)}.
e ey Tty ) = 1))
Here,u € p means that the vertexis part of the pathp.

To understand the connection betweEnand height normalization, first observe that by the definitiong,of
gr, andg, given above, the quantity(v, v, ) (defined by[(1) in Sectidn] 2) simplifies to

0] = G el W)

From this, it is easy to see thdt can be rewritten as

d =d ( max {h(v, Umin) — f(v)}) -

U#Umin
We conclude that the process is height-normalized if and onlysifd*.

Combining the above with Theores 2.1 2.2 gives the following convergence theorem for simulated an-
nealing. Note that weak reversibility in simulated annealing (in the Hajek sense) implies that the corresponding
generalized simulated annealing process is weakly reversible also.

THEOREM 3.1 For a weakly reversible simulated annealing process with cooling scheBulev d/logn,
Fn(X = vmin) — 1 a.s. regardless of the starting point if and onlylif> d*. Moreover, assuming > d*,

if v % vy IS Visited infinitely often, thef, (X = v) & n~(()~I(m))/d 3 s regardless of the starting point.

The first part of Theorein 3.1 exactly parallels that of Hajek’s (the necessary and sufficient condition for conver-
gence is identical to that of Hajek [11]). This shows that convergence in probability (Hajek’s resgjtjvslento
a.s. convergence of the relative frequency. The second part of Theoflem 3.1 characterizes the rate of convergence in
terms of relative frequencies. As noted before, we can sharpen the rate reBpitXo= v) < n~ (V)= {(vmin))/d
for thosev such thath(vmin,v) — f(vmin) < 1. As far as we know, these results on relative frequencies for
simulated annealing have not previously been available.

The convergence result in Hajek [11] goes beyond the case Whered/ logn. In particular, he also shows
that if 7;, logn — 0 then simulated annealing might converge to a “local” rather than global minimizer, and
if T,,logn — oo then the algorithm converges to the global minimizer. Our framework addresses the case of
T, logn — 0 as one can show that the algorithm might converge to a local minimizer, using a coupling argument
involving a generalized simulated annealing process that does not satisfy the conditions of Theprem 2.1. On the
other hand, we do not directly recover the cas&,pfog n — co. However, in this case a coupling argument with
a generalized simulated annealing process shows that the rate of convergence is slower then any power; i.e., for all

v, we haveF, (X = v) 21, suggesting that a cooling schedule for whiGhlog n — oo should not be used.

3.2 Stochastic Ruler Algorithm  Yan and Mukail[21l] consider the problem of minimizing an objective func-
tionl(v), v € V, thatis assumed to be of the foiw) = EH (v), whereH (v) is random with finite variance. They
assume we do not actually have accedsdy; instead, we can only observe independent samples (realizations) of
H (v). They convert the problem to one of maximizing

p(v,a, b) = P(H(U) < @(a7 b))a

where©(a, b) is a random variable uniformly distributed ém, ) (and independent dff (v)). They prove that for
a small enough and large enough, any that maximize®(u, a, b) also minimized(v). (We assume henceforth
thata andb are chosen such that this conclusion holds.)
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To find the maximizer of(u, a, b) they set up a non-homogeneous Markov chgjnsatisfying
P(X, =v|Xn_1 =u) = R(u,v)(p(v,a,b)),
whereM,, — oo is called the “testing sequence.” (It is useful to think of the testing sequence as the reciprocal
of a cooling schedule.) As in simulated annealing, the probabiliies v) satisfy R(u,v) > 0 if and only if

v € Nous(u). Yan and Mukail[21L] impose the additional restriction that the graph has “symmetric neighborhoods,”
i.e.,v € Nous(u) if and only if u € Myt (v). We adopt this assumption in the remainder of this section.

Yan and Mukail[2]1] consider the specific testing sequence
M, = [log(n 4 no +1)/d],

where | x| is the integer part of;, andny andd > 0 are fixed constants. They show how to implement the
search algorithm using only samplesiéf suppose that at theth iteration the process is in stateand a random
candidate next-stateis generated according #(u, v). Then, generatfog(n+ng+1)/d] independent samples
(realizations) ofH (v) and©(a, b), and transition ta if and only if H(v) < ©(a,b) for all the samples. It is
convenient to call the above algorithm tseechastic rulerlgorithm, because the samplestbfv) are compared
to a “stochastic ruler®(a, b).

The main convergence result in Yan and Mukail [21] is that with the above testing sequence, provided some
technical assumptions hold (which we elaborate beld\), } converges in probability to the global minimizer.
Below, we show that the stochastic ruler algorithm falls within the framework of generalized simulated annealing,
and hence our relative-frequency convergence results apply, including a characterization of the convergence rates
of the relative frequencies. Moreover, as we will see below, the technical assumptions in Yan and_Mukai [21] can
be weakened—we provide a necessary and sufficient condition for convergence.

In our analysis, we consider the slightly more general case where the testing sefiligjceatisfies
logn
d

M, ~

In this case, we see that for# u,
P(X, = v|X,—1 =u) = R(u,v)(p(v,a,b))M ~ R(u,v)nlcerab))/d
The transition probabilities of this non-homogeneous Markov chain suggest the following specialization of gener-
alized simulated annealing:
—logp(v,a,b
o) = Zlogzv0)
—logp(v,a,b
g’r‘(u) 7‘)) = %7
ge(u,v) = R(u,v).
Notice thatf(v) > 0, and maximizingp(v, a, b) is equivalent to minimizingf(v). Moreover, the symmetric-
neighborhood assumption is sufficient for the above particular choigggfto guarantee weak reversibility of
the resulting process.

As before, denote the set of all paths frano v by P(u, v). Then define
d* = max min  max {log p(v,a,b) — logp(u,a,b) —logp(u',a,b)}. (4)
V#VUmin PEP (V,Vmin) Ut €p
Here,uu’ € p means that the linku' is part of the pathp. This value ofd* is analogous to Hajek’s notion of the
“depth of the second deepest cup” for simulated annealing Hajék [11]. It will turn ouf'thataracterizes a nec-
essary and sufficient condition for convergence of the stochastic ruler algorithm (see below). Therefore, although
Yan and Mukail[21l] are careful to point out that their approach is “different from the technique of simulated anneal-
ing,” the analysis of simulated annealing actually bears on the analysis of the stochastic ruler algorithm, through
our generalized simulated annealing framework.

To see whyd* plays the same role here as in simulated annealing, note that by the above definitfoasdof
gr, We can once again writ# in the form

4 =d ( max {h(v, vmin) — f(v)}) .

V#Umin

and hence conclude that the process is height-normalized if and ehly if*.

Applying Theorem§ 2]1 arjd 2.2 to the stochastic ruler algorithm, we obtain the following convergence result.
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THEOREM 3.2 For the stochastic ruler algorithm with testing sequedg ~ (logn)/d applied to a symmetric-
neighborhood graph7,,(X = vmin) — 1 a.s. regardless of the starting point if and onlylif> d*. Moreover,
assumingl > d*, if v # vy is Visited infinitely often, theff,, (X = v) % p—(ogp(v.a.b)—log p(vmin.a:b))/d g g
regardless of the starting point.

We end with a brief discussion of some technical assumptions used in the analysis of Yan and Mukai [21]. First,
some notation. Lek(a, b) = min, p(s,a,b), and letr be the “radius” of the graph, i.e:,= ming max, d(s, s’),
whered(s, s’) is the number of edges in the shortest path frota s’. Yan and Mukai use a particular choice of
d in their convergence analysid:= (logo)/c, wherec < 1/r ando > 1/u(a,b). It is straightforward to show
that this choice ofl in fact satisfies the conditiod > d* of Theoren{ 3.2. Hence, our analysis shows that the
assumptions of Yan and Mukai can be weakened.

We note one more side benefit of our approach, besides improving the conditions under which the algorithm
provably converges and giving us the rate of convergence of the relative frequencies: our approach gives us for free
a direct generalization of this algorithm to non-symmetric neighborhood graphs that still imply a weakly reversible
generalized simulated annealing process.

3.3 Stochastic Comparison Algorithm Gong et al.[[10] consider a set up that is similar to that of Yan and
Mukai [21], except that their Markov chainX,, } satisfies, fow # wu,

P(X, =v| X, 1 =u) = R(u,v)(P(H(v) < H(u)))".

So, unlike in Yan and Mukai [21], the transition probability framto v here involves comparingf (u) with

H (v) (instead of with an independent “ruler”). For this reason, Gong et dl. [10] call their algorithstdtleastic
comparisonalgorithm. Moreover, the graph in Gong et al.[[10] satisfies, foalt V, Now(u) = {v € V :

v # u}. In other words, they assume a complete graph—any two vertices are connected with an edge (in both
directions). We adopt this assumption in our analysis.

Gong et al.[[10] analyze the convergence of their stochastic comparison algorithm using tools that are much
the same as those of Yan and MukKail[21]. Specifically, they first assuméfthat= [(v) + W, whereWW has
zero mean, finite variance, and a symmetric density that does not depand Tren, under certain technical
assumptions, they show th&k,,} converges in probability to the global minimizer. Below, we show that the
stochastic comparison algorithm also falls within the framework of generalized simulated annealing. As was the
case in our analysis of the stochastic ruler algorithm, the technical assumptions in Gong ét al. [10] can be weak-
ened considerably—we provide a necessary and sufficient condition for convergence of the stochastic comparison
algorithm. Our analysis also reveals significant differences between the stochastic comparison algorithm and the
stochastic ruler algorithm.

Once again, we consider the slightly more general case wigre- log n/d. To simplify the notation, lef’ be
the distribution function oft; — W5, wherelV; andWW, are independent random variables with the same density
asW defined above. TheR(H (v) < H(u)) = F(l(u) — I(v)). In this case, we see that for£ u,

P(X, =v|Xu_1 =u) = R(u,v)F(l(u) — 1(v))M ~ R(u,v)nllesFEw=lw))/d

The transition probabilities of this non-homogeneous Markov chain suggest the following correspondence with
generalized simulated annealing:

_ —log F(i(u) ~ I(v))

gr (u, ) y and g (u,v) = R(u,v).
The definition off to satisfy weak reversibility involves a little more work. First, order the vertices in ascending
order according to their values of the objective functipdenote the ordered vertices by, . . ., v(x). Note that
V(1) = Umin IS the global minimizer. Then s¢f(v(;)) = 0 and
flogy) = _ min  {f(v@) + 90 (v, v6) } = 9r (V) v))-
i€{l,...,j—1}

Note thatg, (v, va)) < g-(v(;),v) for all v (it is easier to go fromy(;) to v(y), the global minimizer, than to
any otherv). This implies that the path of lowest height fram to v(;) is the single-edge path. Therefore, by
definition, h(v(;y, v1)) = f(v)) + gr(vgy, vy) forall j = 1,...,n. On the other hand, depending &h the
path of lowest height from(;) to v¢;y may involve multiple edges. However, by induction grwe can show that
h(v(l), v(]—)) = f(?)(j)) + gr(U(j), U(l)), which implies thaﬁ(’l}(j), ’U(l)) = h(v(l), U(j)) for a”j =1,...,n.
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To show that the resulting process is weakly reversible, consider two vettiaadv. Consider a pathp =
{u,v(1),...,v} where{v, ..., v} is a “minimal-height” path fromy,) to v (i.e., a path whose height is equal
to h(v(1y,v)). We see that

h(u,v) < h(p) = max {h(u,vq)), h(vay,v)} .
On the other hand, consider a minimal-height path froto v: p" = {u,w,...,v}. The fact thay, (u,v)) <
gr(u, w) implies that
h(’ll,, U) = h’(p/) > h(U,U(l)).

Now consider a minimal-height path from, to u: ¢ = {v¢),...,u}. Combiningg with p’, we get a path
¢ ={vay,...,u,w,...,v}. Thus

h(vay,v) < h(d') = h(p) = h(u,v).

Combining the above, we get
h(u,v) = max {h(v(l), u), h(v(l), 11)}

and weak reversibility follows by symmetry.

Finally, define
= o8 Flluz) ~ (o)

As before,d* characterizes a necessary and sufficient condition for convergence of the stochastic comparison
algorithm. To elaborate, first note that for any nadéne path that goes directly fromto v(;) is a minimal-height

path fromwv to v(;). Next, among alb # v(y), the height of this minimal-height path tg,) is maximized for

v = v(g) (becausey) is the node with the lowest probability to transitionitg)). Hence, just as in the two
previous examples, our choice pfandg, allows us to write

d*=d (Uggjfn{h(vwmm) - f(v)}) -

from which we conclude once again that the process is height-normalized if and éntydf. Hence, by applying
Theorem$ Z2]1 ar{d 3.2, we obtain the following resuilt.

THEOREM 3.3 For the stochastic comparison algorithm with testing sequehe ~ (logn)/d applied to a
complete graphF,,(X = vmin) — 1 a.s. regardless of the starting point if and onlydif> d*. Moreover,
assumingl > d*, if v # vy IS Visited infinitely often, thef, (X = v) ~n-t as. regardless of the starting
point.

In their convergence analysis, Gong et al. follow Yan and Mukai in settirg (log o) /c, where0 < ¢ < 1
ando > 1/p. Here,u = min,, P(H(v) < H(u)). (Itis silently assumed in Gong et &l. [10] thak ;1 < 1.)
Clearly, in this case,

_logao

d

> —logpu > —log F(l(vz)) — l(v))) = d*,
which shows that the choice dfin Gong et al.[[10] satisfies the conditidn> d* of Theorenj 3.3.

It is interesting to note that even though the original graph of Gong et al. is complete, the resulting general-
ized simulated annealing process is only weakly reversible. Moreover, the minimal-height path between any two
vertices always goes through the global minimizer. Thus, we can generalize our result to graphs that are not com-
plete but where every node is a neighbor of the global minimizer. In this case, as in the complete-graph case, the
global minimizer ofl is still the global minimizer off. However, the functiorf might no longer be a monotone
transformation of, in contrast to the case of a complete graph. This has implications on rates. Specifically, if the
transformation froni to f is monotone, then a (non-global minimizing) poirthat has smallei{v) value also has
a slower rate of decay of its relative frequency. However, if the transformationiftonf is not monotone, this
natural monotone relationship betwelgn) and the rate of decay of the relative frequency afo longer holds.

This shows that generalization of this algorithm to graphs that are not complete might be non-trivial.

We also remark that we did not need any assumptions on the distribution fuGti@ndering the assump-
tion 3.1 of Gong et al[ [10] unnecessary.
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4. Proofs This section is devoted entirely to the proofs of our main results, Thegreins 4.1 aind 2.2. To facilitate
our presentation, we first state and prove several technical lemmas.

LEMMA 4.1 Let0 < A < 1andletA,, As, ... be independent events such ti(t4,,) = p,, ~ dn—2. Then,

a.s.,
n~A ifo<A<I;
,Z A~ - A L (5)
d(logn)n if A=1.

PROOFE Set
Y

cn:prl, Y; =14, —p;;, and S”:ZE'
i=1 "
We first consider the case whefe< A < 1. Definep!, = dn=2. By the integral approximation,
1 S / d —A
T ;p YToAT
In general, ifp,, ~ dn~? then for all0 < e < 1 small enough,

(1—e)pl, <pn < (1+¢e)p), eventually
and
(1—¢)d, <cp < (1+¢)d, eventually.
Thusc, ~ d(1 — A)~tn=4,
We now show tha{.S,,} converges a.s. To do this, we verify the conditions of a special case of Kolmogorov's
three-series theoreifsee Durrett [6], Chapter 1, Theorem 8.3, p. 63).

Notice thatE'Y;/c; = 0. There is a constart such that

Var (YZ) _pll=p)  C eventually.

ic; i2c2 T A

Thus,> 2, Var(Y/(icqv)) < oo, and the almost sure convergence{6f,} follows. Finally, Kronecker’'s lemma
implies that(}"}" ; Y;)/(n¢,) — 0 a.s. and

1< 1< 1<
NI =—Nv+— ; —las,
ncn ; Az ncn ; + ncn ;p -
verifying the first part of{(p).

To complete the proof, we have to consider the case where 1. The only changes in this case afg ~
d(logn)n~! and

Y;
Var | — | < L eventually.
ic; i(logi)?
As this remains summable, the rest of the proof is unchanged. |
LEMMA 4.2 Let A > 0 and letGy,Gs,... be independent geometric random variables with parameters
p1, D2, - .. , respectively. Ip,, ~ dn=2, then, a.s.,
nli+ta
G; ~ 6
Z 1 d1+A) ©

PrROOF The proof is almost identical to that of Leml@]4.1. Set

n
1
= — =G;——, and S, = —
Cn ;p p/ n Z; .
Definep!, = dn~?. By the integral approximation,
n 1+A

N L T
w=2 5 A1+ A)

im1 Pi
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In general, ifp,, ~ dn=2, then for all0 < ¢ < 1 small enough,
(1—¢)pl, <pn < (1+¢)p), eventually

and
c c
<, < n

eventually.
1+¢ 1—¢

We now show tha{.S,,} converges a.s. To do this, once again we verify the conditions of the special case of
Kolmogorov's three-series theorem (again, see Duirett [6], Theorem 8.3).

Notice thatE'Y;/c; = 0. There is a constardt such that

Var (K) _d-p) < Q eventually.

Ci

Thus, .2, Var(Y;/c¢;) < oo, and the almost sure convergence{sf,} follows. Finally, Kronecker's lemma
implies that(}";" , ¥;)/c, — 0 a.s., and

n

1 1 & 1 &1
7ZGi:a;§g+?Zf—>la.s,

Cn P i Di
verifying (6). O
REMARK 4.1 Let A > 0 and letG1,Gs,... be independent geometric random variables with parameters
p1,p2, ... , respectively. Ip,, = de~2", then again Kolmogorov’'s three-series theorem implies that for all0,

n
> G <e'A eventually as.

=1

To obtain a similar lower bound notice that for all> 0,

e(1—e)an

P(G, < e179A17) =1 _ (1 —de™2")
Now, for sufficiently large.,

e(1—e)an

log(l _ d€7A7L) — 6(175)An log(l _ defAn) > _6(175)An2defAn — _QdefsAn

Hence, for sufficiently large,
P(Gn < e(lfa)An) <1-— ef2d67€A" < 2deﬂzAn7

which is summable. The Borel-Cantelli lemma then implies that

n
> G > 1792 eventually as.

i=1

Of course, ifA = 0, then we havg """ G; ~ n/d a.s. by the strong law of large numbers.

The following lemma is the main technical instrument used in our proofs. It addresses the situation of a graph
with two vertices.

LEMMA 4.3 Let{X, } be a non-homogeneous Markov chain with state-sgac2} and transition probabilities
satisfying
P(X,=2/X,_1=1)~din™® and P(X, =1/X,_; =2)~ dyn 22,

Assume thatl;,ds > 0and0 < Ay < A; < 1.
If A; < 1,thenF, (X =2) 2 n (81722 g5,

If A; = 1, thenZ, (X = 2) R n~(81-22) g5,
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PrROOF Let 77! denote the time when the proceisk,, } transitions from state to statel for the kth time,
with the convention thak, = 2. Next, letr}? denote the time of théth transition from state to state2. By
definition,1 < 72! < 72 < 73! < 732 < ... For example, i X,,,n > 1} = {1,1,2,...}, thent?! = 1 and
712 = 3. For notational convenience, sgf® = 1.

To simplify our notation, let
P2 = P(X, =2|X,-1=1) and py, =P(X, =1|X,—1 =2).
The assumptions on the asymptotic behaviopef,, andps; , imply thatp,2,, < pe21 ., eventually. Because our

argument relies only on asymptotic properties, we can assume for convenience and without loss of generality that
Pi2.n < DP21.n fOrall n.

Our first task is to estimate the asymptotic behavior;gf. To this end, le{U,,} be an i.i.d. sequence with
uniform distribution o0, 1], independent of X, }. Next, define a sequence of Bernoulli random variappigs},
coupled with{ X, }, as follows: B; = 1, and forn > 2,

Bn - I(Xn—l - 1; Xn = 2) + I(Xn—l - 2aXn = 1)I(Un S p12,n/p21,n)- (7)
Let V. denote theith time whenB,, = 1. The sequencéB,, } satisfies the following properties:

() {B.} is anindependent sequence;
(i) P(B,=1)~dn ?1;and
(i) Vi <" < Vo as.

Property (i) follows easily from the Markov property ¢X,,}. Property (ii) follows from the fact thaP(B,, =
1) = p12,», Which is also easy to verify.

We now show that property (iii) holds. To gef' > Vi, it suffices to show that!?, > Vj (recall that

1> 712 by definition). To see this, notice thatlf,, makes a transition fromto 2 (X,,_; = 1 andX,, = 2),

thenB = 1. Hence, by time-}? |, the number of times thd®,, = 1 had already occurred is at leds(recall that
B; = 1). This implies that}2, > V4, as desired.

To show thal7-,§1 < Va, notice that ifB,, = 1, thenX,, had to make a transition: eith&f,_; = 1 andX,, = 2,
or X,,—1 = 2andX, = 1. Therefore, by timé’y, the procesg X,,} had to undergo at leagt: transitions, and
hence at least transitions from stat@ to statel. This implies thalr,fl < Vs, as desired.

Having established bounds fof! based o/, (lower bound) and’z;, (upper bound), we can characterize the
asymptotic behavior of?! by characterizing the behavior &f.

We first consider the case where< A; < 1. After inverting the result of Lemnfa 4.1, we get

_ a7
Vi ~ <1 dAl k:) a.s. (8)

1

Choose a non-decreasing sequence of random varigbjgssatisfyingr?! < n < 7‘]3;_,'_1. The lower bound
2! > V; and Lemm@ 4]1 imply that for all > 0,

dl(l + E) nlfAl

k, < A, eventually a.s. (9)
The upper bound?! < Vy;, implies that for alke > 0,
di(l—¢) 4_a
n > ! tually a.s. 1
k —2(1—A1)n eventually a.s (20)

We now can estimate the relative frequed@y(X = 2). Notice that
time spent ir2
=—
Thus, all we need to do is to bound the time spert,ine., >, (72! — 7}2,) (recall 7/ = 1), from above and
from below.

To boundY*_, (72! — 7}2,) from above, first fix a small < e < 1. Fork = 1,2, ..., set

Ag
~ do (1 — €)d1 1-A1 4y
- kT
Pr 1+5<2(1—A1)
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Note that fom = 7}2, +1,..., 72!, we havep1s ,, < pr. < po1,, for sufficiently largek (a.s.), by the upper bound
2! <V, and @). We now construct a sequer¢@, }, coupled with{ X, }, such that:

(i) {Gy} is an independent sequence;
(i) G has geometric distribution with paramefgy;, and
(i) 7' — 72, < Gy eventually a.s.

To defineG,, (for a given sufficiently large:), let {U*} be an i.i.d. sequence with uniform distribution 1],

independent of X,,} (and independent acrog3. Then define the Bernoulli sequen¢€”’} as follows. For
_ 12 21

n=rT,2,+1,...,7", set

CF=1(Xn1=2,X,=1IU, < pr/p21n) + 1(Xn1=1,X,, =2)

F (X1 =1, X, = 1)I <Un < p’“_pl“) .
1 — P12,n

For all othern, setC = I(U, < pi). Note that{C%} is an independent sequence (by the strong Markov
property), and?(C* = 1) = j;. Now defineG;y, = min{n > 7}2, +1: C* = 1} — 72 . By the strong Markov
property,{G}} is an independent sequence (property (i)), @hdhas geometric distribution with paramefar
(property (ii)). To show that property (iii) holds, note that for any= 7%, +1,..., 72! — 1, if X,,_; = 2 and

X, = 2, thenC* = 0 (by definition). This implies thay), > 7' — 7}2,, as desired.

Recall the sequend, } introduced above, satisfyingt! < n < 72!, ,. Using Lemma 42 and equatiofs (8),
(9, and [[ID), we get

C er
Fu(X =9) < 2= & Ziz1Gi o - (81-a0) as, (11)
n
whereC is a random constant.
To boundy""_, (72! — 72,) from below, define a sequenég;.} (analogous td } above) as follows:
dy ((1+e)dy\T
_ 2 1+e)dy \ 181 _ 2
— k =AY |
Pe=1"%¢ ( 1— Ay )

As before, the lower boundf;, < 72! and [8) imply that for = 72, +1,..., 72", we havep, > pa , for
sufficiently largek (a.s.). Therefore, we can use a construction similar to the one before to define an indepen-
dent sequencéGy}, coupled with{X,,}, such that?! — 72, > G} eventually (a.s.), and’; has geometric
distribution with parametes;,. Again using Lemmp 4]2 and equatiopp (B), (9), &ndl (10), we get

_ b A
Fux=2)> I Gio aa g (12)
n
whereC is another random constant.
Combining [11) and (12), we get the statement of the lemma for the case Wkere, < 1.

Consider now the case whefe = 1. Because we now have an exponential growth, we can no longer invert
the result of Lemml, nor does the upper bogfld< V%, yield a sharp enough estimate. However, in this case
we can use the lower bourid. < 77! and the estimates provided in Rem 4.1 to get, for all0,

k 21 k
e(Fadr < 7t < e0-911  eventually a.s.
Therefore, we can replade| (9) and](10) by
(1 —-¢)dilogn <k, <(1+4+¢)dilogn eventuallya.s.

and define . oy
P = e f2Taa | p = ¢ S2Troa

The rest of the proof can be done in the same fashion as before, replacing the use of[Lemma 4.2 witlfi Remark 4.1.
O

REMARK 4.2 If 0 < Ay < 1 < Ay, then the Borel-Cantelli lemma implies that the procéss= {X,} will
eventually move to state 1 and stay there forever. In this GBseX = 2) Z n .
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We are now ready to prove Theorgm|2.1.

PROOF OFTHEOREM[2.1. Denotey,.x = arg max, ¢, f(v). We first prove thafF,, (X = vmax) — 0 with
a power-law decay. Then, we remove vertgy, from the graph, and reconnect neighborsgf,, resulting in a
new process (a subsequence of the original proces&)rgg}}c = V\ {vmax }- We then show that the new process
satisfies the conditions of Theor¢m]2.1, and that the properties of the relative frequencies are unchanged by this
procedure. The statement of the theorem will then follow by mathematical induction.

To show thatF,,(X = vmax) — 0, we will construct a two-state Markov chali = {Y,,} with state-
space{1, 2}, coupled withX, such that ifX,, = vna.x thenY,, = 2. This coupling property o} ensures that
Fn(X = vmax) < Fn(Y = 2), so that it suffices to analyze the convergenc&ofY = 2).

To construct the proce®s, first define

up = argmin g, (uv vmax)v Ue = argmax gc(uv 'Umax)o
UENin (Vmax) UENin (Vmax)
and
v = argmin g (Vmax,v), Ve= argmin g.(Vmax,V)- (13)
VENout (Vmax) VENout (Vmax)

By the assumption of the theorem, we h&v€& ¢, (vmax, v.) < 1. Becausef (v) < f(uvmax) for all the neighbors
v Of vyax, We conclude by weak reversibility that(vmax, vr) < gr(Ur, Vmax)-

For convenience, laiX = P(Xpn # Umax| Xn—1 = Umax) @andp;’,, = P(X;, = vmax|Xn—1 = v). Define

VUmax T

the sequence§y, ,,} and{p3}, ,} such that
Y —Yr 7yYmax Y —Yr maxYr
Pian ™~ Je(Ue, Vmax)n ™Y (ur-vmax)  and P21.n ~ Je(Vmax, ve)n ™7 (omacovr)

Since the conditions above are only asymptotic, we can chfi@se, } and{p}, ,,} so that the following is true
not only asymptotically but for afb:

Y X
P21, < Py,
Y X
p12,n Z pq;,n for all v # Umax and
Y X
p21,n < 1- Z p?},n'
V£ Vmax

Next, let{U,} be an i.i.d. sequence with uniform distribution 1], independent oX. Define the Bernoulli
sequence$B, } and{C,} as follows:

B, = I(Xn—l = Umax)I(Un < pr,n)

Ployn = P
+ U;; I(Xn—l = UaXn = Umax) + I(Xn—l = U7Xn 7& Umax)I Un < #ﬁf:jn

and

Cn = I(Xn—l = Umaxs Xn 7& Urnax)I(Un < pgl,n/piim,n)

Y
+ > I(Xpo1 =0, Xy # Vmax)] (U < m) .

n X
1 —pX
VA Umax pv,n

A simple calculation using the Markov property £X,, } shows that the sequence of vect§(®,,, Cy,)} is inde-
pendent. Moreover, it is easy to verify th&tB,, = 1) = p},,, andP(C,, = 1) = p}, ,,.

We are now ready to define the Markov chdii,} (with state-spacd1,2}), using{B,} and{C,}. First
setY; = 2 ifand only if X; = vpax. If Y,_1 = 1, then setY,, = 2 if and only if B,, = 1. Similarly, if
Y,-1 = 2, then sett,, = 1 ifand only if C;, = 1. Hence, by constructio?(Y,, = 2|Y,—; = 1) = plym and
PY,=1Y,.1=2) = pQYLn.

The procesgY,, } constructed above has the property thatjf = v, thenY,, = 2, as desired. We show this
by induction oma. Forn = 1, the property holds by definition af,. Assume the property holds fer— 1. We now
show that if X,, = v,ax thenY,, = 2. So suppose thaX,, = v« There are three cases to consider, depending
on the values ofX,,_; andY,,_1; in each case, we show thg} = 2. Case 1:X,,_1 # vmax andY,,_; = 1. In
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this case, we havB,, = 1, and hencé&’,, = 2. Case 2:X,,_1 = vmax andY,,_; = 2. Here, we have’,, = 0, and
henceY,, = 2. Case 3:X,,_1 # vmax andn — 1,, = 2. Here, again we hav€,, = 0, and henc&’,, = 2. (The
fourth case wher&X,,_; = v andY,,_; = 1 is precluded based on the induction hypothesis.) So the desired
property now follows by induction.

Having constructed” = {Y,,} such that7,, (X = vnax) < F,(Y = 2), we are now ready to show that
Fn(X = vmax) — 0. By construction, the transition probabilities g, } satisfy

P(YI’L = 2|1/n—1 = 1) ~ gc(uwUmax)nigT(uT"vmax)
and

P(Yn = 1|Yn71 = 2) ~ gc(vmax’Uc)n_gr(vmaxﬂ/w').
If gT(uTv 'Umax) <1, then Lemm3 Implles that

fn(X = Umax) < ]-"n(Y — 2) % n*(gr(ur,vmax)fgr(vmax,vr)) as.
On the other hand, i, (u,, vmax) > 1, Remark 4.P gives
]:n(X = Umax) < ]:TL(Y = 2) g nil a.s.

In either case,
F (X € {umax}0> ~1 as. (14)

Let us now define),, as thenth time the procesX is in {vmax}c. Clearly,n,, > n, and ) implies that
N, ~ n. SetX! = X, . The new proces§X) } is a Markov chain on the graph with,.. removed and with
edges added between all the neighbors,gf.. Note that becausg, ~ n, we haveF, (X' = v) ~ F,(X = v)

for all v # vppax.

We now turn our attention to the transition probabilities of this new Markov chaif} (we use “primes”
for the notation here; e.gg,.(u,v) andh/(u,v)). If there is a vertex from: to v and eitheru ¢ N, (vmax) OF
v & Nout(vmax), then the transition probability from to v remains unchanged, i.ef,.(u,v) = g,(u,v) and
gé(uv ’U) = gc(ua ’U).

Now considen: € N, (Vmax) andv € Noui (vmax ), v # v, and assume first that there is no direct edge between
v andv. Then, a.s.,

P(X] =v|X]_, =u)

n =
gc(Umax, U)nfgr(vmx,v)
w)n—gr(vmx,w)

~ go(u, vmax)nfgy-(u,vmax)

15
ZweNout (Vmax) 9e (UIII'(IX7 ( )

~ gé(u7 U)n_g:~(uav),
whereg!.(u,v) = gr(t, Vmax) + gr(Vmax; V) — gr(Vmax, vr) (v Was defined in3)), and the a.s. set on which
(15) holds is the same as in {14). The valugyfu, v) is determined by[ (15), though the exact formula could be

complicated. If there is already an existing link frento v, then we have to add its associated transition probability
with the one in[(Ip), in which case

g; (’LL, U) = min {gr(u» U)7 gr (U, Umax) + gr (Umax7 U) —9r ('Umax> 'Ur)} . (16)

We now prove that for any two verticesandv that are not the vertex we removed, we haye, v) = b/ (u, v).
Since the only change to the functign is in the neighborhood 0fy,.x, it is enough to considel’(u,v) for
(NS Mn(vmax) andv S Nout (vmax)-

First notice that equatiof (IL6) implies that
g;(ua Ur) = gr(“v Umax)~

Then use the weak reversibility of the original process and the definitioptofconclude that the minimal-height
path fromw,. back tovy,a must have heighf (vmax) + gr (Umax, vr). SUuppose that this path{s., . .., @,, Vmax }
i.e., this path enters,,., from the vertexi,.. By weak reversibility and the definition af., we havef (vmax) +

gr(vma)u /U’I“) = f(ar) + gr(ﬂ'm vmax)v and ) giveS
f(a,) + g;(ﬁr, v) = f(Vmax) + gr(Vmax, V)
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Finally, we see that again weak reversibility and the definition.dmplies that

f(u) + g(t, Vimax) = f(Vmax) + gr (Vmasx, vr).
Thus, we conclude that
h({u, Vmax, v}) = B ({u, v, ..., Up, v}).
The fact thati(u, v) = 1/ (u, v) now follows.
The first part of Theoreiin 2.1 now follows by repeating the above argument until there is only one vertex left.

To prove the second part of Theorem|2.1, suppose that the process is not height-normalized. We can remove ver-
tices from the graph until we get a graph with a maximal vertgx, for which1 < g, (vmax, Ur) < gr(Ur, Umax)-
Then the Borel-Cantelli lemma implies that we get trapped,at. with positive probability. The second part of
the theorem then follows with being this particulap,, .. O

We now turn to the proof of Theoregm 2.2.

PrROOF OF THEOREM[2.2. Fix a vertexo. Recall the proof of Theorefn 2.1. There, we used an iterative
procedure to remove the maximal vertex at each iteration, consisting of two steps. First, we showed that the
relative frequency of the maximal vertex goes to zero; then, we showed that the graph with the maximal vertex
removed still satisfies our assumptions.

The reason for removing the maximal vertex and not another vertex is to facilitate the first step. However, once
we know that Theorein 2.1 holds, we can remove @By vy,in USINg the same argument as in the second part of
the proof of Theorerh 2]1. In particular, we can remove vertices in such a way that the last two remaining vertices
arewvyi, andv. The transition probabilities on the remaining graph will satisfy

P(X! =v|X! | =vmin) ~din~? and P(X! = vmin| X, | =v) ~ dan~22,

where
Ay = min {h(p) — f(vmin) : pis a path fromvy,, tov}
and
Ay = min {h(p) — f(v) : pis a path fromv t0 vy } -
The statement of Theordm 2.2 now follows from Lenima 4.3 and Relmark 4.2. O

5. Final Remarks We have shown that it is possible to use elementary arguments to analyze the convergence
of relative frequencies in a class of generalized simulated annealing processes. Our analysis characterizes not only
when the relative frequencies converge, but also at what rate. The class of processes that fall under our framework
include the classical simulated annealing algorithm, and two other stochastic search algorithms not previously
connected closely to simulated annealing: the stochastic ruler algorithm and the stochastic comparison algorithm.
In particular, our results provide necessary and sufficient conditions for convergence, and a characterization of the
convergence rates, for the relative frequencies in these algorithms.

In our analysis, we have assumed, for convenience, that the objective function values on the given graph are
distinct. However, as pointed out before, the non-distinct case can be handled in much the same way. Specifically,
a careful look at the proof of Theoren P.1 shows that if the valueg(of, v € V, are not distinct, we get
the convergence result in Theor¢mj2lelow. We need the following generalization of the notion of height
normalization.

DEFINITION[2.Z". Denote the set of global minimizers by, = arg min, ., f(v). We say that the generalized
simulated annealing processhsight-normalizedf, for any vertexv ¢ Viin, there is amin € Vimin such that
h(v, vmin) — f(v) < 1.

Note that unlike Definitiofi 2]2, this generalization to the notion of height normalization no longer guarantees
a connected graph. However, even in an unconnected case, height normalization implies that each connected
subgraph contains a global minimizer.

THEOREM Consider a weakly reversible generalized simulated annealing pra¥ess{ X, Xo, ...}. If the
process is height-normalized, théf (X € Viin) — 1 a.s. regardless of the starting point.
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On the other hand, suppose that the process is not height-normalized. Then, there is & vertgx, such
that A (v, vmin) — f(v) > 1 for all vpin € Vi, and if X3 = v, thenP (F,,(X =v) — 1) > 0 (which implies
that P (F,(X € Vimin) — 1) < 1).

The main idea here is the fact that multiple global minimizers will only cause us to stop the pruning of the graph
described in the proof of Theorgm P.1 sooner, and the theorem will then follow by coupling with a process that
lumps all the global minimizers together.

Another technical difficulty arises when at some iteration the set of global maximidgrs =
arg max,cy, f(v) has more then one element, as it might not be clear which point to prune out first. In this
case, we can consider a coupling with a process that perturbs the valfiesnof,,., in such a way that for
Umax € Vimax, the values off (vy,ax) are distinct, and fov ¢ Viax, f(vmax) > f(v). We also adjust the values
of g,- in such a way that the heights of all links remain the same. One can do this perturbation in such a way that it
is harder for the new process to escapg. than it was for the original process. This coupling will establish that
Fn(X € Vimax) — 0, and we can then prune the element¥’gf in the usual fashion.

The generalization of Theorgm P.2 to the non-distinct case is more complicated. This is caused by the fact that
some of the global maximizers might be visited only finitely many times. To state the generalization we need the
following definition.

DEFINITION 5.1 A collection of vertice$3 is called a basin if: (1) there is,,;, € Vinin Such that for any € V
satisfyingh(vmin, v) < 1,v € B; and (2) for anyu, v € B, h(u,v) < 1.

Notice that every basin contains at least one global minimizer, beédusg,, vmin) = 0. Moreover, no subset
or superset 0B satisfies conditions (1) and (2) above. Thus, the set of verticdscomposes into one or more
basins around the global minimizers plus vertices that are not included in any basin. The Borel-Cantelli lemma
implies that we will eventually enter one of the bashsind never leave it a.s. The probability that a particular
basin will “trap” the process depends on the starting point. If we remove all the vertices that are notfpart of
then the analysis of Theorgm P.2 will apply with minor modifications. Specifically,gbntains only one global
minimizer, the proof of Theorefn 3.2 applies as is.Blfcontains multiple global minimizers (denote them by

' . = Vmin N B), we need to couple the proceXswith two different processes, described next.

For a fixedv € 1B we will prune the graph using Theor¢m [2.ntil we are left only withv andV,,;;,. Then we

first couple our procesX with a processX’ living on a two-vertex graph with all of”_.  collapsed into a single

min

vertex. This can be done so that spends less time imthan the procesX does, which leads to
Fu(X =v) > Fo( X =),
Second we can consider a coupling with a proc¥$§sthat increases all but one of the valuesfain )V’ ,  in such
a way that forvy,i, € V.., the value off (vmin) is unique, andf (vmin) < f(v). We also adjust the values gf
in such a way that the heights of all links remain the same. One can do this perturbation in such a way that it is
easier for the new process to escajg, than it was for the original process. Thus procag$spends more time
in v than the procesX does, which leads to

Fu(X =v) < Fo(X" = ).
Notice thatX’ and X" have distinctf values so we can apply Theorém|2.2. This leads to the following general-
ization of Theorerm 212.

THEOREM[Z.Z Consider a weakly reversible, height-normalized generalized simulated annealing pXcess
{X1,Xo,...}. Then, a.s., there is a basihin which the process is eventually trapped. This badssatisfies the
following.

If v € Bandmin,, . ¢y {h(Vmin, v) = f(Vmin)} < 1 then,F,, (X = v) 2 = (f@)=f(vmin))

min

If v e Bandmin,,, ey {A (Ui, ) = f(Vmin)} = 1, thenF, (X = v) & n~ @)~ min)),

o 1

Finally, if v € B, thenw is visited finitely often, in which case eithgf, (X =v) =0or F,(X =v) =n

It is worth pointing out that if the conditions of Theorém|2&te satisfied and there are multiple basins, then we
get a generalized simulated annealing process that is convergent but in general not ergodic. For example, consider
the case of a connected graph with multiple basins. If the process is height-normalized, then for each basin there
is a positive probability of being trapped in that basin.
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