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Abstract—This paper provides self-contained proof of a theorem
relating probabilistic coherence of forecasts to their non-domina-
tion by rival forecasts with respect to any proper scoring rule. The
theorem recapitulates insights achieved by other investigators, and
clarifies the connection of coherence and proper scoring rules to
Bregman divergence.

Index Terms—Coherence, probability, scoring rule.

I. INTRODUCTION

S CORING rules measure the quality of a probability esti-
mate for a given event, with lower scores signifying prob-

abilities that are closer to the event’s status ( if it occurs,
otherwise). The sum of the scores for estimates of a vector
of events is called the “penalty” for . Consider two potential
defects in .

• There may be rival estimates for whose penalty is guar-
anteed to be lower than the one for , regardless of which
events come to pass.

• The events in may be related by inclusion or partition,
and might violate constraints imposed by the probability
calculus (for example, that the estimate for an event not
exceed the estimate for any event that includes it).

Building on the work of earlier investigators (see below), we
show that for a broad class of scoring rules known as “proper”
the two defects are equivalent. An exact statement appears as
Theorem 1. To reach it, we first explain key concepts intuitively
(the next section) then formally (Section III). Proof of the the-
orem proceeds via three propositions of independent interest
(Section IV). We conclude with generalizations of our results
and an open question.
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II. INTUITIVE ACCOUNT OF CONCEPTS

Imagine that you attribute probabilities and to events
and , respectively, where . It subsequently turns out

that comes to pass but not . How shall we assess the per-
spicacity of your two estimates, which may jointly be called a
probabilistic forecast? According to one method (due to [1])
truth and falsity are coded by and , and your estimate of the
chance of is assigned a score of since did not
come true (so your estimate should ideally have been zero). Your
estimate for is likewise assigned since it should
have been one. The sum of these numbers serves as overall
penalty.

Let us calculate your expected penalty for (prior to discov-
ering the facts). With probability you expected a score of

, and with the remaining probability you expected a
score of , hence your overall expectation was

. Now suppose that you attempted
to improve (lower) this expectation by insincerely announcing

as the chance of , even though your real estimate is .
Then your expected penalty would be

, worse than before. Differential calculus re-
veals the general fact.

Fact: Suppose your probability for an event is , that
your announced probability is , and that your penalty is as-
sessed according to the rule: if comes out true;

otherwise. Then your expected penalty is uniquely min-
imized by choosing .

Our scoring rule thus encourages sincerity since your interest
lies in announcing probabilities that conform to your beliefs.
Rules like this are called strictly proper.1 (We add a continuity
condition in our formal treatment, below.) For an example of
an improper rule, substitute absolute deviation for squared de-
viation in the original scheme. According to the new rule, your
expected penalty for is
whereas it drops to if you
fib as before.

Consider next the rival forecast of for and for .
Because , this forecast is inconsistent with the proba-
bility calculus (or incoherent). Table I shows that the original
forecast dominates the rival inasmuch as its penalty is lower
however the facts play out. This association of incoherence and
domination is not an accident. No matter what proper scoring
rule is in force, any incoherent forecast can be replaced by a
coherent one whose penalty is lower in every possible circum-
stance; there is no such replacement for a coherent forecast. This

1For brevity, the term “proper” will be employed instead of the usual “strictly
proper.”
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TABLE I
PENALTIES FOR TWO FORECASTS IN ALTERNATIVE POSSIBLE REALITIES

fact is formulated as Theorem 1 in the next section. It can be seen
as partial vindication of probability as an expression of chance.2

These ideas have been discussed before, first in [3] which
began the investigation of dominated forecasts and proba-
bilistic consistency (called coherence). This work relied on the
quadratic scoring rule, introduced above.3 Reference [5] gen-
eralized de Finetti’s theorem to a broad class of scoring rules.
Specifically, Lindley proved that for every sufficiently regular
generalization of the quadratic score, there is a transformation

such that a forecast is not dominated by any other
forecast with respect to if and only if the transformation of
by is probabilistically coherent. It has been suggested to us
that Theorem 1 below can be perceived in Lindley’s discussion,
especially in his Comment 2 [5, p. 7], which deals with scoring
rules that he qualifies as proper. We are agreeable to crediting
Lindley with the theorem (under somewhat different regularity
conditions) but it seems to us that his discussion is clouded by
reliance on the transformation to define proper scoring rules
and to state the main result.

In any event, fresh insight into proper scoring rules comes
from relating them to a generalization of metric distance known
as Bregman divergence [6]. This relationship was studied in
[7], albeit implicitly, and more recently in [8] and [9]. So far as
we know, those results have yet to be connected to the issue of
dominance. The connection is explored here.

More generally, to pull together the threads of earlier discus-
sions, the present work offers a self-contained account of the re-
lations among (i) coherent forecasts, (ii) Bregman divergences,
and (iii) domination with respect to proper scoring rules. Only
elementary analysis is presupposed. We begin by formalizing
the concepts introduced above.4

III. FRAMEWORK AND MAIN RESULT

Let be a nonempty sample space. Subsets of are called
events. Let be a vector of events over .
We assume that and have been chosen and are now fixed
for the remainder of the discussion. We require to have finite

2The other classic vindication involves sure-loss contracts; see [2].
3For analysis of de Finetti’s work, see [4]. Note that some authors use the

term inadmissible to qualify dominated forecasts.
4For application of scoring rules to the assessment of opinion, see [9] along

with [10, § 2.7.2] and references cited there.

dimension but otherwise our results hold for any choice of
sample space and events. In particular, can be infinite. We rely
on the usual notation to denote, respectively,
the closed interval , the open interval

, and the two-point set containing .

Definition 1: Any element of is called a (probability)
forecast (for ). A forecast is coherent just in case there is
a probability measure over such that for all ,

.

A forecast is thus a list of numbers drawn from the unit
interval. They are interpreted as claims about the chances of the
corresponding events in . The first event in is assigned the
probability given by the first number ( ) in , and so forth.
A forecast is coherent if it is consistent with some probability
measure over .

This brings us to scoring rules. In what follows, the numbers
and are used to represent falsity and truth, respectively.

Definition 2: A function is said
to be a proper scoring rule in case

(a) is uniquely minimized at
for all ;

(b) is continuous, meaning that for ,
for any sequence

converging to .

For condition 2(a), think of as the probability you have in
mind, and as the one you announce. Then

is your expected score. Fixing (your genuine be-
lief), the latter expression is a function of the announcement .
Proper scoring rules encourage candor by minimizing the ex-
pected score exactly when you announce .

The continuity condition is consistent with assuming the
value . This can only occur for the arguments or

, representing categorically mistaken judgment. For if
for some , then

cannot have a unique minimum at ; similarly,
for . An interesting example of an

unbounded proper scoring rule [11] is

A comparison of alternative rules is offered in [12].
For an event , we let be the characteristic function of
; that is, for all , if and otherwise.

Intuitively, reports whether is true or false if Nature
chooses .

Definition 3: Given proper scoring rule , the penalty
based on for forecast and is given by

(1)

Thus, sums the scores (conceived as penalties) for all the
events under consideration. Henceforth, the proper scoring rule

is regarded as given and fixed. The theorem below holds for
any choice we make.

Definition 4: Let a forecast be given.
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(a) is weakly dominated by a forecast in case
for all .

(b) is strongly dominated by a forecast in case
for all .

Strong domination by a rival, coherent forecast is the price
to be paid for an incoherent forecast . Indeed, we shall prove
the following version of Comment 2 in [5].

Theorem 1: Let a forecast be given.
(a) If is coherent then it is not weakly dominated by any

forecast .
(b) If is incoherent then it is strongly dominated by some

coherent forecast .

Thus, if and are coherent and then neither weakly
dominates the other. The theorem follows from three proposi-
tions of independent interest, stated in the next section. We close
the present section with a corollary.

Corollary 1: A forecast is weakly dominated by a forecast
if and only if is strongly dominated by a coherent

forecast.
Proof of Corollary 1: The right-to-left direction is imme-

diate from Definition 4. For the left-to-right direction, suppose
forecast is weakly dominated by some . Then by The-
orem 1(a), is not coherent. So by Theorem 1(b), is strongly
dominated by some coherent forecast.

IV. THREE PROPOSITIONS

The first proposition is a characterization of coherence. It is
due to [3].

Definition 5: Let
. Let the cardinality of be . Let be the

convex hull of , i.e., consists of all vectors of form
, where , , and .

The may be related in various ways, so is possible
(indeed, this is the case of interest).

Proposition 1: A forecast is coherent if and only if
.

The next proposition characterizes scoring rules in terms of
convex functions. Recall that a convex function on a convex
subset of satisfies
for all and all , in the subset. Strict convexity
means that the inequality is strict unless . Variants of the
following fact are proved in [7]–[9].

Proposition 2: Let be a proper scoring rule. Then the func-
tion defined by

is a bounded, continuous, and strictly convex func-
tion, differentiable for . Moreover

(2)

Conversely, if a function satisfies (2), with bounded, strictly
convex and differentiable on , and is continuous on ,
then is a proper scoring rule.

We note that the right side of (2), which is only defined for
, can be continuously extended to . This is

the content of Lemma 1 in the next section. If the extended
satisfies (2) then

and (3)

Finally, our third proposition concerns a well-known property
of Bregman divergences (see, e.g., [13]). When we apply the
proposition to the proof of Theorem 1, will be the unit cube
in .

Definition 6: Let be a convex subset of with nonempty
interior. Let be a strictly convex function, dif-
ferentiable in the interior of , whose gradient extends to a
bounded, continuous function on . For , the Bregman
divergence corresponding to is given by

Because of the strict convexity of , with
equality if and only if .

Proposition 3: Let be a Bregman diver-
gence, and let be a closed convex subset of . For

, there exists a unique , called the projection
of onto , such that

Moreover

(4)

It is worth observing that Proposition 3 also holds if ,
in which case and (4) is trivially satisfied.

V. PROOFS OF PROPOSITIONS 1 – 3

Proof of Proposition 1: Recall that is the dimension of
, and that is the number of elements in . Let be the

collection of all nonempty sets of form , where is
either or its complement. ( corresponds to the minimal
nonempty regions appearing in the Venn diagram of .) It is
easy to see that

(a) partitions .
It is also clear that there is a one-to-one correspondence be-
tween and with the property that is mapped to

such that for all , iff . (Here,
denotes the th component of .) Thus, there are elements

in . We enumerate them as , and the corresponding
by . Plainly, for all , is the disjoint union of

, and hence:
(b) For any measure , for all

.
For the left-to-right direction of the proposition, suppose that
forecast is coherent via probability measure . Then

for all and hence by (b), .
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But the are nonnegative and sum to one by (a), which
shows that .

For the converse, suppose that , which means
that there are nonnegative ’s, with , such that

. Let be some probability measure such that
for all . By (a) and the assumption about

the , it is clear that such a measure exists. For all

by (b), thereby exhibiting as coherent.

Before giving the proof of Proposition 2, we state and prove
the following technical lemma.

Lemma 1: Let be bounded, convex and
differentiable on . Then the limits and

exist, the latter possibly being equal to at
or at . Moreover

(5)

Proof of Lemma 1: Since is convex, the limits
exist, and they are finite since is bounded.

Moreover, is a monotone increasing function, and hence
also exists (but possibly equals at
or at ). Finally, (5) follows again from monotonicity
of and boundedness of , using that

and likewise at .

Proof of Proposition 2: Let be a proper scoring rule. For
, let

(6)

By Definition 2(a), the minimum in (6) is achieved at ,
hence .

As a minimum over linear functions, is concave; hence,
is convex. Clearly, is bounded (because implies, from

(6), that , but a convex function can become unbounded
only by going to ).

The fact that the minimum is achieved uniquely (Definition 2)
implies that is strictly convex for the following reason. We
take and and set .
Then

by uniqueness of the minimizer at . Sim-
ilarly,

. By adding times the first inequality to
times the second we obtain

, which is precisely the statement of strict
convexity.

Let . If is differentiable and
for all , then (2) is satisfied, as shown

by simple algebra.
We shall now show that is, in fact, differentiable and

. For any and small enough , we have

Since is minimized at
by Definition 2(a), the last term in square brackets is negative.
Hence

and similarly one shows

Since is continuous by Definition 2(b), this shows that is
differentiable, and hence . This proves (2). Continuity
of up to the boundary of follows from continuity of
and Lemma 1.

To prove the converse, first note that if is bounded and
convex on , it can be extended to a continuous function
on , as shown in Lemma 1. Because of strict convexity of

we have, for and

(7)

with equality if and only if .
It remains to show that the same is true for . Con-

sider first the case . We have to show that
for . By continuity of , (2),

and Lemma 1, we have , while
. If , the result is im-

mediate. If is finite, we have
again by strict convexity of .

Likewise, one shows that
for . This finishes the proof that is a proper scoring rule.

Proof of Proposition 3: For fixed , the function
is strictly convex, and hence achieves a unique

minimum at a point in the convex, closed set .
Let . For , , and hence,

by the definition of .
Since is differentiable in the first argument, we can divide
by and let to obtain

The fact that

proves the claim.

VI. PROOF OF THEOREM 1

The main idea of the proof is more apparent when is
bounded. So we consider this case on its own before allowing

to reach .

Bounded Case

Suppose is bounded. In this case, the derivative of the corre-
sponding from (2) in Proposition 2 is continuous and bounded
all the way up to the boundary of .
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Let be a forecast and, for , let be
the vector with components . Let .
Then

[Definition 3]

[Proposition 2]

[Definition 6]

[Equation 3] (8)

Now assume that is incoherent which, by Proposition 1,
means that . According to (4) of Proposition 3,
there exists a , namely, the projection of onto

, such that for all
and hence, in particular, for . Since

this proves part (b) of Theorem 1.
To prove part (a) first note that weak dominance of by

means that for all , by (8).
In this case, for all , since

depends linearly on . If is coherent,
by Proposition 1, and hence

. This implies that .

Unbounded Case

Next, consider the case when is unbounded. In this case, the
derivative of the corresponding from Proposition 2 diverges
either at or , or at both values, and hence we cannot directly
apply Proposition 3. Equation (8) is still valid, with both sides
of the equation possibly being . However, if lies either
in the interior of , or on a point on the boundary where
the derivative of does not diverge, an exam-
ination of the proof of Proposition 3 shows that the result still
applies, as we show now.

If is finite, the minimum of over
is uniquely attained at some . Moreover,

is necessarily finite. Repeating the argument in the proof
of Proposition 3 shows that for
any , which is the desired inequality needed in the
proof of Theorem 1(b). We are thus left with the case in which
lies on an -dimensional face of where the normal
derivative diverges. Consider first the case . Then either

, in which case is coherent, or or ,
in which case it is clear that the unique coherent vector
strongly dominates .

We now proceed by induction on the dimension of the fore-
cast . In the -dimensional hypercube, either lies inside
or on a point of the boundary where the normal derivative of
is finite, in which case we have just argued that there exists a
that is coherent and satisfies for all such
that lies in the -dimensional face. In the other case, the
induction hypothesis implies that we can find such a . Note that
for all the other , . Now simply pick

an and choose , where
the denote all the elements of outside the -dimen-
sional hypercube. Then for all and also, using
Lemma 1, . Hence, we can choose

small enough to conclude that for all
. This finishes the proof of part (b) in the general case of

unbounded .
To prove part (a) in the general case, we note that if

for and , then necessarily
. That is, any coherent is a convex combination of

such that . This follows from the fact that a
component of can be only if this component is for all the

’s. The same is true for the value . But the can be
infinite only if some component of is and the corresponding
one for is , or vice versa.

Since for the in question, also
by (8) and the assumption that is weakly dominated by .

Moreover, . But
, hence, .

VII. GENERALIZATIONS

A. Penalty Functions

Theorem 1 holds for a larger class of penalty functions. In
fact, one can use different proper scoring rules for every event,
and replace (1) by

where the are possibly distinct proper scoring rules. In this
way, forecasts for some events can be penalized differently than
others. The relevant Bregman divergence in this case is given
by , where is determined by via (2).
Proof of this generalization closely follows the argument given
above, so it is omitted. Additionally, by considering more gen-
eral convex functions our argument generalizes to certain non-
additive penalties.

B. Generalized Scoring Rules

1) Non-Uniqueness: If one relaxes the condition of unique
minimization in Definition 2(a), a weaker form of Theorem 1
still holds. Namely, for any incoherent forecast there exists a
coherent forecast that weakly dominates . Strong dominance
will not hold in general, as the example of shows.

Proposition 2 also holds in this generalized case, but the
function need not be strictly convex. Likewise, Proposition
3 can be generalized to merely convex (not necessarily strictly
convex) but in this case the projection need not be unique.
Equation (4) remains valid.

2) Discontinuity: A generalization that is more interesting
mathematically is to discontinuous scoring rules. Proposition 2
can be generalized to scoring rules that satisfy neither the con-
tinuity condition in Definition 2 nor unique minimization. (This
is also shown in [9]).

Proposition 4: Let satisfy

(9)
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Then the function defined by
is bounded and convex.

Moreover, there exists a monotone nondecreasing function
, with the property that

(10)

(11)

such that

(12)

Function is strictly convex if and only if the inequality (9) is
strict for . Conversely, if is of the form (12), with
bounded and convex and satisfying (10)–(11), then satisfies
(9).

It is a fact [14] that every convex function on is con-
tinuous on and has a right and left derivative, and

(defined by the right sides of (11) and (10), respectively)
at every point (except the endpoints, where it has only a right or
left derivative, respectively). Both and are nondecreasing
functions, and for all . Except for
countably many points, , i.e., is differen-
tiable. Equations (10)–(11) say that .
The concept of subgradient, well known in convex analysis [15],
plays the role of derivative for nondifferentiable convex func-
tions.

Note that although and may be discontinuous,
the combination is con-
tinuous. Hence, if jumps up at a point , has to
jump down by an amount proportional to .

The proof of Proposition 4 is virtually the same as the proof
of Proposition 2, so we omit it.

C. Open Question

Whether Theorem 1 holds for this generalized notion of a
discontinuous scoring rule remains open. The proof of Theorem
1 given here does not extend to the discontinuous case, since
for inequality (4) to hold, differentiability of is necessary, in
general.
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