
A Unification of

Menger’s and Edmonds’ Graph Theorems

and Ahlswede et al’s Network Coding Theorem

Yunnan Wu∗, Student Member, IEEE, Kamal Jain†,

Sun-Yuan Kung∗, Fellow, IEEE.

Abstract

The multicast capacity is the maximum rate that a sender can communicate common information to

a set of receivers in a network (represented by a directed graph). A fundamental theorem in graph theory

by Menger determines the unicast capacity from a sender to a receiver; another fundamental theorem

in graph theory by Edmonds determines the broadcast capacity from a sender to all other nodes. In

both extreme cases, the multicast capacity can be achieved by routing, i.e., replicating or forwarding,

information. A recent work by Ahlswede et al established that the multicast capacity can be achieved

by performing network coding, while in general it cannot be achieved by routing.

In this paper, we present a statement that unifies Menger’s Theorem, Edmonds’ Theorem, and

Ahlswede et al’s Theorem. Specifically, we show the multicast capacity can be achieved by performing

conventional routing on non-Steiner edges (edges entering receivers) and (non-trivial) network coding

on Steiner edges. To enforce these coding constraints, we introduce a graph transformation called

“hardwiring”; hardwiring an edge means restricting it to connect with at most one of its predecessor

edges. We present algorithms that “hardwires” all non-Steiner edges while preserving the required

connectivity from the sender to each receiver.

Index Terms

This work was presented in part at the Allerton Conference on Communications, Control, and Computing, Monticello, IL,

Sept. 2004 [1].
∗Dept. of Electrical Engineering, Princeton University, Princeton, NJ 08544. Tel.:(609)258-3780. Fax:(609)258-3745.

{yunnanwu, kung}@princeton.edu.
†Microsoft Corporation, One Microsoft Way, Redmond, WA 98052-6399 USA. kamalj@microsoft.com

2

Multicast, network coding, network information flow, connectivity, flow, capacity.

I. INTRODUCTION

Consider the problem of information multicast, namely transmitting common information from

a sender to a set of receivers, in a communication network. We are interested in maximizing

the multicast throughput. We assume the communication network is represented by a directed

graph G = (V,E) with all edges having unit bit-rate; an example graph G1 is given in Figure 1.

For each ordered vertex pair (v, w), multiple edges are generally allowed so as to reflect the

bit-rate differences of the communication links. Let the sender be s ∈ V and the receivers be

T ⊆ V \{s}. A vertex that is neither the sender s nor a receiver in T is called a Steiner node.

t3t1 t2

s

e4

e6

e2

e3e1

e5

u

e7

Fig. 1. An example graph G1. The sender s is shown with a filled square, the receivers t1, t2, t3 are shown with unfilled

squares, and the only Steiner node u is shown with a circle. It can be checked that CG1
(s, t1) = CG1

(s, t2) = CG1
(s, t3) = 2

and CG1
(s, u) = 1. Therefore, CG1

(s, T) = 2 and CG1
(s, V \{s}) = 1. This example was first given by Lovász [2] to show

that there are no two edge-disjoint Steiner trees connecting s with T although CG1
(s, T) = 2.

One extreme case of this problem is when the receiver set T is a singleton {t}. A fundamental

theorem by Menger [3] gives the maximum unicast rate from s to t.

Menger’s Theorem on Packing Edge-Disjoint Paths (1927) [3]: In a directed graph

G, there are h edge-disjoint s-t-paths (i.e., paths from s to t) if and only if after

deleting any h − 1 edges t is still reachable from s.

Stated alternatively, the maximum number of edge-disjoint s-t-paths is equal to the minimum

capacity (cardinality, denoted by | · |) of an s-t-cut,

CG(s, t) ≡ min
X: s∈X, t∈V \X

|{e ∈ E : tail(e) ∈ X, head(e) ∈ V \X}| , (1)

October 31, 2004 DRAFT

3

where an s-t-cut is an edge set {e ∈ E : tail(e) ∈ X, head(e) ∈ V \X} with s ∈ X and t ∈ V \X

(an edge pointing from v to w is said to have tail(e) = v and head(e) = w.). The minimum s-

t-cut sets an upper-bound on the achievable rate for information transmission from s to t, which

can be achieved by routing, i.e., replicating and forwarding, information along the CG(s, t) edge-

disjoint paths. For general T , the follow quantity CG(s, T) is an upper-bound on the multicast

rate from s to T :

CG(s, T) ≡ min
t∈T

CG(s, t). (2)

In Figure 1, CG1
(s, T) = 2 and thus the maximum achievable multicast rate from s to T is less

than or equal to 2.0.

Another extreme case is when the receiver set T is V \{s}, or equivalently, there are no Steiner

nodes. Another fundamental theorem by Edmonds gives the maximum broadcast rate from s to

all other nodes.

Edmonds’ Theorem on Packing Spanning Trees (1972) [4]: In a directed graph

G = (V,E), there are h edge-disjoint spanning trees rooted at s ∈ V if and only if

h ≤ CG(s, V \{s}).

In other words, the maximum rate for broadcasting information from s to all other nodes can be

achieved by routing information with the CG(s, V \{s}) trees. In Figure 1, CG1
(s, V \{s}) = 1.

Recently, the concept of network coding has evolved as an interesting generalization of the

traditional routing paradigm. With network coding, each node in the network is allowed to

perform arbitrary operations on the information received on its incoming edges to produce

information to be transmitted on its outgoing edges. In their pioneering theoretical work on

network coding [5], Ahlswede et al demonstrated that it is in general suboptimal to restrict the

interior nodes to perform only routing. Conversely, the multicast capacity, which is defined as

the maximum rate that a sender can communicate common information to a set of receivers,

is CG(s, T) and it can be achieved with network coding. Shortly afterwards, Li, Yeung, and

Cai [6] showed that it is sufficient for the encoding functions at the interior nodes to be linear.

Koetter and Médard [7] gave an algebraic characterization of linear encoding schemes and prove

existence of linear time-invariant codes achieving the multicast capacity. The following statement

summarizes these results.

October 31, 2004 DRAFT

4

Network Coding Theorems (2000-2003) [5]–[7]: In a directed graph G = (V,E)

with unit capacity edges, the multicast capacity, which is defined as the maximum

rate that a sender s can communicate common information to a set of receivers T , is

CG(s, T) and it can be achieved with (linear time-invariant) network coding.

We now use the example graph G1 to briefly explain the meaning of linear time-invariant

(LTI) network coding. Assume the network operates as a synchronous system with a discrete

time index n running from 0 to +∞. The sender s generates two information symbols (e.g., two

bits), x1n and x2n, in the n-th time unit. Let the z-transform (D = z−1) of the two streams of

symbols be x1(D) ≡
∑

+∞
n=0

x1nDn and x2(D) ≡
∑

+∞
n=0

x2nDn. Assume it takes one time unit for

a symbol to propagate through an edge. Let G[s, h] be the graph obtained by adding to G a new

vertex s′ and h source edges, s1, . . . , sh. Figure 2(left) shows G[s, 2]. Figure 2(left) illustrates a

LTI network coding solution achieving the multicast capacity. The information flowing on each

edge is shown beside each edge. The i-th source edge si carries the i-th stream of symbols xi(D);

this represents how information is originally injected to the network. As shown in Figure 2(left),

x1(D) flows on e1 and is then forwarded to e5 after a unit delay, resulting in x1(D)D flowing on

e5; similarly, x2(D)D flows on e6. With LTI network coding, the information flowing on an edge

is generally allowed to be a causal linear combination of the information received on its incoming

predecessor edges. For example, the received information from e5 and e6 is combined at t3 to

produce [x1(D) + x2(D)]D2, which flows on e7. Then, the mixed stream [x1(D) + x2(D)]D2 is

further forwarded to e2 and e4, after a unit delay. With this coding solution, receiver t1 receives

x1(D)D from e1 and [x1(D)+x2(D)]D4 from e2; it can then recover both source streams x1(D)

and x2(D) after certain delay. Similarly, it can be checked that receiver t2 and t3 can recover the

source information. This confirms that this LTI coding solution achieves the multicast capacity.

Now let us take a more abstract look at how network coding is applied at each edge in this

simple example. Figure 2(right) shows the coding relations among the edges, determined by the

LTI network coding solution of Figure 2(left). We draw a dashed arrow from an edge f to e if

head(f) = tail(e) and f is involved in the linear combination producing the information flowing

on e. Given a LTI coding solution, for each edge e ∈ E, the edges with dashed arrows pointing

to e are said to be the coding predecessors of e. For example, the information flowing on e5 is

produced as a delayed version of the information flowing on e1; thus e5 has only one coding

predecessor e1. If an edge e has more than one coding predecessors, then the information flowing

October 31, 2004 DRAFT

5

t3t1 t2

s

u

s’
s1 s2

e4

e6

e2

e3e1

e5

e7

t3t1 t2

s

u

s’
s1 s2

e4

e6

e2

e3e1

e5

e7

Fig. 2. (Left) An example linear time-invariant network coding solution achieving the multicast capacity. The graph shown is

G[s, 2] ≡ (V ∪ {s′}, E ∪ {s1, s2}). (Right) Coding relations among the edges, illustrated by dashed arrows.

on e is produced by “mixing” information on the coding predecessors; on the other hand, if an

edge e has only one coding predecessor, say f , then we say that f is the hardwired predecessor

of e. Intuitively speaking, network coding generalizes routing by allowing information to be

mixed. By now, we have already known that when there is a single receiver or when all nodes

other than the the sender are receivers, no mixing is necessary to achieving the multicast capacity.

In this capacity-achieving LTI coding solution for G1, which has one Steiner node, information

mixing is only performed at e7.

What distinguishes e7 from other edges? In this example, only e7 is entering a Steiner node

and all other edges are entering receivers. We introduce the notion of Steiner edges. An edge

entering a Steiner node is called a Steiner edge and an edge entering a receiver t ∈ T is called

a non-Steiner edge. Without essential loss of generality, we assume sender s has no incoming

edges. Thus the edge set can be partitioned into Steiner edges and non-Steiner edges. Our main

result of this paper is the following statement.

Statement 1 (A Unifying Statement):

In a directed graph G = (V,E) with unit capacity edges, the multicast capacity from sender s

to receivers T is CG(s, T) and it can be achieved with (linear time-invariant) network coding

subject to the following constraints:

• Each non-Steiner edge has at most one coding predecessor.

• Each edge has at most |T | coding predecessors.

October 31, 2004 DRAFT

6

This statement unifies Menger’s Theorem [3], Edmonds’ Theorem [4], and the network coding

theorems [5]–[7]. Let us now explain why these are special cases of this statement. Let h =

CG(s, T). First, let T = {t}. In this case, there is a capacity-achieving LTI network coding

solution, where each edge has at most one coding predecessor according to the second constraint.

Then the information flowing on each edge e in the network is ye(D) = α(D)xi(D) for some i ∈

{1, . . . , h}. We remove all edges with ye(D) = 0 from G[s, h]. Think of a coloring of the edges

in the resulting sub-graph of G[s, h] with h color indices {1, . . . , h}: if ye(D) = α(D)xi(D),

then edge e is assigned the i-th color. In the capacity-achieving solution, receiver t has incoming

edges spanning all h colors. By backtracking from receiver t, we can find h edge-disjoint s-t-

paths. This establishes Menger’s Theorem [3] as a special case. Next, let T = V \{s}. In this

case, there is no Steiner edge and thus there is a capacity-achieving LTI network coding solution,

where each edge has at most one coding predecessor according to the first constraint. Then the

argument above can be applied again to show that by backtracking from each receiver t ∈ T ,

we can obtain h edge-disjoint spanning trees rooted at s. This establishes Edmonds’ Theorem

[3] as a special case.

As a generalization of known network information flow results, the unifying statement has

the following implications. On the theoretical side, this result advances our understanding on the

very structural features of graphs that render network coding critical to achieving the maximum

throughput. On the practical side, this result implies that in a multicast system employing network

coding such as in [8]–[11], the design of the “last hops” (i.e., edges entering receivers) may be

simplified without compromising the optimal throughput.

Now let us briefly describe our proof of the unifying statement, which states that there exists

capacity-achieving network coding solutions subject to additional coding constraints. The second

constraint in the unifying statement is actually an easy corollary of known network coding results.

We include it mainly for the sake of completeness. Hence we will focus on establishing the first

constraint. To do so, we will prove a graph theoretic statement:

Statement 2 (Existence of Structurally Constrained Paths): Given a directed graph G,

a sender s, and receivers T , there are CG(s, T) edge-disjoint s-t-paths, ∀t ∈ T , satisfying

the constraints that if a non-Steiner edge e is used in any of these |CG(s, T)| · |T | paths, its

predecessor has to be a fixed edge called the hardwired predecessor of e.

We will use this graph theoretic statement in conjunction with the network coding theorems to

October 31, 2004 DRAFT

7

establish the unifying statement. Thus, the problem of showing the existence of a network coding

solution subject to the coding constraints is transformed into one of showing the existence of

paths subject to structural constraints. We will enforce these structural constraints by a series

of graph transformations that eventually results in a graph where all non-Steiner edges in the

original graph have been hardwired. Hardwiring a non-Steiner edge e (to one of its predecessors)

essentially enforces that information mixing, corresponding to non-trivial network coding, cannot

be used to generate the information flowing on e.

More specifically, our proof of this graph theoretic statement is accompanied by a polynomial-

time constructive procedure. Visit the non-Steiner edges in an arbitrary fixed order. When an

non-Steiner edge e is visited, hardwire it to one of its predecessors and possibly re-hardwire

some edges that have already been hardwired, while preserving connectivity, i.e., ensuring that

in the resulting graph, there still exist CG(s, T) edge-disjoint paths to each receiver t ∈ T .

The rest of this paper is organized as follows. In Section I-A, we introduce some notations

and terminologies. We state and prove our main theorem in Section II. Interestingly, based on

the graph theoretic statement, we also find a second constructive procedure that hardwires all

non-Steiner edges one by one without re-hardwiring. This is presented in Section III. Some

discussions are made in Section IV. Finally, a conclusion is drawn in Section V.

A. Notations and Terminologies

For notational convenience, let h ≡ CG(s, T). Let E0 ≡ {e : head(e) ∈ V (G[s, h]) − T} and

E1 ≡ {e : head(e) ∈ T} denote the set of Steiner edges and non-Steiner edges, respectively.

Note that the source edges s1, . . . , sh are treated as Steiner edges as a notational convention.

Having assumed sender s has no incoming edges in G, E(G[s, h]) = E0 + E1.

For a graph G, V (G) and E(G) denote its vertex set and edge set, respectively. For a directed

graph G = (V,E), let the edges going out of a vertex subset X ⊆ V to its complement set

V \X be δout(X) ≡ {e ∈ E : tail(e) ∈ X, head(e) ∈ V \X}. Let δ in(X) ≡ δout(V \X). We often

do not distinguish one-element vertex sets from its single element, e.g., δout(v) ≡ δout({v}). We

use subscripts (e.g., δout
G (X)) to specify the graph G if necessary.

An s-t-path P in a directed graph G = (V,E) is an alternating sequence

s = v0, e1, v1, . . . , en, vn = t, vi ∈ V, ei ∈ E, i = 1, . . . , n

October 31, 2004 DRAFT

8

and the defining edges and vertices are distinct. When no ambiguity can arise, we may treat it

as a sequence of vertices and write

P = s → v1, . . . ,→ t. (3)

In a graph G = (V,E), subdividing an edge e ∈ E with a vertex u means replacing e with

two edges (tail(e), u) and (u, head(e)) where u is a new vertex.

II. A CONSTRUCTIVE PROOF

A. Some Graph Transformations

Let us begin by introducing some operations on the graph. Figure 3(left) gives an example

graph G2[s, h], which is used to help illustrate the constructive proof.

As a preparatory step, we subdivide all edges of G[s, h] and denote the resulting graph by Ġ.

Figure 3(right) shows Ġ2. As illustrated in Figure 3(right), each edge e of G[s, h] is “split” into

two “halves” by a new node, shown as a dot. Since there is a one-to-one mapping between a

dot in Ġ and an edge in G[s, h], we refer to a dot in V (Ġ) by the name of the corresponding

edge in G[s, h]. The vertex set of Ġ is thus V (G[s, h])∪E(G[s, h]). An edge e of G[s, h] from

v to w is now replaced by two edges, (v, e) and (e, w).

t3t1 t2

s

e4e2

e3e1

e7

t4

e8

s’
s1 s2

e6e5
t3t1 t2

s

e4

e6

e2

e3e1

e5

e7

t4

e8

s’

s1 s2

Fig. 3. (Left) An example graph G2[s, 2]. (Right) The “dotted” version Ġ2 obtained by subdividing all edges of G2[s, 2].

Next, we introduce a hardwiring opeation. As illustrated in Figure 4, the operation hardwire(f1, e1)

replaces edge (v, e1) with edge (f1, e1), where v ≡ tail(e1) ∈ V (G[s, h]). This operation

essentially restricts e1 to only forward information received from f1. It enforces a structural

October 31, 2004 DRAFT

9

constraint in Statement 2: whenever e1 is used in one path, its predecessor has to be a fixed

edge (f1 in this case). We use the name hardwire to denote an edge (f1, e1) after hardwiring

e1 with f1, since earlier the potential predecessor edges of edge e1 are f1, f2, f3, whereas now

the only predecessor edge of e1 is f1. The hardwires are highlighted in the figures with thicker

lines. As a degenerated case of the hardwiring operation, the operation hardwire(NULL, e1)

simply deletes (v, e1). After the operation hardwire(f1, e1) (or hardwire(NULL, e1)), we

say the hardwired predecessor of e1 is f1 (or NULL) and write wiredPred(e1) = f1 (or

wiredPred(e1) = NULL).

We also introduce a restoring operation, which reverts the hardwiring operation back.

f3

e1

f1
f2

e2

f3

e1

f1
f2

e2

v v

restore(e1)

hardwire(f1, e1)

Fig. 4. The hardwiring operation and restoring operation.

Since each hardwiring operation enforces one constraint of Statement 2, Statement 2 is

equivalent to the following Theorem 1.

Theorem 1 (Hardwiring Non-Steiner Edges):

Given a directed graph G, a sender s, and receivers T , all the non-Steiner edges of G can

be hardwired while preserving connectivity, i.e., in the resulting graph G̈, there are CG(s, T)

edge-disjoint s′-t-paths, ∀t ∈ T .

For the example graph G2[s, h], Figure 5 gives a possible final graph G̈2 satisfying the

conditions in Theorem 1.

B. Proof of the Unifying Statement with Theorem 1 and Network Coding Theorems

We now prove the unifying statement using Theorem 1 and the network coding theorems.

According to Theorem 1, in the graph G̈, there are CG(s, T) edge-disjoint s′-t-paths, ∀t ∈ T .

Thus, according to the network coding theorems, there exists a (linear time-invariant) network

coding solution, achieving a rate CG(s, T) for multicasting from s′ to t. Note that every dot in

October 31, 2004 DRAFT

10

t3t1 t2

s

e4

e6

e2

e3
e1

e5

e7

t4

e8

s’

s1 s2

Fig. 5. A possible resultant graph G̈2, after all non-Steiner edges have been hardwired.

G̈ has in-degree 0 or 1 and edge-disjoint s′-t-paths in G̈ map into edge-disjoint s-t-paths in G.

Because of the structural relationship between G̈ (see Figure 5 for an example) and Ġ (or G), it

can be seen that a LTI network coding solution on G̈ maps directly into a LTI network coding

solution on G; for a detailed explanation of LTI network coding, please refer to the Appendix.

Furthermore, such a LTI network coding solution satisfies the constraint that each non-Steiner

edge has only one coding predecessor, since in G̈, each dot corresponding to a non-Steiner edge

e ∈ E1 has been hardwired to one of its predecessors. In other words, the structure of G̈ rules out

the possibility of performing non-trivial information mixing to produce the information flowing

on the non-Steiner edges. This establishes that the multicast capacity CG(s, T) can be achieved

by LTI network coding subject to the constraint that each non-Steiner edge has only one coding

predecessor.

The second constraint of the unifying statement is used to incorporate Menger’s Theorem as

a special case. To establish that a LTI network coding solution exists subject to both constraints,

we need some extra steps that transforms G̈ into a graph G′′. We then show that G′′ has a

network coding solution without coding constraints, which maps into a network coding solution

of G satisfying the coding constraints.

We introduce two more graph operations. As illustrated in Figure 6, the operation expand(e1)

introduces a new vertex ve1
that has incoming edges from f1, f2, f3 and an outgoing edge to e1.

Intuitively, this vertex ve1
can be viewed as a duplicate of v = tail(e1) that provides information

only for e1. We use the name wire to refer to edges such as (f1, ve1
), (f2, ve1

), (f3, ve1
), since

October 31, 2004 DRAFT

11

f3

e1

f1
f2

e2

f3

e1

f1
f2

e2

expand(e1)
v vve1

Fig. 6. The expanding operation.

they correspond to connections between two edges in G[s, h]. Then, we introduce the operation

deleteWire: after expanding e1, the operation deleteWire(f2, e1), i.e., deleting (f2, ve1
),

breaks the connection between f2 and e1. Note that the operation hardwire(f1, e1) can be

regarded as expanding e1 followed by deleting all but one wire (f1, ve1
).

Denote by G′ the resulting graph after expanding all the Steiner edges. In G′, there are still

CG(s, T) edge-disjoint s′-t-paths, ∀t ∈ T . Then, we remove from G′ all the wires that have

not been used in these paths; denote the resulting graph by G′′. According to the network

coding theorems, there exists a (linear time-invariant) network coding solution that achieves a

rate CG(s, T) for multicasting from s′ to t in G′′. This solution maps into a network coding

solution for G, satisfying the coding constraints.

C. A Hardwiring Procedure

Up to now, the problem of proving the unifying statement has been turned into one of proving

Theorem 1, which states that all the non-Steiner edges can be hardwired while preserving

connectivity. In this section, we present a hardwiring procedure described in Algorithm 1.

Algorithm 1 performs a sequence of operations on the graph Ġ (as illustrated in Figure 3(right))

to eventually arrive at a final graph G̈ (as illustrated in Figure 5), in which all non-Steiner edges

E1 have been hardwired. With slight abuse of notation, the notation Ġ will be used to refer to

the “current” version Ġ, as the algorithm proceeds.

The basic framework of the proposed hardwiring procedure is as follows. Visit the non-Steiner

edges in an arbitrary fixed order. When e is visited, hardwire it to one of its predecessors. We

want to ensure that after each step, there are still h edge-disjoint s′-t-paths, ∀t ∈ T . According

to this procedure, a generic scenario to consider is that at certain point, some non-Steiner edges

October 31, 2004 DRAFT

12

t3t1 t2

s

e4

e6

e2

e3e1

e5

e7

t4

e8

s’

s1 s2

(a)

t3t1 t2

s

e4

e6

e2

e3e1

e5

e7

t4

e8

s’

s1 s2

(b)

t3t1 t2

s

e4

e6

e2

e3e1

e5

e7

t4

e8

s’

s1 s2

(c)

t3t1 t2

s

e4

e6

e2

e3e1

e5

e7

t4

e8

s’

s1 s2

(d)

Fig. 7. (a) An example scenario during the execution of Algorithm 1. (b) The graph after hardwiring e7 with e5. (c) The graph

after restoring e2. (d) The graph after hardwiring e2 with e8.

have already been hardwired and another non-Steiner edge needs to be newly hardwired. The

question then is how to newly hardwire this non-Steiner edge while preserving the required

connectivity to all receivers.

Consider an example scenario shown in Figure 7(a), where e2 has been hardwired to e7, e4

has been hardwired to e7, and e7 needs to be newly hardwired. It can be verified that in the

current graph Ġ, there are h = 2 edge-disjoint s′-t-paths, ∀t ∈ T . Suppose e7 is hardwired to e5,

then there no longer exist h = 2 edge-disjoint s′-t1-paths. Suppose e7 is hardwired to e6, then

there no longer exist h = 2 edge-disjoint s′-t2-paths. To cope with this difficulty, we propose to

re-hardwire some of the non-Steiner edges that were hardwired earlier. Note that e7 is the root

October 31, 2004 DRAFT

13

of a tree comprising the hardwires (e7, e2) and (e7, e4). First, we hardwire e7 such that there

are h edge-disjoint paths to head(e7) = t4. This can be done by finding h edge-disjoint paths

to head(e7) = t4 in the current Ġ and then identify the predecessor edge of e7 as the hardwired

predecessor of e7. As shown in Figure 7(b), hardwiring e7 with e2 meets this requirement. Then,

we will re-hardwire e2 such that there are h edge-disjoint paths to head(e2) = t1. Note that

re-hardwiring can be decomposed into two operations: restore(e2) and hardwire(f, e2),

where f will be selected from one of the predecessors of e2. Figure 7(c) shows the current Ġ

after the operation restore(e2). It can be checked that there exist h = 2 edge-disjoint s′-t1-

paths in Figure 7(c); this observation will be generalized later in Lemma 1. In these two paths,

e2 is used after e8, and therefore, after hardwiring e2 with e8, there still exist h = 2 edge-disjoint

s′-t1-paths, as shown in Figure 7(d). In a similar way, we can try to re-hardwire e8 such that

there are h = 2 edge-disjoint s′-t2-paths; it turns out that e8 will remain hardwired with e7 and

thus Ġ remain unchanged. It can be further checked that there are h = 2 edge-disjoint s′-t-paths,

∀t ∈ T , in Figure 7(d). To summarize, a revised procedure that comprises three sub-steps:

1) hardwire e7 to ensure connectivity for head(e7) = t4;

2) re-hardwire e2 to ensure connectivity for head(e2) = t1;

3) re-hardwiring e4 to ensure connectivity for head(e4) = t2,

has been seen to ensure the required connectivity to all the receivers.

Algorithm 1 Hardwiring Non-Steiner Edges
1: for e ∈ E1 do

2: Topologically sort the dots in the tree of hardwires rooted at e as e0 = e, e1, . . . , eK ;

3: Delete from Ġ the wires in this tree of hardwires rooted at e;

4: for k = 0, . . . , K do

5: restore(ek);

6: t := head(ek);

7: [Pt1, . . . ,Pth] := edgeDisjointPaths(Ġ, s′, t, h);

8: wiredPred(ek) := predecessor(Pt1 ∪ . . . ∪ Pth, e
k);

9: hardwire(wiredPred(ek), ek);

10: end for

11: end for

October 31, 2004 DRAFT

14

The general procedure is more formally described in Algorithm 1. Line 2 assumes that in the

current Ġ, e is the root of a tree of hardwires. Let P denote the graph of hardwires, which is

derived from the current Ġ as the sub-graph consisting only of the hardwires. The vertex set of

P can be assumed to be E(G[s, h]). Since e has not been hardwired, the in-degree of e is 0 in

P . Further note that every node in P has in-degree 0 or 1, since there can never be more than

one hardwires ending at a given dot. These observations imply that e is the root of a tree of

hardwires, or in the degenerated case, e is an isolated node in P . Line 2 enumerates the dots in

the tree of hardwires rooted at e according to a topological order as e0 = e, . . ., eK . In the inner

for-loop, we visit e0 = e, . . ., eK in this partial order. When ek is visited, we restore the edge

(tail(ek), ek) back to Ġ. Line 7 assumes that there are h edge-disjoint paths from s′ to head(ek);

this assertion will be proven in the next subsection. Next, ek is hardwired to the predecessor of

ek in the h paths. If ek is not used in any of the h paths, then wiredPred(ek) is set to NULL.

One might note a subtle difference between Algorithm 1 and the earlier walk-through for the

example graph. In Algorithm 1, we delete the wires in the tree rooted at e in P in Line 3, restore

the connection between tail(ek) and ek in Line 5, and finally hardwire ek in Line 9. Line 3 is

introduced for the ease of argument in the proof. Since each execution of the inner for-loop can

only add a wire to the graph, once the required connectivity to a receiver t is established after a

certain execution of the inner for-loop, subsequent executions will not decrease the connectivity

to t.

D. Proof of Correctness

1) The Pivoting Lemma: Before proceeding to the main proof, we show a lemma, which is

an easy consequence of Menger’s Theorem. Figure 8 illustrates the conditions in Lemma 1.

Lemma 1 (Pivoting Lemma): In a directed graph G = (V,E), consider three vertices s, v,

and v′, where s is not adjacent to either v or v′. Suppose there are h edge-disjoint paths P1, . . .,

Ph, from s to v and there are h edge-disjoint paths P ′
1, . . ., P ′

h, where P ′
1 is from v to v′ and

P ′
2, . . . ,P

′
h are from s to v′. Then there are h edge-disjoint paths from s to v ′ in G.

Proof: Consider any s-v′-cut δout(X) with s ∈ X and v′ ∈ V − X . If v ∈ V − X , then the

existence of h edge-disjoint s-v-paths implies that |δout(X)| ≥ h. If v ∈ X , then the existence of

h edge-disjoint paths P ′
1, . . ., P ′

h going from X to V −X implies that |δout(X)| ≥ h. Thus any

s-v′-cut contains at least h edges. By Menger’s Theorem, there are h edge-disjoint s-v ′-paths.

October 31, 2004 DRAFT

15

s

Fig. 8. The conditions in Lemma 1.

We call the node v in Lemma 1 a pivot and the path P ′
1 a partial path since it is not from s

to v′.

2) Inductive Proof: We now inductively prove that each execution of the outer for-loop in

Algorithm 1 is connectivity-preserving. In the following, we discuss one execution of the outer

for-loop where non-Steiner edge e is currently visited.

Before executing Line 2, denote the current graph Ġ by Ġ0. By inductive assumption, Ġ0 has

h edge-disjoint s′-t-paths, ∀t ∈ T . Denote a set of h edge-disjoint s′-t-paths in Ġ0 by P0
t1, . . .,

P0
th. Denote the current wiredPred(ek), k = 0, . . . , K by wiredPred0(e

k), k = 0, . . . , K.

After exiting from the inner for-loop, denote the graph Ġ by Ġ1. We need to prove that Ġ1 has

h edge-disjoint s′-t-paths, ∀t ∈ T .

For each receiver t ∈ T , there are three cases

1. e /∈ V (P0
t1 ∪ . . . ∪ P0

th).

2. e ∈ V (P0
t1 ∪ . . . ∪ P0

th) and ∃τ ∈ {0, . . . , K}, head(eτ) = t.

3. e ∈ V (P0
t1 ∪ . . . ∪ P0

th) and @τ ∈ {0, . . . , K}, head(eτ) = t.

For case 1, e is not used in any of the paths P0
t1, . . ., P0

th. Note that this implies that none

of e0, . . . , eK is used in P0
t1, . . ., P0

th because any s′-ek-path must go through the root of the

tree, e. An example of this case is t3 in Figure 7(a). Since Line 3-Line 9 can only change

wiredPred(ek), k = 0, . . . , K, P0
t1, . . ., P0

th continue to serve as h edge-disjoint s′-t-paths in

Ġ1.

For case 2, e is used in one of the paths P0
t1, . . ., P0

th and t is the head of a certain edge eτ

in the tree rooted at e. Without loss of generality, assume e ∈ P 0
t1. An example of this case is

October 31, 2004 DRAFT

16

t1 in Figure 7(a). Note that P0
t1 must be in the following form

P0

t1 = s′ →, . . . ,→ e →, . . . ,→ e
τ → t, (4)

where the part of the path that intersects with the tree has been shown in bold face. For example,

in Figure 7(a), e = e7, eτ = e2, and

P0

t1 = s′ → s2 → s → e3 → t2 → e6 → t3 → e7 → e2 → t1, (5)

P0

t2 = s′ → s1 → s → e1 → t1. (6)

We cover this case by proving that for k = 0, . . . , K, after ek is visited in the inner for-loop,

there exists h edge-disjoint paths from s′ to t = head(ek). As mentioned earlier, since each

execution of the inner for-loop can only add a wire to the graph, once the required connectivity

to a receiver t is established after a certain execution of the inner for-loop, subsequent executions

will not decrease the connectivity to t.

We prove this by induction over k, k = 0, . . . , K. First consider k = 0. Since deleting the

wires in the tree of hardwires rooted at e does not affect P 0
t1, . . . ,P

0
th for t = head(e), there

are h edge-disjoint paths from s to t = head(e) when edgeDisjointPaths(Ġ, s′, t, h) is

executed. Thus we can hardwire e and guarantee there are h edge-disjoint paths from s to t. For

k > 0, let t′ = head(wiredPred0(ek)). Since wiredPred0(ek) ∈ E1, t′ ∈ T . By assumption,

there are h edge-disjoint paths to head(ek′

), ∀k′ ∈ {0, . . . , k − 1}. Since the order of e0, . . . , eK

is a partial order, there are h edge-disjoint paths to t′ in particular. We then apply Lemma 1

with v = t′, v′ = head(ek) ∈ T , P ′
i = P0

ti, i = 2, . . . , h and

P ′
1 = t′ → ek → head(ek). (7)

For example, in Figure 7(c),

P ′
1 = t4 → e2 → t1 (8)

P ′
2 = s′ → s1 → s → e1 → t1. (9)

This establishes that there are h edge-disjoint paths from s to t = head(ek) when executing

edgeDisjointPaths(Ġ, s′, t, h). Thus we can hardwire ek and guarantee there are h edge-

disjoint paths from s to head(ek).

For case 3, e is used in one of the paths P0
t1, . . ., P0

th and t is not the head of any edge ek in

the tree rooted at e. An example is t5 in Figure 9(left). Assume e ∈ P0
t1. Let the last intersection

October 31, 2004 DRAFT

17

t3t1 t2

s

e4

e6

e2

e3e1

e5

e7

t4

e8

s’

s1 s2

t5
e9 e10

t3t1 t2

s

e4

e6

e2

e3e1

e5

e7

t4

e8

s’

s1 s2

t5
e9 e10

Fig. 9. (left)An example receiver in case 3 is t5. (right) The graph after (re)-hardwiring e7, e2, and e4. The existence of h = 2

edge-disjoint s′-t5-paths is guaranteed by the pivoting lemma.

of P0
t1 with {e0 = e, . . . , eK} be eτ . Then P0

t1 is in the following form

P0

t1 = s′ →, . . . ,→ e →, . . . ,→ e
τ → head(eτ) →, . . . ,→ t, (10)

For example, in Figure 9(left),

P0

t1 = s′ → s1 → s → e1 → t1 → e5 → t3 → e7 → t4 → e9 → t5, (11)

P0

t2 = s′ → s2 → s → e3 → t2 → e6 → t3 → e8 → t4 → e10 → t5. (12)

Note that the immediate successor vertex of eτ in P0
t1 is head(eτ) ∈ T since there are no

other edges hardwired to eτ , which is a leaf in the tree of hardwires rooted at e. We then apply

the pivoting lemma with v = head(eτ), v′ = t, P ′
i = P0

ti, i = 2, . . . , h and P ′
1 being the sub-path

of P0
t1 that goes from head(eτ) to t. This establishes that there are h edge-disjoint s-t-paths.

E. Complexity

First, the number h = CG(s, T) = mint∈T CG(s, t) can be found in O(|T | ·h · |E|), using Ford

and Fulkerson’s augmenting path method; see, e.g., [12]. For i = 1, . . ., find the i-th augmenting

path for all t ∈ T . Stop when the h + 1-th augmenting path does not exist for some t ∈ T .

The running time of Algorithm 1 is dominated by the time required for the procedure calls of

edgeDisjointPaths(Ġ, s′, t, h). Each such procedure call finds h edge-disjoint paths from

s′ to t in Ġ. Since Ġ has at most 2|E| edges, edgeDisjointPaths(Ġ, s′, t, h) can be done

in O(h · |E|) with an augmenting path method for finding maximum flow.

October 31, 2004 DRAFT

18

The outer for-loop of Algorithm 1 is called |E1| times. Each time a non-Steiner edge e ∈ E1

is visited, the non-Steiner edges in the tree of hardwires rooted at e are (re-)hardwired. By a

slight modification of Algorithm 1, in any tree of P , the corresponding receivers (heads) of the

non-Steiner edges can be made distinct. Then, the number of non-Steiner edges in the tree is less

than or equal to |T |. More specifically, we can perform one extra check before adding a hardwire

(wiredPred(ek), ek) in Algorithm 1. Assume by induction that the associated receivers of non-

Steiner edges in the tree of P containing wiredPred(ek) are distinct. Let the root of this tree

be e′. If this tree already contains an edge e′′ with head(e′′) = head(ek) = t ∈ T , then we do not

need to add the hardwire (wiredPred(ek), ek). This is because we can replace the sub-path in

Pt1 ∪ . . .∪Pth from e′ to ek and then to t by the path from e′ to e′′ and then to t and still have

h edge-disjoint paths.

Algorithm 1 can be applied with any arbitrary order of the non-Steiner edges E1. To reduce

the computational cost, we should try to sort the non-Steiner edges in an order that results in

a small number of calls to edgeDisjointPaths(Ġ, s′, t, h). Let GT denote the sub-graph

of G induced by the receivers T , i.e., E(GT) = {e ∈ G| head(e) ∈ T, tail(e) ∈ T}. If GT is

acyclic, we can sort the non-Steiner edges by a partial order. With this order, each e ∈ E1 can

be guaranteed to be an isolated vertex in P when it is visited, for any possible outcome of

edgeDisjointPaths(Ġ, s′, t, h). Therefore, re-hardwiring is avoided if GT is acyclic. If GT

is cyclic, we can decompose it into strongly connected components (SCC). It is well-known that

if each SCC is contracted into one summary node, the resulting coarse-level graph is acyclic.

Thus, we can sort the non-Steiner edges by a partial order of SCCs so as to reduce the complexity

of re-hardwiring. Furthermore, we can apply some greedy heuristics at run-time. For example,

we can choose a non-Steiner edge with the least number of descendants. This technique may be

applied to decide the ordering inside each SCC.

Therefore, the overall complexity of hardwiring all non-Steiner edges with Algorithm 1 is

O(|E1| · |T | · h · |E|). If GT is acyclic, then the overall complexity of hardwiring all non-Steiner

edges is O(|E1| · h · |E|).

III. A DIRECT HARDWIRING PROCEDURE

Algorithm 1 visits the non-Steiner edges in an arbitrary order. When e is visited, it is newly

hardwired and some other non-Steiner edges may be re-hardwired. A natural question to ask

October 31, 2004 DRAFT

19

is whether re-hardwiring is indeed necessary. Figure 7(a) showed that re-hardwiring could be

necessary if Algorithm 1 is used with an arbitrary order of non-Steiner edges. However, this

does not rule out the possibility of performing hardwiring “more carefully” to avoid reaching

situations such as in Figure 7(a).

We now present a direct hardwiring algorithm that avoids re-hardwiring. Let ER ⊆ E1 denote

the set of non-Steiner edges that have not been hardwired in the current Ġ. The algorithm is

given in Algorithm 2. The procedure always checks if there exists a non-Steiner edge e ∈ ER that

can be hardwired to a predecessor edge f ∈ E0 + E1 −ER, i.e., a Steiner edge or a non-Steiner

edge that has been hardwired, while preserving the required edge-connectivity h to head(e). If

so, hardwire e to f and remove e from ER. The algorithm stops when such a qualifying wire

(f, e) cannot be found.

Algorithm 2 A Direct Hardwiring Algorithm
1: ER := E1;

2: while ∃(f, e), f ∈ E0+E1−ER, e ∈ ER, head(f) = tail(e) such that after hardwire(f, e),

there are still h edge-disjoint paths to head(e). do

3: hardwire(f, e);

4: ER := ER − e;

5: end while

A. Proof of Correctness

In Algorithm 2, an edge e ∈ ER can only be hardwired to an edge f ∈ E0 + E1 −ER. Thus,

when e ∈ ER is hardwired, there are no other edges hardwired to e. If after hardwire(f, e),

there are h edge-disjoint paths to head(e), then there are h edge-disjoint paths to any receiver

t ∈ T , according to the proof of Algorithm 1’s correctness (note that case 2 will never occur

with Algorithm 2).

It remains to prove that when Algorithm 2 stops, all the non-Steiner edges have been hardwired.

Let Ġ refer to the resulting graph when Algorithm 2 stops and ER refer to the resulting set of

non-Steiner edges that have not been hardwired. We prove this by contradiction. Suppose ER 6= ∅.

Then, for each e ∈ ER, we replace two edges (tail(e), e) and (e, head(e)) by one edge from

October 31, 2004 DRAFT

20

tail(e) to head(e), which we denote by the same symbol e. Denote the resulting graph by Ḡ.

Note that in Ḡ, the predecessor edge of an edge e ∈ ER can be either another edge in ER or

an edge in the form (f, tail(e)), where f ∈ E0 + E1 − ER. Figure 10 illustrates this.

f3

e

f1
f2

v

f3

e

f1
f2

v

Fig. 10. The transformation from Ġ to Ḡ. Assume f1, e ∈ ER, f2, f3 ∈ E0 + E1 − ER.

Applying Theorem 1 with Ḡ as the original graph G, we know that all the non-Steiner edges

can be hardwired while preserving the required connectivity h to all the receivers. If according to

this hardwiring solution, an edge e ∈ ER is hardwired to an edge (f, tail(e)) ∈ E(Ḡ), f ∈ E0 +

E1 −ER, then the operation hardwire(f, e) would have satisfied the test in Algorithm 2 and

thus the algorithm should have been able to proceed further. Thus a contradiction. If according

to this hardwiring solution, all edges in ER are hardwired to edges in ER, then the set ER cannot

be reached by s′. Thus the entire set ER can be deleted from Ġ, or equivalently, hardwired to

NULL, while preserving the required connectivity. Thus a contradiction.

B. Complexity

Algorithm 2 can have different implementations, depending on how the candidate wires (f, e)

are enumerated and tested. For example, we can control the procedure to maximally grow one

tree of hardwires before growing another one. Next, we present some observations that lead to

low-complexity implementations.

First, note that we only need to test each pair (f, e) once, to check whether after hardwire(f, e),

there are h edge-disjoint paths to head(e). If the test result is negative, then testing hardwire(f, e)

later will give the same answer: e should not be hardwired to f . Further observe that for a given

e ∈ ER, testing the pairs

{(f, e)| head(f) = tail(e), f ∈ E0 + E1 − ER} (13)

October 31, 2004 DRAFT

21

can be combined: in Ġ, disallow the connections between e and its predecessor edges in ER

and then try to find h edge-disjoint paths to head(e).

Based on these observations, we give a possible implementation of Algorithm 2 in Algorithm 3.

In Algorithm 3, each edge in ER has an associated boolean property, active(e), indicating whether

the set (13) contains a pair that has not been tested. Initially, only the non-Steiner edges originated

from s or a Steiner node are active. Then, we always consider the active edges in ER to see if

the set (13) contains a pair that can be hardwired while preserving connectivity. If the answer is

yes, then e is hardwired and removed from ER. In addition, this activates the successor edges

of e in ER, since the pair (e, e′), e′ ∈ ER, head(e) = tail(e′), has not been tested. If the answer

is no, then e becomes inactive since the pairs in the current (13) have been tried.

Algorithm 3 A Possible Implementation of Algorithm 2
1: ER := E1;

2: active(e) :=true, for all e : tail(e) ∈ V − T, head(e) ∈ T ;

3: active(e) :=false, for all e : tail(e) ∈ T, head(e) ∈ T ;

4: while ∃e : e ∈ ER && active(e) :=true do

5: expand(e);

6: deleteWire(f ′, e), for all f ′ : f ′ ∈ ER, head(f ′) = tail(e);

7: [P1, . . . ,Ph′] := edgeDisjointPaths(Ġ, s′, head(e), h);

8: restore(e);

9: if h′ == h then

10: wiredPred(e) := predecessor(P1 ∪ . . . ∪ Ph, e);

11: hardwire(wiredPred(e), e);

12: ER := ER − e;

13: active(e′):=true, for all e′ : head(e) = tail(e′), e′ ∈ ER;

14: else

15: active(e):=false;

16: end if

17: end while

Tong and Lawler [13] showed that a preprocessing step can be used to reduce the complexity

October 31, 2004 DRAFT

22

for finding the maximum number of edge-disjoint spanning trees. They showed that given a

directed graph G = (V,E) and a root vertex s, a subgraph D that is the union of CG(s, V − s)

edge-disjoint spanning trees rooted at s, can be found in time O(CG(s, V − s) · |V | · |E|). This

preprocessing is as follows. For each non-root vertex v, find CG(s, V −s) edge-disjoint s-v-paths

and delete the edges entering v that is on none of these paths. This preprocessing can also be

applied to the current context to find a subgraph D of G with CD(s, T) = CG(s, T) and the

in-degree of each receiver t is h = CG(s, T). For each receiver t ∈ T , find h edge-disjoint

s-t-paths and delete the edges entering t that is on none of these paths.

With this preprocessing, the in-degree of each receiver t is h = CG(s, T). Thus, for a given

e ∈ E1 with tail(e) ∈ T , i.e., edges going from a receiver node to another receiver node, the

number of pairs (f, e) to be tested is bounded by h

|{(f, e)| head(f) = tail(e)}| ≤ h. (14)

During the execution of Algorithm 3, these edges may switch between active and inactive

state for at most h times. Thus, edgeDisjointPaths(Ġ, s′, head(e), h) will be called at

most h times. For a given e ∈ E1 with tail(e) ∈ V − T , i.e., edges going from a non-

receiver node to a receiver node, all the pairs {(f, e)| head(f) = tail(e)} will be tested in

one call of edgeDisjointPaths(Ġ, s′, head(e), h). Therefore, the total number of calls of

edgeDisjointPaths is O(h · |E1|). Thus, the overall complexity is O(h · |E1| · h · |E|).

IV. DISCUSSIONS

A. Splitting Off Operation

Interestingly, the hardwiring operation introduced in this paper can be viewed as an asymmetric

relaxation of a well-known splitting off operation in graph theory. In a directed graph, splitting

off a pair of edges e1, f1 with head(f1) = tail(e1) means that we replace e1 and f1 by a new

edge ē with tail(ē) = tail(e), head(ē) = head(f). Figure 11 illustrates this operation on Ġ.

The splitting-off operation was introduced by Lovász for undirected graphs [14]. Later Mader

[15] derived some powerful results concerning splitting while preserving the local edge-connectivity

in undirected graphs. Mader [16] also proved a splitting result for directed graphs. Under certain

conditions, the splitting off operation is connectivity-preserving. The splitting off operation proves

to be a very useful tool for establishing results about graph connectivity, especially for undirected

October 31, 2004 DRAFT

23

f3

t

e1

f1
f2

e2

f3

t

e1

f1
f2

e2

Fig. 11. The splitting off operation

graphs. For example, it has been used to derive a 2-factor approximation algorithm for packing

Steiner trees in undirected graphs [17] and a generalized version of Edmonds’ Theorem [18].

However, in the presence of Steiner nodes, it seems unclear whether the splitting off operation can

be applied to prove Theorem 1, since its prior applications often require some global connectivity

conditions to be fulfilled.

In comparison, the splitting off operation does not allow one-to-many local connection between

an edge and its successors, whereas the hardwiring operation does. We look forward to future

uses of this hardwiring operation to establish stronger results than those by the splitting off

operation.

V. CONCLUSION

In this paper, we presented a statement that unifies Menger’s Theorem on maximally packing

edge-disjoint paths, Edmonds’ Theorem on maximally packing edge-disjoint spanning trees, and

Ahlswede et al’s network coding theorem on maximizing the achievable multicast rate. We

defined Steiner edges as edges entering Steiner nodes, denoted by a set E1. We showed the

multicast capacity can be achieved by performing routing on non-Steiner edges and coding on

Steiner edges.

We introduced a hardwiring operation: Hardwiring an edge e means restricting e to connect

with at most one of its predecessor edges. We proved that all non-Steiner edges can be hardwired

while preserving the required connectivity to each receiver t ∈ T . Our proof is accompanied

by an algorithm that visits the non-Steiner edges one by one in an arbitrary order and in each

step, newly hardwires a non-Steiner edge and possibly re-hardwires some non-Steiner edges

visited earlier. This algorithm runs in time complexity O(|E1| · |T | · h · |E|) for general graphs,

October 31, 2004 DRAFT

24

where h = CG(s, T). For graphs in which the subgraph induced by receivers T is acyclic, the

algorithm runs in time O(|E1| · h · |E|). We also presented a direct hardwiring algorithm that

avoids re-hardwiring, which runs in O(h · |E1| · h · |E|) for general graphs.

Since Edmonds’ Theorem [4] is a special case of the unifying statement, our proof gives a

constructive proof to Edmonds’ Theorem, which is different from other existing proofs and/or

algorithms of Edmonds’ Theorem [4], [13], [19]–[23].

ACKNOWLEDGEMENT

The authors would like to thank Dr. Philip A. Chou and Dr. László Lovász for the helpful

discussions with them.

REFERENCES

[1] Y. Wu, K. Jain, and S.-Y. Kung. A unification of edmonds’ graph theorem and ahlswede etc’s network coding theorem.

In Proc. 42nd Allerton Conf. Communication, Control and Computing, Monticello, IL, October 2004. Invited paper.

[2] L. Lovász. Connectivity in digraphs. Journal of Combinational Theory B, 15:174–177, 1973.

[3] K. Menger. Zur allgemeinen kurventheorie. Fund. Math., 10:95–115, 1927.

[4] J. Edmonds. Edge-disjoint branchings. In Combinatorial Algorithms, ed. R. Rustin, pages 91–96, Academic Press, NY,

1973.

[5] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. Network information flow. IEEE Trans. Information Theory,

IT-46(4):1204–1216, July 2000.

[6] S.-Y. R. Li, R. W. Yeung, and N. Cai. Linear network coding. IEEE Trans. Information Theory, IT-49(2):371–381, February

2003.

[7] R. Koetter and M. Médard. An algebraic approach to network coding. IEEE/ACM Trans. Networking, 11(5):782–795,

October 2003.

[8] P. A. Chou, Y. Wu, and K. Jain. Practical network coding. In Proc. 41st Allerton Conf. Communication, Control and

Computing, Monticello, IL, October 2003.

[9] Y. Wu, P. A. Chou, and K. Jain. Practical network coding. Technical report, Microsoft Research. In preparation.

[10] T. Ho, R. Koetter, M. Médard, D. R. Karger, and M. Effros. The benefits of coding over routing in a randomized setting.

In Proc. Int’l Symp. Information Theory, Yokohama, Japan, June 2003. IEEE.

[11] T. Ho, M. Médard, J. Shi, M. Effros, and D. R. Karger. On randomized network coding. In Proc. 41st Allerton Conf.

Communication, Control and Computing, Monticello, IL, October 2003.

[12] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume B. Springer, 2003.

[13] P. Tong and E. L. Lawler. A faster algorithm for finding edge-disjoint branchings. Information Processing Letters,

17(2):73–76, August 1983.

[14] L. Lovász. On some connectivity properties of eulerian graphs. Acta Math. Hungar., 28:129–138, 1976.

[15] W. Mader. A reduction method of edge-connectivity in graphs. In Ann. Discrete Math., volume 3, pages 145–164, 1978.

[16] W. Mader. Konstruktion aller n-fach kantenzusammenhängenden digraphen. Eupropean J. Combin., 3:63–67, 1982.

October 31, 2004 DRAFT

25

[17] K. Jain, M. Mahdian, and M. R. Salavatipour. Packing steiner trees. In Proc. 14th Symp. on Discrete Algorithms (SODA).

ACM-SIAM, 2003.

[18] J. Bang-Jensen, A. Frank, and B. Jackson. Preserving and increasing local edge-connectivity in mixed graphs. SIAM J.

Discrete Math., 8(2):155–178, 1995.

[19] R. E. Tarjan. A good algorithm for edge-disjoint branching. Information Processing Letters, 3(2):51–53, November 1974.

[20] L. Lovász. On two minimax theorems in graph theory. Journal of Combinational Theory B, 21:96–103, 1976.

[21] A. Frank. Kernel systems of directed graphs. Acta Sci. Math., 41:63–76, 1979.

[22] W. Mader. On n-edge-connected digraphs. In Ann. Discrete Math., volume 17, pages 439–441, 1983.

[23] H. Gabow. A matroid approach to finding edge connectivity and packing arboresences. In Proc. 23rd ACM Symp. Theory

of Computing, pages 112–122, 1991.

APPENDIX

A. Linear Time-Invariant Network Codes

The concept of linear time-invariant (LTI) network coding was first introduced by Li, Yeung, and Cai [6]. In [7],

Koetter and Médard proved existence of LTI codes achieving the multicast capacity. In the following, we explain

the meaning of LTI network coding and review related results.

Before the explanation, we first review the notion of line graph. Let L(G[s, h]) be the (directed) line graph of

G[s, h] = (V ∪ {s′}, E ∪ {s1, . . . , sh}), which has vertex set E(G[s, h]) = E ∪ {s1, . . . , sh} and edge set

{(e′, e) ∈ E(G[s, h]) × E(G[s, h]) : head(e′) = tail(e)} .

For example, the line graph L(G1[s, h]) for Figure 2(left) is shown in Figure 12(left). Vertex-disjoint paths in

L(G[s, h]) map into edge-disjoint paths in G[s, h].

we3,e6(D)

x1(D) x2(D)

ws2,e3(D)

e1

e2

e3

e5 e6

e4

e7

s1 s2

Fig. 12. The line graph L(G[s, h]) of G[s, h] = (V ∪{s′}, E ∪{s1, . . . , sh}). Each Steiner edge is shown with a circle; each

non-Steiner edge is shown with an unfilled square; each source edge is shown with a filled square.

Definition 1 (Linear Time-Invariant Network Coding):

Let Q(F, D) be the field of rational functions of D (ratio of two polynomials) with coefficients in field F, where

October 31, 2004 DRAFT

26

D carries the meaning of a unit delay. A rational function a(D) is realizable if a(0) is well-defined. Let Q+(F, D)

denote the set of realizable rational functions.

A linear time-invariant network coding assignment is an assignment of local encoding operators in Q+(F, D) to

the edges in L(G[s, h]). For (u, v) ∈ E(L(G[s, h])), the assigned local encoding operator is denoted by wu,v(D).

Let the source stream of information be x(D) = [x1(D), . . . , xh(D)], where xi(D) denotes the z-transform

(D = z−1) of a stream of symbols in field F. The i-th source vertex si in L(G[s, h]) injects information xi(D)

into the network. Assume a fixed ordering of the edges so that we can refer to edge e for e = 1, . . . , |E|. Let

y(D) = [y1(D), . . . , y|E|(D)], where ye(D) denotes the the information flowing on edge e ∈ E. Assume each edge

e ∈ E has a unit propagation delay. The meaning of local encoding operators is that the information flowing on

edge e is a linear combination of the information flowing on its incoming neighbors N−
L (e):

ye(D) =
∑

e′∈N in
L
(e)

we′,e(D)Dye′(D) +
∑

si∈N in
L
(e)

wsi,e(D)xi(D). (15)

Putting the equations (15) for all e ∈ E together, an assignment of LTI codes can be described as the following

linear system

y(D) = Dy(D)A(D) + x(D)B(D), (16)

where A(D) ∈ Q+(F, D)|E|×|E| is the (local) encoding matrix and B(D) ∈ Q+(F, D)h×|E| is the input matrix.

Note the both A(D) and B(D) have structural restrictions due to the connectivity in L(G[s, h]). The (e′, e) entry

of A(D), we′,e(D), can be nonzero only if e′ ∈ N in
L (e); the (i, e) entry of B(D), wsi,e(D), can be nonzero only

tail(e) = s. Note that we use the mathcal font, e.g., A(D), to indicate the structural restrictions that certain

entries of the matrix have to be zero. Let

W(D) ≡





A(D)

B(D)



 , (17)

whose allowed nonzero entries correspond to the nonzero entries in the adjacency matrix of L(G[s, h]).

Next let us examine how the signals x(D) are recovered at the receivers T for a linear time-invariant code

assignment W(D) achieving multicast throughput h. From (16), y(D) is related to x(D) as

y(D) = x(D)B(D) (I −A(D)D)
−1

. (18)

Define Y(D) ≡
[

B(D) (I −A(D)D)
−1

Ih

]

, with the columns corresponding to vertices in L(G[s, h]). Define

S ≡ {s1, . . . , sh}. Denote the column of Y(D) corresponding to v ∈ E ∪ S by Y v(D), which is said to be the

global encoding vector at vertex v since it describes the cumulative effect of the encoding operations performed in

the network on this vertex. Let Ct(D) ∈ Q(F, D)|E|×h be a recovery matrix for receiver t ∈ T such that the signal

is recovered after certain delay lt

y(D)Ct(D) = x(D)B(D) (I −A(D)D)
−1 Ct(D) = x(D)Dlt . (19)

October 31, 2004 DRAFT

27

Note that Ct(D) also has structural restrictions: the e-th row of Ct(D) can be non-zero only if head(e) = t. In

addition, Ct(D) is required to be realizable. For a given A(D) and B(D), if there exists such a solution Ct(D),

then we say that the source signals are recoverable at receiver t, or receiver t can recover the source signals. Note

further that this recoverability condition can be checked easily based on the given A(D) and B(D): receiver t can

recover the source signals if and only if the linear space of global encoding vectors observed by receiver t has

dimension h, i.e., dim (span{Y e(D), for all e : head(e) = t}) = h.

Summarizing the discussions above, a capacity achieving code assignment gives realizable matrices A(D) and

B(D) that comply with their respective structural restrictions, such that all receivers can recover the source signals.

Koetter and Médard [7] proved existence of linear time-invariant (LTI) codes achieving the multicast capacity. This

is given in the following Theorem 2.

Theorem 2 (Existence of LTI Codes on Edges [7]):

In G, there exist a field F and A(D) = A ∈ F|E|×|E| and B(D) = B ∈ Fh×|E| that comply with their respective

structural restrictions due to the connectivity, such that all receivers can recover the source signals if and only if

h ≤ CG(s, T). Moreover, the field F can be chosen to be the Galois field GF (2m) for a sufficiently large m.

October 31, 2004 DRAFT

