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We present new high-resolution methods for the problem of retricving sinusoidal processes {rom noisy measure
ments  The approach Laken Is by use of the so-called principal-compeonents method, which is 4 singular-ealue-de .
corposition-based approximate modehng method  The low-rank properly amd the algebraie structure of bolh £he
data matrix and the covarianee matrix {under noise-free conditions) Corm the basis of exact, modeling methods  In
a nolsy enviromment, hewever, the rank properly is often perturbed, and singular-value decomposition is used to
obtain a low-rank approximantin factored form. The underlying algebraic struchure of these (actors leads natural-
Iy o least-squares estimates of the stale space paramaelers of the sinuseidal process. "This forms Uhe hasis of the
Poeplitz approximation method, which offers a robust Pisatenko-like spectral estimate from the covazianee so-
guence. Furthermore, the prineiple of Pisavenko’s method is extended to harmonie retrieval directly (rom time-
zeries data, which leads to a direct-data approximation method  Our simulation results indicaie that favorable res-
olution capability (cownpared with exigting methods) can be achieved by Lhe above methods. The apphiealion of
Lhese principles to two-dirnensional signals is also discussed

1. INTRODUCTION >

Spectral analysis farns the basis of 2 major parl of signal
processing, typically for distinguishing and tracking signals
of interest and for extracting relevant, information from the
data  For a majority of modern signal-processing applica-
tions, stch as in radar, sonar, and passive arrays, the spectral

analysis problem often involves eslimating the locations of

spectral lines or spectral peaks, which usually represent
physical quantitics such as speed and bearing
lwo-dimensional signals, for Insiance, in the processing of
spatiotemporal data for direction finding in passive sonarl or
in star-hearing estimalion in astronomy, the localions of
two-dimensional spectral lines arve of interest.  In these con-
texts, a key measure of performance is frequency resolution,
L.e., the ability to distinguish and identify speciral lines that
are closely spaced in frequency * * Purthermore, in some
modern signal-processing applications, the spectral estimate
hasg to be based on short data records and vet Low-bias, low-
varianee, high-resolulion estimates are desired.  In this paper
we propose some singular-value-decomposgition (SVD) based
modeling methods [or the ahove prohlem,

A.  Spectral Estimation and Autoregressive Moving
Average Models ‘

The power spectitm of a diserete-lime stochastic process
represents the distribution of power over frequencies and is
wsually defined in Lermg of its aulocovarianee sequence *
Suppose that y{k) Is a zeromean, wide-sense-stationary,
digercte-time stochastic process; then its autocovariance se-
quence is defined as

rim) = E[y{n)yim + nde,

whete K denotes the expectation operator

The power spectrum £2{w) 1s related to the infinite auto-
covariance sequence ()} of the process by the Fourier
transform®:
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It ean be shown Lo he equivalent to

) L |N=1 R
Ple) = lim E|—| 3 X()e =] ].
N oo =0

Conventional methods of spectral estimation® use one of
the above lwo formulas for Pw) and assiime that the daia
outside the ohservatlion interval are zevo. Tt well known that
this limiis the frequency resolution to the reciprocal of the
observalion interval length The modern approach Lo over-
coming this fundamental imit and achieving high resolution
frow o shorl data segment 1s by extrapolating the data, based
on certain a prior knowledge.  In certain applications, the
physieal environment generating the signal can be modeled
well by a Tinear rational system of low order. By using such
a preeri informalion, current methods model the pracess as
the outpul of a linear tational system driven by while noise
The problem of spectral estimalion is then reduced 1o that of
estimating the model parameiers.  Knhanced performance
can be achieved by an appropriate choice of madel

A1 Tronsfer-Function Representation

The paramelerization of alinear ralional system ean be done
tn terros of either its transfer function or its stale-space pa-
rameters. Transfer-lunction parameterization has been the
popular approach for model-based spectral estimation
methods. The wnpul-output relationship for the general
autoregressive moving average (ARMA) model is given by the
foltowing difference equation:

14
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vik)= 2L myvlk — 0 B bk~ )+ bk, (1
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where the input is [0k and the output is [y (). The transfer
fuceiion of this system s
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The roatas of A(z) are the poles ol the sysiem, whereas the roots
of B{z) determine the zerog. For Lhe spectral estimation
problem, the mput p(%} o the model is a while-nolse process
ol variance p. Then the covanance of the owlput v (k) salisfies
the recurrence relations

dmy =3 apim =10 forallm > g, (2)
i

and the power speetrum of the nulpui is simply plHf (e/=)2,
which can he computed in Lerms of Lhe branster-funetion pa-
rameters {a,, by}, which in turn can be estimated [tom the given
informalion.  In general, model-based spectral estimaiion
consistz of model identilication (patameler estimation) from
the piven inlormalion, followed by spectrum computation
from the model parameters. Since Lhe ARMA power-spoc-
Lrum estindate correspouds (o an intinite covariance scguence,
the ARMA modeling approach (in eftect) extends the covar-
lance sequence beyond the finite ohservation inkerval [ef .
(2)] and resulis in higher resolution.

Aninteresting and popular special ease of the ARMA ruodel
[Hq. (L)] is the autoregressive (AR} model, where b; = 0 for all
r 8, 80 Lhal,

vk = 3 vk — i) + boui,
P
Fm) — £ wrlm — i) = bp?, mo=1{ ‘
1 0, m>0
and
Plw} = pho” fA{e1e)? (2}
The covariance recurrence relations form =0, [, p form

a Toeplifz system, usually called the Yale-Walker erualions
or the normal equations. Given exacl covariances (0, 7 (1),

L r{p), the AR paramelers may be oblained by solving this
Toephtz system The AR model has heen used often in
spectial estimation, mainly because

{11 "I'here exists a compulationally cllicient algorithin,
the Levinson algorithm, to solve the Toeplitz system of normal
equations for the AR parameters 7

(23 The covariance exicnsion provided by the AR maode!
maximizes the entropy of the proeess among all possible
semipositive extenstons®  Tlence the AR modeling approach
15 also konown as Lhe maximum entropy melhod (MEM).

For an ARMA maodel, the recierence relations are salistied
only for m > ¢ Hence the denominator parameters lo; b are
oblained {from exact covarianees” by solving g (23 for m =
g+ 1,42 gt p This p X psystemn of equations s
olten called the higher-order Yule-Walker equations

A2 Siale-Space Representation
An alternalive representalion of a linear rational sysicm Lhal,
has been popular in systems theory and control literature is
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the state space representalion, in which the input sutpul,
deseription of the ARMA model, instead of Bq (1), iz sjven
by the sialo-space equalions:

lh + 1y = Feli) + Tolk),
yi&R) = hx(k) + (k) ED]

Iere x{&), the state veclor, is 2 p % 1 vector process and 77,
wnd A are constant malrices of sizes p X p, p X Land 1 % p
respectively  The transfer function of this svstem is F{z) =
Rzl =7V -1 The ARMA modei for a discrete-time
process v(&} in state space notation is related to the trans-
fer funclion represenlation in thal the poles of fhe model
[rools of Al2)] are the eigenvalues of I, whereas the zeros
[raois of B(z)] are the cigenvalues of (F -~ Th)  I'ar a given
Lransfer function, the Lriplet (77, T 1Y of 2 minimal vealization
is unique modulo a similarity {coordinate) transformation
Aninteresting choice of coordinates leads to a camounieal forin
realization, wilth

) ! 0 . 0
(Lo 0 1 (

= (5)
Ly 0 0 . 0_

This is a form thal divectly relates the state-space model to
the transler-function parameters

B.  State-Spacc ldentification

B Detorministic Case
It can be shown that the velationship helween the impulse
responsge of the miodel and the state space parameters is

iRy = b7, k=0 (£)

This indicates that ihe infinite Iankel matbrix formed from
the impulse response sequence can be factorized as

(D i)
AT TN
ARG

o

=1 [MANTA AN O T=0.¢ (1)
o

The matrices # and @& are known as the observahbility and
controllabiliby malrices in linear systems theory 19 Observe
that the oheervability malrix @ (or the controllability malrix
) has only p columns (or rows) and that consequently % has
finite vank {=p)  "The controllability matrix @ is an = to-p
mapping that maps the infimite -dimensional past input

=ln{—=1), 0(--2), 6(=3), 4

into the current p X [ state vector x{(  The p-dimensional
slale x summarizes all the relevant information in the past
input history thatl is needed for the tulure outpuls  As a
matfer of fact, if there ws no futwr e inpur, the future cutput

15 sumply

= It v, v, =1 (0)
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Henee the observability ratrix @ maps the slale vector into
Lhe future output. The Hankel malnix 7 = @ X € 1s thus an
operalor (ram the past input o the {ulure output, and it
necessarily has to be of rank p beeause of the companent op-
eralors @ and @ This rank property can be traced back (o
Kronecker," who noled thal an impulse-response sequence
admits of a finite-dimensional reatization of order p, if and
only if the infinite Hankel matrix formed from the seqnence
hag rank equal to p o Also note that @ satisfles @F = @1
Thus the state Lransition matrix ' can be computed from @

I =@ h(}_)?, (3}
whelre
hit ~
. hi?
@l = . wt = (@en-t. @
At

The ain of deferministic identitication 1s Lo obiain the
state-space model fram the impulse-response sequence
Classical realization methods, such as the Tlo Kalman algo-
rithon, 1 factorize the Hankel matrix as in B (7) and use
Lig. (8) to arrive at the stale-space parameters I might be
noted that in the Io- Rabman algorithm only a {p |- £) % (p
1) Hankel matyix, eonsiructed from the Grsl (2p + 1) exact
mapulse = response coefficients, is sulficient to obtain the 0
factor and the slale-space paramoeters

B2 Stochastic Case
The covariance of the cutput of an ARMA model driven by
while noise of vatiance p is given by

hAPh! + p, mo= 0

Fim) =
h],.‘.'u . I'f«-,',

o (9
m > ()
where ¢ = F'IPR 1 pT and where P is the p X p state covar-
lnee malrix that satisfics the Tyapunov equation, P = PP
T

In general, the inlinite Toeplitz reatrix

r(0) r{—1) r(—2)
r(1) r{(y r{-=1) o
R = r(2) r(1) r(0) (L)

docs nol have finite vank.  However, it ean be shown Lhal, for
the special case of sinusoidal processes, ! turns out to have
finite rank.  This fact is exploited in a new algorithm devel.
oped in Section 2

At this poini il is worth noling that the Hankel malrix
formed from the eovariance sequence is faciorizable as

rit)y (2 r()
(2 ri3y rid)
(3 (4 rH

h
ni .

ol TP | ERE - M e (1
hE=
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"The aim ol slochastic idenlilication s Lo obtain the state space
model from the covariance sequence.  Deterministic identi-
[ieation schemes ean be exlended to the stochastic case in a
straighlforward fashion, and the ahove factorization of the
covariance Hankel M, along with Ty {8), can be used to esii-
mate the stale-space parameters from the.exact covariances 14
Note that, just as in the Ho Kalman algorithm, only the firsi,
(272 -+ 1) covarianee lazs are needed to obtain the state-space
parameters.  kn {act, solving the so-called higher order
Yule-=Walker Bas () [for the denominator pavameters ja), ¢}
of the transler-function model B (1] is equivalent to finding
Lhe null vector of Lhe same (p - 1) X (p -k 1) principal sub
ruatrix of Lhe covariance Hankel matriz [

C. Tdentification By Use of Approximate Madeling

In praciice, the given information is otlen inexact, with per-
Luirbatiovs that may be atiributed 1o the following possibla
sources:

(1) Thegiven measurements [of the time series y (&), the
impulse response ((k), 0r the covariance sequence r{m)| are
usually corrupled by naise, white or cobored.,

(2)  "There will be inevitable covariance estimalion errors
heeause of finite data record length, word length, ot bad choice
of estimalors

{n auch a stluation, the Hankel matrices formed from cilher
the nelsy impulse-response sequence or the perturbed en-
variance sequence will not have low rank. We then have 1o
resorl. Lo approximate modeling of the data (measuremeoents)
Lo smoaoth out the perturbations Fortumately, wo normally
have more than (2p 1 1) covariance lags or impulse-response
measurements. Hence, instead of exact modeling based on
only (2p + T} measurcments, a mode! that approximately fils
all the available information is more desiralle

The ohjective of the approximation procedure should he
to determine besl the e
signal parl bazed onthe ¢

et undertving model for the (pure)
tven informalion (e g, the Lime-series
measuremcnls v}, Ina typieal (conceplual) formulation,

(1) Aweelor y in a normed {(meagsurement) veclor space
1 given.

(2} The aim of the approximalion is to find a paint m in
the model space 4 so thatl the mmodel output vim) is as elose
Loy as possihle

(3)  The performance s measured in tevms of the norm of
Ehe approximation ervor, y - vim)

The actual choice of the model space M (which is determined
by the model type and the upper hound on the model order)
depends on an oflen complicated trade-off between maodel
order and error norm

G Principal-Components Approach

In this paper we propose approximate modeling algorithms
using SVD of a nearly low vank matix o delermine its rank
and Lo oblain a low-rank approximant rom the principal
compenents  In the prosence of perfurbations, normally
Jlow-rank matrices, such as the Hankel matrices % and T, tend
to have full rank. However, the singular values thad ideally
should have heen zero will be much smatler than fhe other
{principal) singular values  Soa possible scheme for model -
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order estimalion involves looking lor a breal in the singulay
values

At this point, it is not clear how one can constrict an opki-
mal approvimant. to the siven periurhed inlormation in any
particular nermn. nstead, we adapk a bwo-siep (approximate)
modeling procedure, based on the principal components ob -
iained from the SVD. The procedure is best ilusirated by
its application to the delerminisiac identification problem of
state-space model eslimation from nolsy measuremaonts of the
impulze regponse

(iiven measurements of the impualse response 7(k), then the
Hankel operator construcied izom (k) is a mapping from the
past input veelor V= to the Ndure output Y1 ic,

Y= i Ve

Assume Lhal we are secking a pth-ovder approximation; the
first step ol the principal-components (PCY procedure pro-
vides a mechanism for obiaining an = - = p controllability-type
map: & = @V, [roan the (past) input space Lo the state space,
and a p — = ohservability-type map: Y'! = @x, from the
state space to the {future} output space. This basically en-
gures that Lhe state space is p dimensional  The aim of the
firsi, approzimation step is (o find p X @ and o« X g maps &
and @, respectively, such Lhat

Y@, &)y =0v-
iz closesl Lo YU i the minimax sense, 1.e, woe wish Lo mini-

Hize

yo_ IV 70,0
o

v

T'his is equivalent to finding the best p X o and « X p maps
& and @, respectively, that make 7 = @ ¢

closest 1o the given
lankel matrix # in the spectral norm sense.  (The spectral
norm of A is delined as supldzx s subject to [lxlo = 1) Uhis
can be achieved hy a SVD of 77, as described in the following
proceduare

Procedare PO
Terform an SV of 77 and arvanze the singular values jo; ™ of
# in decreasing order

220 vi]
= | ‘
h *‘(0 22'*){\@

where the p %< p malrix 24 contains the dominani singulay
values and Zo2 conifatos the smaller singular values. Ttiswell
known that a p rank maliix 77 Lhal hest approximates 7£ in
the spectzal norm sense is obtained by retaining only the
priveipal components:

Ho= [_;| 2'12 V’]
The (opiimal) approximation error in the spectral norm
~ [ -
N4 — 7, s given by o, Therefore if oy 5 a0, then 7F

15 a good approximant to 7
Moreaver, ¥¢ is obtained in factored lorm:

/} - [,,;] ' E:‘|"z- \/"! =) P
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a0 that @ and @ can be immoedialely identified A realization
in balanced coordinates!” s obiained by choosing the con-
trollability-type and obscervahility-type maps as

@ = Uy,
C) = Z‘ " "r/-'[

The second step involves delermining the maodel parame-
ters  Tdeally, @ would have the exacl observabiliby matsix
structure, and a p X posolution 7 to the matriz equation

0.7 = ot

wotld exisl. Tlowever, becanse of the approvimation, no exacl
sotution cxists and we have to resort to a least-squares solution
that minimimizes |@F — @1he, where subseript ¥ denoles
the Kuclidean norm. [T'he Fuctidean norm of A is defined as
the square voot of trace {A’A).] This leads to leasl-squares
estimates of Lhe state-space paramelers, as described in the
following procedure

Procedure PC 2
The stale-space parameiers can be derived from the matrices
@ and @, as follows:

ks Lhe first row of @,

T i the firsi eolumn of @,

F=a&ior

The optimal ervor |GF - @ty ean be shown to be
Ofopq) ' Hence state-space model identification secms to
be a naibural end preduct of the SVD approxunation ap-
proach

Numerical Properties of the Principal Component
Approximation

The PC method (consisting of procedures PCH and PC2) en-
joys many desirable numerical propertics  First, SVI)Y has
heen widely recognized as a numerically reliable tool for
dispiaying closeness Lo low rank. Second, the entire process
leading to the state-space solution requires no malrix inver -
sion, as the pseudoinverse of @ is in fact the franspose ol @.
Meoreover, the error bound of Oia,,, () ensures a good, al-
though suboptimal, approximation  Also, the PC method
vields a balanced realization,!'” which is less sensilive to fi-
nite-word-lenglh eflcets.'d  Morever, from Fq. (8), we can
show that | F[l, = 1, which implies that the eigenvalues of F
are bounded by unily and cusures stability of the maodel
Conseqguenlly, PC methods have consistenily performed
well.

G2 Applicability of the Puincipol Components Method
The PC method is applicable to anv problem in which cilhier
the ( or the ¢ map can be exiracted (hy use of SV from the
aiven information  To ensive a p-dimensional state vector,
only the p principal componenis rom the SV arve retained
to consteuct @ and @ Then the newt step extracts (hy use of
least-squares approximalion) the stale-space parametors from
the matiix & or @

Aparl from the deterministic idendilication problem, Lhe
PCmelhod has found applications in stochastic identification
and harmonle retrieval In the stochastic identification
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problem, the given inlormation could be tn the Lorm of a noise
corrupled data sequence (e, Tine series ) or noisy mea
surements ol s covariance sequence r{m), trom which the
alate-space model is to be estimated 721 Again, the p-
dimensional map ? can he cxtracted from v, One possibility
1 to use the covariance Hankel matrix H:

H=1yry )

Since the pul 18 white noise, Y~ is uneorvelated with the
future inputs and is corvelated only with thal parl of Y¥ thag
depends on the past inpul. V= Thetefore

H=0F{xY )

This indicates why H has rank p and how # ¢an be ohtained
fronn the principal components of £ Since the covariance
Iankel matrix admils of a factorization [ef Fep (11)] similar
to Lhe faclorization of the impulsc-response Hankel matrix
lef. K. (T)], a PO algorithm was recently proposed!® [or the
approximate covariance modeling problem. There are several
schemes thal wse the PC approach on other related maltrices
For examples, see Rels 20 and 21

In the harmonie retrieval problem, which is the problem
addressed in this paper, it will be shown that & can be ex-
tracted from the data ¥ (k) or the covariance r(m) in a similar
ashion It 13 shown in Section 2 Lhat for sinusoidal data

R = OF{xx)a,

and that @ can be oblained by a PC approximation of . This
15 done by the use of a special sinusoidal model developod for
the high-resoluiion spectral line estimation problem  The
maodel is used to establish the {inile rank and Factorization
oroperly [similar to Kas. (7) and (1] of the Flanke! dala and
‘Taeplitz covariance matiices. This allows the PC approach
Lo be applied and leads Lo the so-called Toeplitz approxima.-
tion method (TAM). The TAM provides an improvement,
over exact malching schemes, sueh as Pisarenkao’s method, in
estimating the sinusold paramelers. In Section 3 il is shown
how the PC approach can be applied directly on the given data
withoat forming a covarianee estimate.  In Scelion 4, the PC
method is applied to the two-dimensional havmonic relrieval
problem.

2. HARMONIC RETRIFVAL PROBLEM

The prohlem of reirieving sinusoids (with frequencies closce
to one another) trom perturbed covarianee information is of
special interest in a vast range of signal-processing applica-
tions, (Hien the covariance sequence may have to be esti-
maled from lime-series data, as in Doppler processing in

radar. However, 1118 not uncommon Lo encounter applica-
tions in which the {time-series) data ave nol measurable,
whereas the covaciance ialormation s direclly available.
Such situations arise in astronomical star bearing estiration,
interferometry, and passive sonar applications.

Whaen Lthe covarlance information is exact, Fourier-trans-
form methods, such as the Blackman—Tukey estimator,® or
ATl modeling methods, such as the MEM. 5 mav be nsed
Although the MEM provides better resolution than conven-
tional Fowrier-translorm methads, hoth methads perform
poocly whoen the co
the case in practice

s often
By incorporating the extra information

tHanee informalion s inexacl, as

2
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that the signal i sinusoidal inio the model, the special atrae
bure inherent in the barmonic reivieval problem can be ex-
plotted to gel helier resolution  Soch a method was tirst
proposcd by Plsarenko™ in 1973, and since then many variants
have surfacec

A, Special Model for Tlanmonic Processes
The key 1o achieving high reselution is Lo use o model lor
harmonie processes that eorporates all the o prior: infor-
mation regarding the special struciire of sinusoidal signals
For Iine enhancemenl. and for tracking of sinnscidal signals
with slowly varying liequencies, i has boen seen that a speeial
ARMA wodcl ean lead Lo high performance 5 "T'he ARMA
wodel of the previous seetion 1s, howewer, foo general for our
purpose. Hence we develop a special maodel lor harmonic
processes and cslahlish the low-rank property of the Toeplitz
covariance matiix and the data Yankel malrix in a slraight-
forward fashion

A signal compesed of, say, p/2 sinuseids can be mathe-
matically represented by

p

viR) = 3 ey explilowd + @3],
p--1

where ¢, w;, and $, are the amplitudes, [roquencics. and
phases of the ith complex exponential. The phases are as-
suined to be independent random variables distributed be-
tween O and 2w Such a signal can be considered to he the
oulpul of a special ARMA model with poles on the unit civele
and inpul noise power p = ¢ (Poles on the unit eircle make
the system self-gencrating ) Henece the difflerence equalion
representation for sinuseidal signals is a special ease of 1gs
{Uyand 3) with b, = 0 for all +

P .
viR) = > avin — i) (i2)
ist
where the roofs of the polynomial A{z) arc on the unil, circle
at es@t prot 0 ader Thig indicates thal, the Hankel ma
trig

vl y(2) ()
. yi2 v(3) y(D
¥(3 v v(®

built from the sinusoidal data hasrank p because the vector
a =1, ey, —an ., —a,) s a null vector of any n+ N
conseentive columns of ¥ The ahove madel indicates thal,
vi{%) is exactiv linearly predictable, and so linear prediction
methods such as Prony’s method™ and MIEM have heen used
to eslimale the {g) paramelers and the sinusoid frequen-
cles,

Ti can be shown that the eovariance also satislics a similar
reciurrence relation, ie.,

ot — ). (1
i)
This indicates that the Toeplilz covariance malrix K [of Tig
(10)] alse has rank . Popular harmonie retrioval methods,
such as Pravenkos method and the Tufts-Kumaresan
method, use this property lo estimate a and the sinusoid pa-
ramelers,
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B Pisarenko’s Method

Criven exach sinusoidal data, Prony's method and related
linear prediclion methods obtain a as the null vector of Y and
obtain the sinusoidal frequendcies rom the roots of A(2)  In

the presence of additive noise, a least-squares {AR) lincan
prediction fit leads to the solulion of the normal Fes, (2) and
ihe MTEM spectral estimaie  Although MEM s capable of
high resolution, it requires « subsrantially larger model ordex
Lo aceount For the additive noise in low sipnal-to-noise ralio
(SNTR) situaltions  Moveover, MEM is not optimum fox the
spectral line estimation probleny, since 1f does nol exploil the
sinuzoidal structure al the signal. When it s known a priors
thal the additive noise in the tine-serics data is white, the
sivusoidal siructure of the signal (ke finile rank properlios
of ¥ and R) ean he exploited Lo reduce the effect of the
NOLSE.

In the pre

sence of noise, the absorved covariance malrix R
is Lthe sum of the sipnal covariance malrix 2 and the noise
eovarinnee matrix a2, ie, R =R+ o¥

(It 1s agsurmed here
{hat the noise is white wilth variance o) Tt is desized to re-
duce or Lo remove the noise contribution before carrying oul
the calimation.  For this puapose we need the following ob-
servations:

{1y Forany N > p,the N 3 N leading submalrrs Ry of the
infinite Toepliiz covariance malrix B has rank p; therclove
o has Lo he an eigenvalue of the matrix Fepe with mulliplicity
(N -~ p).

{2y Moreover, o7 can only he the minimum eigenvalue, so
that (R — 2N { = KBx) remalna semiposilive definiie

(1) Finally, the vectar a [for the model, 1Bg. (1 N s the null
vector of Rqq, and consequently a is Lhe eigenvector assoct-
ated with the minimum cigenvalue 6% of the (n + 1) X (p +
1) leading principal minor of .7?_[,{ |

When Lhese results are combined Lhey lead Lo Pisatenko’s
speclral eslimation method, which is summarized helow.

(1) Diagonalize a sulliciently large malrix R and deter -
mine Lhe nomber of sinusoids by examining the multiplicity
of the minimum cigenvalue.  (From now on we drop the
subgseript N for the covariance matvix B and its estimales, but
it should be understood that the matrix size is N X N, ie, [t
stands for Ry

(7)  Compute Lhe eigonvector a of the (p + 1) X {p + 1)
leading prncipal minor of B} corresponding Lo the minimsum
erigenvalue

{3) Solve for the roots of a{z) = 0 lo ohtain Lhe focation
ol the spectral lines.

y(1) yi2) . vl - N 1L

v(2) V(B N L= N+

(3 vid) vl =N+ %
fr =

y(NY  w(N 1T vil.}

() The amplitude (power) of each ol the sinusoidal
components can be derived hy solving a linear system ol
eguakions.
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The ahove melhod is ditectly applicable when the covar-
iance information i available . When the informalion is in
the form of time-series data, then Lhe covariance has to be
estimafed first There are a number of ways to estimate the
covariance, and Lhe choice of the covatinnee esbitnator can be
critical

An improper estimator may adversely alfect the
enderlying algehraic properties, such as posilivity and low
rank. InSec

jon 2.0 we diseuss some covarlance estimation
achemes particulacly suited {or our problem

€. Covaiiance Estimation from Time-Series Data
MNinmerous covariance mabeix estimators exist in the literatore,
and for the sinusoid retvieval problem the following theee
unbiased estimators have often been used

Type T Given /. cousecutive values of 2 fime series, one
popular chaice iz the unhiased Toeplilz

imator:

R =1[rG— 1, p=1, ., N =1, N, ({4a)
where
o 1] '_!m}
Flm) = — b v(n)vin + m)*,

L—im| =71

m =01, ,N—1 (l4h)

If Lhe time series is composad of p/2 sinusoids, the covariance
matriz 7 should be a rank p Toeplitz. malris. However, the
astimale 1, although it is Toeplitz, will not have rank gz even
when there is no noise in Lhe time series,

Type 2 in sharp conlrast, the second estimale

R= (VY- Y (L—N+D (15)

[where Yy is the leading N < (L — N+ 1) submalrix of the
Hankel date matriz Y] is nol Toeplitz. But il has rank p when
there is no additive noise beeause of Lhe [inite rank of ¥ 11
is immediately obvinus that when there is no additive noise
inv(k) one can oblain a exactly as the null veetor of any {pp
1} consecutive rows of R, and the sinusoidal parameters can
be exactly found Howover, in the presence of additive RIGES
in vi{k), B may become an inlericr eovariance estimate
{especially when I is small) compared 1o i, because B will
srmooth outl the noise better than 2 Note that the entire data
record of length £ is used in estimating the covariance lags of
B whercas only L — N+ | terms are used in the estimates of
it

Type 3 Toimprove the estimate R, Ulryeh and Clayion®
suggestod a new esbimator thal, utilizes all the available data
maore effectively:

U= (DDA - N+ 1, (16a)
whoere
v(L) vyl — 1) ¥ (N
vif — 1) — y(N = 1)
vyl —23) il — 3} yiN —2)
(16h)
vil, =N 1) yil, — N) v{l)

It turns oul that, lor noise-[ree sinusoidal data, 1 alse hasvank
p for the following reasons:
1) The second half of 27 s the Hankel matrix (say, ¥




Kuimg ot of

conslructed from the lime-reversed series v (£, v(F — 1),
wil)

() Since the poles of A{z) are on the unil cirele, a is
gymmetric, and thevefore ais a null veckor of any (p + 1}
consecttive rows of Y as well

(3 Trence Lhe vector a is also the nuli vector of any (p +
1) consecetive tows ol 1)

This indicates thal, usder nose-free conditions, the si-
nusoidal parameters can be exactly identiflicd [rom K.

Comperison wmemng the lstimators We first note that
J— . e =
&, R, and B are oll unbiased estimates ol R, since

F(R) = FE{(M = ER) =R

But when the estimales are based on short data recovds, olher
faclors, such as estimation error varianee, finite rank, and
structure, have to he laken into consideration.  in the pres-
ence of additive noise, £ has hetter notse-smoothing capahility
than B since il uses more data  However, the choice helwoen
E and R depends on the SNR and the harmonic tetricval
method that is adopted. For instance, il the dala record is
short, B will be Toeplitz but not low rank (when noise free),
whereas i will e ideally low rank bui nol, Toeplitz. Simu-
lations (cf. Section 2 ®) indicate that B has beller noise-ro-
jeelion properiies than f and that & performs better ai a low
SNR. But tor the harmonic retricval problem, the low-ranic
property of the estimale under noise-lree conditions is rather
crucial. Comsequently, £ secms o perform better than I at
a high SNRR

In linear prediction (AR modeling) methods, for example,
all the aforementioned estimalors have been used with dif-
ferent levels of suceess. Tlowever, ag mentioned helore, MM
11 not oplimum for the spectral line estimation problem, since
il. does not exploil the sinusoidal structure. On the other
hand, Pisarenko’s method uses this structure hut is sensilive
ko perfurbations in the covariance malreix and performs raiher
poorly when any of the three covariance estimales is used.™
Hence more vobust methods are ealled for.  An elleclive
improvement was made by Tufts and Kamaresan,* who de-
veloped approximaie Hinear prediction meihods that also
exploit the sinusoidal nature of the signal Their methad
involves a 3VD-hased low-rank approyimation of the covar -
tance matrix, lollowed by estimation of the linear prediction
vector a from the approxunant.  (The covariance estimatle
used is 8 Fom asiate space perspeclive, linear prediction
mnethods such as the Tults -Kumaresan methad can be viewod
as procedures for computing the (irsl, column of a state tran-
sition matrix F o the model, assuming § = £ Under exact
conditions, because of the Toeplilz structuve of K, this esli-
mabe

=RERY

will he in the canonical form of Ka (5), and the (irsi column
will be the prediction polvnomial. Tlowever, after the ap-
praximation of £ by ils principal components, Lhe Toeplitz
structure g not preserved, and the estimate of I will no longer
be it canonical form. Then a methad thal computes the en-
tire malrix F may be more desizable. Moreover, as was in-
dieated earlier (of Section 1.0 1) the state-space-hased 1PC
approach has many desirable nomerical properties, and so we
now seek a state-space lormualation of the probleny  The
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state space formulation will show that ¥V and I are not only
low rank bal also highly structured and (aciorizable and that
an observability malriy can he extracicd, which nmeans thai
the PO method can be applied

). State-Space Formulation
The state gpace representation ol the special modal

:l} ( I ‘!)I
for sinusoidal signals is aspeetal case of B (3) (with T = O and
no input):

(A1 D) =e (i)

vik) = hath), (47}
where the cigenvalues of F are ot unil magnitude and equal
the root= of A(z)  Since the leiplet (F, <(0), £ is unique only
up to a (enordinate) simitarity transformation, one interesting
realization for the madel i3 when

F=diagleie pion el

and

RV = o (1%

Here the ith eloment of a vector is denoted hy a supersceripl,
(£} Nole that this is a idiagonal} canonical form that ditectly
refates the state-space pararelers Lo the sinusoid frequenc

Therelore, when the state Ltansition matrix F is diagonalized,
ifs dingonal elements (which cqual the cigenvalues of 1) will
give the frequencies of the sinusoids fef Fa. (I8} Moveover,

the transformed vectors h and xy will give us their amplitudes

and phases
'rom the sinasoidal siate-space equations [BEqs (17)], we
can show that

iR = DR (), E=0
and

rlm) = hPImh = plimpPly >

where the state vartance P sadilios P = FPF When these
equations are compared with Tas. (6) and {9) for the general
ARMA imodel, we see that the output process behaves like the
impulse response. Tlence the HMankel mairis formed from the
sinugoldal daia is itsel [actorizable:

f

ht

y = L2 (D), F5 (1), F2e(i),

=l 110)
hp |

Morcover, Lhe Toeplits covariance malrix £ is also facto-
rizable, as shown hetow:

h
hi i
k= S TIPRE PR i
f
=P {using K10 = Py {20)

Fguations (19} and (20) also indieate that ¥ and R have rank
o 'The above actorizations me nod valid for Lhe geneial
ARMA moedel and resnlt from ineorporating the a prior -
formation ahout sinusoidal signals in the special model |
the diagonal realization (1), the {actorizations of ¥ and R
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take om a special torm: see Appendiz A | Pased on the fac
torization of 1t we presenl an approximate 1‘:_&:-!]‘ixnlzmn mel_:hut_i
for our special made! that works on the covarianee nl::tf.i'iK or
its estimate (cither I2 or F). It s out that, tor the diagonal
form of . (18), when the clements are real the doubie Fiamkel

malric 7 s also factomizahle as

H

1L

ht

= [0 1), P (1), Fe(L), .

hb
b f‘ N

By using similazily fransformations it can he shown thal D
iz tactorizable for any realization, with the left-hand factor
having the observability stracture. The proof uses the fack
that the poles of the model are on the unit cirele and is not,
valid Tor the double Tlankel matrix buili from the trapulse
response of a gencral ARMA maodel The tackorization of D)
proves to he usetul for the speclral line esbimation probiem,
sinee B will be factorizable (under noise-free conditions) even
for short data records, unlike 2

E. Toeplitz Approximation Mcthod

For the purpose of robust harmonic retrieval from covariance
informatkicen, we make note of the lollowing bwo properbics of
the sinusoidal covartanee matrix K.

(1) Tt has finite rank under no noise conditions
(2) It admiis of a [aclorizalion fas indicated by Fq. (20)]
from which an obhservability-type matrix can be obtatied

Hence we can conclude that our problerm is amenable to the
PO approach. On applying the PC approach on R, we have

R=105r=2v
B . th! 0 VI
= |li 1] i . »

where 21 is p X pand Zois (N — py X AN — p). The obsery-
ability matrix is obtained from the principal sinzular veelors
{71 and Lhe principal singudar values 2,7 In the presence of

cwhite noise, although the singular veclors aze unchanged, the

singular values ave affected. In fact, all the singular values
are inercased by the nolse variance, and so the smallest sin-
aular valuie has to be substracted to compensate (or this ef feet,
1.

»

S ) .
=S on

where ax® I8 the smallest singular value of B Hence the
obhservabilityv-Ltype malrix is given by

(‘;) = II]Z‘»],
whore
= E} V;.

Then Lhe siale-space paramelers can be eslimaled ag {ol-
lorsvs:
E=grgi

fois Lhe first roweof 62,
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Pht s Lhe (sl colunm of &

The eipenvalues of I give the Deguencies of the sinusoids,

Lo,

J=diag et} = QWG

s l” N’xw:(]’})l (

(R

!

Heve (F, PRY, R) is sitmilar Lo

(@R Q PR ) = (P IR 1) (22)

Since 1z diagonal, P maost also be diagonal and contain parl,
al the amplifude Informaftion. So

o = (PR = {0 (23

Note that the computation of F reduces, by using the ma-
Liix-mversion lemroa and the ovthonormalily of the singularity
vectors, to a simple malrix malliplication 16 Also, the dis-
cuzsion on state space parametfer estimation using the PC
approach indicatles that the TAM will exhibil good numerical
properfies.  This claim is turther supported by simulation
resulis discussed below

F. Simualations and Discussions
"This section provides some simudalion results thal should help
Lo dlustrale the theoretical discussion so far. The problem
considered is the retrieval of a single sinusoid (effectively, the
problem of resolving wo closely spaced complex exponenlinls)
in additive while noise from 25 dala samples  Mose precisely,
agsuming that the sampling (requency is 2 [Tz, the sinuseid
frequeney is chosen close Lo { Flz, say, 0.98 11z |of Fig 1(a)1,
which gives rise to the probien: of resolving complex expo-
nenfials of 098 and L 02 [z, which are (.04 Hyz apart.  (i'he
simaulations were pertormed in double precision on a 36-hil.
PDP-10 computer.)  ivst the popudar MEM methaod is ap-
plicd  Five representative sinulation resulis are shown in Fig.
2, which shows a hizh percentage of failure to resolve the lines.
Offen a higher order MEM will improve the resolulion, Il
This 15 generally aceompanicd by the problem of spurious
peaks.  This problem is significantly alleviated in the
Tufts Kumaresan method (TKM) and in the TAM as shown
i our simulation study

In Ehis study, the TEKM with polynomial order 13 and ihe
TAM applicd on 1L X 11T and 13 % 13 were sach tested on
the harmonie process corrupted by 200 different (white)
paendenoise sequences. The resulls in terms of the mean, the
standard deviation, the root-mean-square (rms) error of the
frequency estimates, and the failure rate (failure Lo resolve
the speciral lines) are shown in "Table 1 (The measn and the
standard deviation of the estimales are computed only for the
resolved cases, whereas the rms crror inkes the unresolved
samples Into consideration also) A trial 15 considered a
failare if the method identifics the freguencies Lo be (10 Tz,
1.0 Hz), Le, both z-plane roots are on the negative teal axis
[ef. Big T Other simulalion parameters are Lhe rank of
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the approximant. madet order) and the SNR. Although the
rank can be determined by examining the singular valoes, for
convenienes the rank of the approximant is predelermined
f0 be 2 in our simulation study. The SNR b2 defined as the
rabio of the power in cach exponential Lo the variance of the
noise.

The resulis indicate that the TAM on B [ef Eq (14)] is
suttable for low-SNIL sifuations, whereas the TAM on the
covariance cslimate B Jef Ko (i6)] performs well {or high-
resolulion problems.  As an example, we note thal, for the
low-SNT (0-d I3 case. the TAM on £ perforrus better than the
TEM, with 7 versus 48 (ailures in 200 trials. For the high-
SNIZ (20-d12) ease, the TAM on B compares favorahly with the
TRM, with f versus 43 failures w bhe 200 trials
(ramer-Rao Bound A comparison of the variance can give
an idea of the relative performance . However, for an absolute
performance evaluation it is uselol to compare with the Cra-
mer-Rao lower bounds. For example, for the simulation
porformed on dala consisling of a sinusoid of frequency 097

A

Imaginary Axis

z - Plane Unit Circle

- -
Real Axis
{a)
&
Imaginary Axis
z-Plane Unit Circle
=3t P

Real Axis

(b)
Flo 1 () Actuad pole posthions (indicated by erosses) for (0 03-Hy
stnvsold sampled at 20 Hz o (b Pole positioss tound o a failed
trial
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Table 1. Simulation Resulls

Fregnencies To Be Resolved
(0,97, 1031)

{098,102
(SNR:0dB)  (3NE: 1o dDB

{099 L0

Methad BNR:20d0

TAM (on 1)

Miss ratio T/200 21280 100/206

Rms errox 0 020454 0 O0RT3E 0003007

Mean 0952045 0 97997H QL6 LR

Siand dev G O0sI1S 0 003000 A O0TALR
TAM (on [t)

Miss ratio TA200 9/200 57200

s error 0 025608 0007115 0003163

tlean 0 959392 1.980397 0 990353

Stand dev I 0 005831 0002752
TR M

Niss ratio A8/200 157200 4£53/300

s error 0.0 31 0007489 [SRIIN e

Mean (L956483
Stand dev 00143838

0 8789600
0005206

SRR
0002910

Hz in while noise with (-db SN, the Cramer-Rao bound (on
Lhe standard deviation of Lhe Mrequeney estimate) can be
computed to be 0014092 The resulis indicate that the
standard devialions of 00201 and 00236 in the TAM esti-
mates are fairly close to the lower hound.  Note that the de-
viatlons arc also comparable wilh the standard deviation of
0.0226 in the Pults—IKumaresan cstimate

Numerical Aspects. 'The prediction vector compuled by
ihe TEM method has dinension {equal Lo 11) much higher
than the true order, and the melhod calls for the rooting of an
oversized polynomial, whereas the 2 3 2 mairix F' obiained
in the TAM is of a much smaller sive Computationally, the
eigendecomposition of a 2 X Zmatriv is simpler and less sen-
gitive Lo errors than the rooiing of a thirteenth-order poly-
nomial.  Asageneral remazl, since the TAM s based on the
PCowpethod, all its numerical stabilily propectics are inher-
ited

3. HARMONIC RETRITVAL DIRECTLY FROM
DATA

We saw in the last section that an improper envariance oslhi-
mator may adversely disturh the original inderying algebraic
prope: ties, such as positivily and low rank.  So methods that
waork direcily on data, avaiding the covananec-cslimation step

=]
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attogether, become athiactive. For mstance, In maximum
enlropy spectral estimalion, Burg proposed a divect data
method?? that has gaimed considerable popularity

for diteet-data estimation of Lhe sinusoud paramelers, an
examination of the Hankel data matrix ig useful  As was in-
dieated earfier, the infinile Hankel mat iy formed from the
time series ideally has low rank equal to twice Lhe number of

sinusoids. T'o exploil Lhe low-rank properly, when the data
comsist of sinusolds corrupied by additive white notse, we need
to he able Lo remove the contribution of noise (Just ag in P4
sarenla’s method for the Toeplitz covariance). At lrst sight,
the problem appears to ke maore diffienit, because here all the
elements of the Hankel mattix, not just the diagonal elemenis
as in the covariance case, are eorrupbed by noise. Buat the
following claim cstablishes a curious fack that the addition of
white noise on the data will not change the singular vectors
of the infinite Tlankel matrix.

Clarm: MY is the Hankel matrix built from the uncor-
rupted data and ¥ is (he Hankel malrix cotresponcing to data
plus while noise, then asymptotically ¥ and ¥ have the same
singular vectors  Simdlarly if 1) is construcled |according Lo
Fqg (t6h)] from the uncorrupted data and, correspondingly,
I comstructed from the noise covrapted elata, then asymptot-
ically (as the record length L — =), I} and 1) have the same
singular vectors.

Briefly, this claim can he verified by noting that, for ergodic
processes, the left singular vectors of ¥ (and asympftotically
those of D) are the cigenvectors of R, whereas the left singulat
siors of ¥ oand D {asympiotically) are the eigenvectors of
i = R + o2, which are the same as Lhe eigenveclors of &

Thig claim leads Lo Pisavenko’s speclral estimation dnectly
from time-geries data For a sufficiently large double Hankel
matrix ) formed from the corrupt data, we expect (idealty)
the smallest singular value to have multiplicity (N — p)
Then the prediction veclor a can be ohlained ag the left sin-
sulay vector corresponding 1o the smatlest singular value of
a new matris Dy, which is defined as in Bog (16h) with N
replaced by p 4 1. The direel-data Pisareoko algorithm is
theorctically couivalent to Dismrenko’s method applied on
D 1D’ and, again, it is expected that the method will he
sensitive {(cf. Seclion 2.1}

Since the matrices ¥ and D arc themselves factorizable and
have finite rank [cl. Bqs. (19) and (21)] by nsing the above
claim, it seems feasible to apply the PC approach on the data
matrices directly to oblain robust estimates. A robust im-
provement of the divect-data Pisarenko scheme is the di
rect-data version of the TEM, using SVD-hased low-rank
approximation of D, followed by computaiion of the linear
prediclion vector a from this approzimant. But, as before,
we adopt a state-space approach in the following gection

VG

Direct-Nata Approximation

An obvious possibilily 13 Lo treal the Lime series as the noisy
impulse response of our gpecial model and to use an approx-
imate deterministic realization algarithm, the PO method (ef
Seclion L C 1), on the Hankel data mabiix Y 1o compule (F,
T 1) But the performance of the method will be limiled by
the qualily of IV as a covariance estimator  Sinee /s a bether
covariance estimate and D alse enjoys the [aclonizalion
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properly [Fq (20, the PC approach can be vsed on 13 as well
Application of the PCmethod on 1) will vesult in a direct-dala
version of the 'Poeplitz approximation of 2207 Tlere, SV is
performed on 7Y instead ol on B, vesulting in

D=Ly

The effecl of noise s suppresscd by subsbracting the smallest
singudar value squared:

}_}1 — (2‘ _ '.TJIV'_’[)IJ":’

where oy 15 the smallest singular valve. Then the observa-
bility matrix @ 18 Tormed from ibe prncipal singnlay veetors
and singular vatues

O = 1,31
Similarly,
D=2
The state-space parameters are compubed as
=@,
x (L} is the first colummn of 7,
hois the fitsi row of ©

From the state space parameters, one can reiricve the i
nusoidal information {(freguencies and ampiitudes) alter di-
agonalizing I just as in the TAM [of. Tlgs {22) and (233 In
addition, we can also obtain the phase information (rom the
transtormed coordinates by using K. (18).

Recall that the left singular vectors of D) are the same as the
cigenvecltors of 13 Hence the approximalion of 1) is the
oretically equivalent to the Toeplitz approximation of DIV
However, working on D avoids the numerical problems asso-
ciated with the increased condition numher of 13D and,
maoreover, there exists a stable and efficient SV algorithi
that can work on I directly ™ Therelore a direct-data ap-
proximation s preferable for numerical reasons

4. TWO-DIMENSIONAL HARMONIC
RETRIEVAL

Two-dimengional (2.1} spectral line estimation has a numbe
of important appiications  For example, in the star-localion
ple,

problem in astronomical signal processing, the sfars ave the
poinl sources in space whose bearings are to be estimated
I'he light trom the stars is focused by a space Lelescope lens
and recorded by 2-1 optical sensors placed al. ks foeal plane
Therefore we have a 2-D spaiial spectral line vetrieval problem
from finite 2.1 data or covarlanee information.

In this seclion we develop a special model [or 2-D sintusoids,
establish the low-zank property of both the data and covar-
rnce matrices, and exploit this lacl to derive 2-1) PC methods
The nolion of matrix factorization will he again applied;
however, the malrices used are not dicect generalizaiions of
the corresponding one-dimensional {1 1Y) matrices A signal
that is the sum of 2-17 sinusoidal signals,

n

yin, m) = Y o explflongn + wam - )],
Qo

ean he ropresented by a 2-1) state-space model. Here we
make a simplilyving but gencric assumphion thal the
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flequencies ate disfined i hoth direetions, i.e.,

Wy s wpp. W T Wk, Nk

an be used for this signal as

i L
A special separable model
shown below:

oin-k tom) =Ty i, ml,

wlr, mo4 Ly = Fax(n, nl,

il
—

., LN m=1, N
(24)

yin, m)=hxin, m)h

Tlore x{ . ) represents the state vector - The gigenvalues ol
F\ give the frequenc sies in one divection, whereas the eigen-
values of I give the fred uencies i the other divection The
madel can be helfer underst tood by examining the following

special chaice of Fy, 7o I, x (5, 1
ﬁ1'[ = lli(.i;'ﬂ(_)fnuh'i
Moo= (ii:-]g['(_, t-t_-u”"j
ho= [(_“’ ‘Cp|,
st 1) e el (25)

All other realizations can be obtained through similarily
[ analornations of the special case. Just fike the Flankel dala
malrivin the 1o case, the datamatrix Y, where v; = v(i, j),

can he faclored as

(L, 1, v D
| v(N, 1), L INLN)

[ ),

f?.];‘l

= (L, 1), Fax (L1, B (L D] (26)

| p Nt

T the presence of white-noise perturbafions on the data,
atesuitgimilar tothe claimin the 1-D case s possible. Also,
Lhe covariance matriz shown below is factorizable

PO, 1 (0,2 N
{1, 1} r(1,2) P, N

it = o ‘ ,
l 1) r(2,2) SN
TN, T r(N, 2 PN, N)

‘where

rii, = B vl i iyt (nam)l
p=0 1, N, J=1,3, N

= RSP

and I is the slate vatiance
Note that £ ean he factored as

= hl [#adh7,

]’E}"}N

ERIE (f‘);\,/ [27)
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Table 2. Comparison of Variance

First Frequency Second Fregquency
X k4 X Y
Actual vadues 0.25 .30 () 3h .45

Data based method:  mean 024972 030115 035075 045005
standard deviation U089 000232 006370 000262
Covarlance method:  mean 024983 020051 035195 045010
landard deviation 000783 000188 500265 000177
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Fiz 3 Stnulation results for fwo-dimensional covariance method

{10 esfimates of point-source locations)

This indicates that Y and £ have linite rvank and the PC
melhod can be applied. More precisely, the factorization {cf.
lq (25)] and the structure, Le, O = @1 and Gy = @1,
can be exploited to obtain /'y and Foasin Bg (8). Again, the
frequencies can be compuled by diagonalizing Fyand &y The
pairing of the frequency components from the two axes de-
seryes mote caution, but it can he accomplished by reducing
it to the diagonal [orm given by K. (25) and examining the
amplitudes (see Appendix A)

A similar procedure can be adopted for the divect-dala ease
More precisely, the PC approach can be applied on the data
matrix Y, and the factorization (K. (26)] can beused Lo obiain
ithe state space parameters.  In facl, (he dala approach is
equivaient to the 1 1 Toeplitz approximation of bwo type-2
covarianee estimates (YY) /N and (Y'Y)/N, onc [or each di-
reclion.

T demonsirate the performance, we pregent some sinu-
lalion examples below. The data used [or the 2.1 simulalions
comsist of lwo real sinusoids of amplitude 2.0 each, in additive
white noise of variance | 0. The data matrix used s of size
25 3 95, and 10 independent trials were conducted The co-
yarianee estimate used Cor the covariance method s a type-1
estimate. The simulalion results are summarized in Table
2.

The data-based method uiilizes the data less ellectively
than the type-1 covariance estimales  {The use of type-3
covariance eslimales for the 221 problem is more difficull than
in the 1-D problem ) However, the dala approach may be
uselul for high-resolution, high-SNE problems {(¢f Section
1)) For low -SNR situations, the type-1 covatlance estimate
appears to be more suitable. The results of the covariance

3

method are displayed in Fig. 3

5. CONCLUSIONS

In this paper, we have indicaled how siate-space realization
vheory can be tsed for hanmonic retrieval We have shown
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Lhat there is 2 rich alpebrate structure embedded in the har-
monic relrieval problem thad ean be exploited hy using ihe
{statc-space} PC method  Morcover, 3V possesses desitable
numerteal propertics Lhat arc inhervited by the 10 methaod.
The PO approach, when applied to the covariance matrix,
leads Lo the derivation of an approximate maodeling method:
the TAM, which otfers a robust Pisarenko spectral estimate
{rom estimated o observed covariance  The PC approach
also divectly applicable to the data matiix, leading to o di-
rect-dala approximation approach that has belLer numerical
properties

As a historical nofe, the potential of Kronecler's theotem
(civea 1881y and realization theory 2020 hag hoen largely ip
nered by the signal-processing community, which has instead
leaned heavily toward Preny’s linear prediclion approach
The PC approach proposed in this paper extends readization
theory to a general approvimale modeling stralegy that is
applicable o a large class of identification problems . Hor
example, it 1s a strong candidale for the prohlem ol retzteving
exponcntially damped sinusgoids from noisy dala (A damped
sinusold can be Leealed as the impulse response of a system
with poles ingide the tnit circle)  In conclusion, the alsebraic
and nurmerical significance of using SV and the state space
approach for approximalion appears to be promising, and i,
will be an important area tor future m-depth exploration
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APPENDIX A

For the special diagonal form given by Eq (18), the tacton
zalion of ¥ |ef Fg (19)) reduces Lo

1 ] 1 o qelh
v f.gju)l @l & Jp
o Frian einen (rjrkm,) ]

and that of B {ef Jq (20)] reduces o

[ 1 L L Tt
@l A adup
R =
ot e Jreeae odrep I

Similatly, Lot the 2-B) signal case, the special diagonal ren
resentabion given by g, (25) reduces to Lhe factorization of
R el Iig (2] Lo

i 1 |
X 211 ez edow
B o=
‘_;‘.jr‘,a.\u ',)jn.m'[') ,)ﬂ-”&"lp

This is uselut in detetmining the amepliludes and the pairing
of the frequencies
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