SN5402, SN54LS02, SN54S02, SN7402, SN74LS02, SN74S02 QUADRUPLE 2-INPUT POSITIVE-NOR GATES DECEMBER 1983-REVISED MARCH 1988 - Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers and Flat Packages, and Plastic and Ceramic DIPs - Dependable Texas Instruments Quality and Reliability ### description These devices contain four independent 2-input-NOR gates. The SN5402, SN54LS02, and SN54S02 are characterized for operation over the full military temperature range of -55° C to 125°C. The SN7402, SN74LS02, and SN74S02 are characterized for operation from 0°C to 70°C. ## **FUNCTION TABLE (each gate)** | INP | UTS | OUTPUT | |-----|-----|--------| | А | В | Y | | Н | Х | L | | × | Н | L | | L | L | н | ## logic symbol[†] [†]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, and N packages. ## logic diagram (positive logic) SN5402...J PACKAGE SN54LS02, SN54S02...J OR W PACKAGE SN7402...N PACKAGE SN74LS02, SN74S02...D OR N PACKAGE (TOP VIEW) | 1Y | П | U 14 | р | Vçc | |-----|-------------|------|---|-----| | 1A | □2 | 13 | | 4 Y | | 18 | □3 | 12 | | 4 B | | 2Y | □4 | 1 1 | | 4 A | | 2A | 5 | 10 | | 3 Y | | 2B | □ 6 | 9 | | 3 B | | GND | ₫, | 8 | | 3A | | | | | | | SN5402 . . . W PACKAGE (TOP VIEW) | 1A [| ſī | U 14 | 42 | |-------|----|------|------| | 18 [| 2 | 13 | □ 4B | | 1Y 🗀 | 3 | 12 | □ 4A | | V¢¢ □ | 4 | - 11 | GND | | 2Y [| 5 | 10 |] 3B | | 2A 🗀 | 6 | 9 |] 3A | | 28 🗀 | 7 | 8 |] 3Y | | | | | | SN54LS02, SN54S02 . . . FK PACKAGE (TOP VIEW) NC - No internal connection PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Tuxas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. ## schematics (each gate) Resistor values shown are nominal. ## absolute maximum ratings over operating free-air temperature range (unless otherwise noted) | Supply voltage, VCC (see Note 1) | | |---------------------------------------|---------------| | Input voltage: '02, 'S02 | 5.5 V | | 'LS02 | | | Off-state output voltage | , 7 V | | Operating free-air temperature range: | SN54' | | | SN74' | | Storage temperature range | 65°C to 150°C | NOTE 1. Voltage values are with respect to network ground terminal. ## recommended operating conditions | | : | SN5402 | | | SN7402 | | | | |--|------|--------|-------|------|--------|-------|------|--| | | MIN | NOM | MAX | MIN | NOM | MAX | UNIT | | | V _{CC} Supply voltage | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | ν | | | V _{IH} High-level input voltage | 2 | | | 2 | | | V | | | VIL Low-level input voltage | | | 8.0 | | | 8.0 | V | | | OH High-level output current | | | - 0.4 | | | - 0.4 | mΔ | | | IOL Low-level output current | | | 16 | | | 16 | mA | | | TA Operating free-air temperature | - 55 | | 125 | ٥ | | 70 | °c | | ## electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | 5.50.45755 | TEST CONDITIONS † | | \$N5402 | | | SN7402 | | | UNIT | | |------------------|--------------------------|--|---------|------|-------|--------------|------|------|--------------|--------| | PARAMETER | ı | TEST CONDITIONS I | | MIN | TYP # | MAX | MIN | TYP‡ | MAX | 1 0001 | | ٧ıĸ | V _{CC} = MIN, | = - 12 mA | | | | - 1.5 | | | - 1.5 | V | | Voн | V _{CC} = MIN, V | IL = 0.8 V, IOH = -0 | .4 mA | 2.4 | 3.4 | | 2.4 | 3.4 | | ٧ | | VoL | V _{CC} = MIN, V | 1 _H = 2 V, I _{OL} = 16 r | пA | | 0.2 | 0.4 | · · | 0.2 | 0.4 | V | | l _l | V _{CC} = MAX, V | i = 5.5 ∨ | | | | 1 | | | 1 | mA | | ИН | V _{CC} = MAX, V | ı = 2.4 V | | | | 40 | | | 40 | μΑ | | IIL | V _{CC} = MAX, V | 1 = 0.4 V | | | | - 1.6 | | | - 1.6 | mA | | IOS § | V _{CC} = MAX | | | - 20 | | - 55 | - 18 | | - 55 | mΑ | | _І ссн | V _{CC} = MAX, V | - 0 V | | | 8 | 16 | | 8 | 16 | mΑ | | CCL | V _{CC} = MAX, S | ee Note 2 | | | 14 | 27 | | 14 | 27 | mA | [†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. NOTE 2: One input at 4.5 V, all others at GND. ## switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see note 3) | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |------------------|-----------------|----------------|------------------------------------|-----|-----|-----|------| | t _{PLH} | | | 9 45 5 | | 12 | 22 | ns | | ^t PHL | A or B | Y | $R_L = 400 \Omega$, $C_L = 15 pF$ | | 8 | 15 | ns | NOTE 3: Load circuits and voltage waveforms are shown in Section 1. [‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. § Not more than one output should be shorted at a time. # SN54LS02, SN74LS02 QUADRUPLE 2-INPUT POSITIVE-NOR GATES ## recommended operating conditions | | | | SN54LS02 SN74LS02 | | | 02 | UNIT | | |-----|--------------------------------|------|-------------------|-------------|------|-----|-------|------| | | | MIN | NOM | MAX | MIN | NOM | MAX | UNIT | | Vсс | Supply voltage | 4.5 | 5 | 5 .5 | 4.75 | 5 | 5.25 | ٧ | | VIΗ | High-level input voltage | 2 | | | 2 | | | ٧ | | ۷IL | Low-level input voltage | | | 0.7 | | | 8.0 | ٧ | | lОН | High-level output current | | | - 0.4 | | | - 0.4 | mA | | IOL | Low-level output current | | | 4 | | | 8 | mA | | Тд | Operating free-air temperature | - 55 | | 125 | 0 | | 70 | °C | ## electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | | 1 | TEST CONDITIONS † | | | SN54LS02 | | | SN74L8 | S 02 | l | |-----------|------------------------|------------------------|---------------------------------------|------|----------|--------------|------|--------|--------------|------| | PARAMETER | | | | MIN | TYP‡ | MAX | MIN | TYP\$ | MAX | UNIT | | VIK | VCC = MIN, | I ₁ = 18 mA | | | | — 1.5 | | | – 1.5 | V | | ∨он | V _{CC} = MIN, | VIL = MAX, | ¹ OH = - 0.4 mA | 2.5 | 3.4 | | 2.7 | 3.4 | | ٧ | | ., | V _{CC} - MIN, | V _{IH} = 2 V, | I _{OL} = 4 mA | | 0.25 | 0.4 | | 0.25 | 0.4 | V | | VOL | VCC = MIN, | V _{IH} = 2 V, | IOL = 8 mA | | | | | 0.35 | 0.5 | ľ | | Ц | V _{CC} = MAX, | V _I = 7 V | | | | 0.1 | | | 0.1 | mΑ | | Iн | V _{CC} = MAX, | V ₁ = 2.7 V | , , | | | 20 | | | 20 | μА | | IIL | VCC = MAX, | V) = 0.4 V | | | | - 0.4 | | | - 0.4 | mA | | los§ | V _{CC} - MAX | | · · · · · · · · · · · · · · · · · · · | - 20 | - | - 100 | - 20 | | - 100 | mΑ | | ІССН | V _{CC} = MAX, | V _I = 0 V | | | 1.6 | 3.2 | | 1.6 | 3.2 | mΑ | | ICCL | VCC = MAX, | See Note 2 | | | 2.8 | 5.4 | | 2.8 | 5.4 | mА | [†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. # switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see note 3) | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | TEST CONDITIONS | | MIN | TYP | МАХ | UNIT | |-----------|-----------------|----------------|-----------------|------------------------|-----|-----|-----|------| | *PLH | A or B | > | D 2 kD C. : | = 16 pC | | 10 | 15 | ns | | ₹PHL | 7.01.0 | ' | RL=2kΩ, CL= | C _L = 15 pF | | 10 | 15 | ns | NOTE 3: Load circuits and voltage waveforms are shown in Section 1. [§] Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second. NOTE 2: One input at 4.5 V, all others at GND. ### recommended operating conditions | | | | SN54S0 |)2 | SN74802 | | | | |--------------------------------------|------------|-----|--------|------------|---------|-----|------------|------| | | | MIN | NOM | MAX | MIN | NOM | MAX | UNIT | | V _{CC} Supply voltage | | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | ٧ | | V _{IH} High-level input vol | tage | 2 | | | 2 | | | ٧ | | VIL Low-level input vol | tage | | | 8.0 | | | 0.8 | ٧ | | IOH High-level output of | urrent | | | – 1 | | | – 1 | mΑ | | IOL Low-level output co | urrent | | | 20 | | | 20 | mΑ | | TA Operating free-air to | emperature | 55 | | 125 | 0 | | 70 | °C | ## electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | | TEST CONDITIONS † | SN54S02 | SN74S02 | דואט | |-------------------|---|----------------------|--------------|------| | PARAMETER | TEST CONDITIONS I | MIN TYP# MAX | MIN TYP# MAX | UNIT | | VIK | V _{CC} = MIN, I _I = -18 mA | -1.2 | -1.2 | ٧ | | V _{OH} | V _{CC} = MIN, V _{IL} = 0.8 V, I _{OH} = -1 mA | 2.5 3.4 | 2.7 3.4 | ٧ | | Vol | V _{CC} = MIN, V _{IH} = 2 V, I _{OL} = 20 mA | 0.5 | 0.5 | ٧ | | Ц | V _{CC} = MAX, V _I = 5.5 V | 11 | 1 | mA | | ЧН | V _{CC} = MAX, V ₁ = 2.7 V | 50 | 50 | μА | | կը | V _{CC} = MAX, V _I = 0.5 V | -2 | -2 | mA | | I _{OS} § | V _{CC} = MAX | -4 0 -100 | 40100 | mA | | ¹ ссн | V _{CC} = MAX, V _I = 0 V | 17 29 | 17 29 | mA | | CCL | V _{CC} = MAX, See Note 2 | 26 45 | 26 45 | mA | [†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. NOTE 2: One input at 4.5 V, all others at GND. # switching characteristics, V_{CC} = 5 V, T_A = 25°C (see note 3) | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | TEST CONDITIONS | MIN TYP | MAX | UNIT | |------------------|-----------------|----------------|--|---------|-----|------| | ^t PLH | A or B | Y | $R_1 = 280 \Omega$, $C_1 = 15 pF$ | 3.5 | 5,5 | ns | | tPHL | | | $R_L = 280 \Omega$, $C_L = 15 \rho F$ | 3.5 | 5.5 | ns | | tPLH | | | R _L = 280 Ω, | 5 | | ns | | tpHL | | | | 5 | | ns | NOTE 3: Load circuits and voltage waveforms are shown in Section 1. [‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_{\Delta} = 25^{\circ}\text{C}$. § Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second. #### IMPORTANT NOTICE Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current. TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Copyright © 1996, Texas Instruments Incorporated ### **IMPORTANT NOTICE** Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current. TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Copyright © 1996, Texas Instruments Incorporated